
 

 
Abstract—Drug candidate research plays an essential role in 

the current breast cancer treatment, such as the quantitative 
and qualitative prediction problem for anti-breast cancer drug 
candidates. Aiming at this crucial problem, a quantitative and 
qualitative prediction method is proposed for anti-breast cancer 
drug candidates, integrating machine learning and data-driven 
perspective. Firstly, a drug molecular descriptor selecting 
method based on random forest (RF) is established to extract 
the important information in high-dimensional drug molecular 
descriptors. It is examined through the correlation analysis and 
variable representative analysis. After processing the IC50 
outliers, we convert the IC50 value to pIC50 value. By adopting 
pIC50 as the ERα bioactivity prediction target, a quantitative 
prediction method of ERα bioactivity is further built based on 
machine learning (ML). Then, a SMOTE-based data processing 
method of unbalanced ADMET classes is developed to balance 
the imbalance categories in five different ADMET properties. A 
comprehensive evaluation index score (CEIS) is constructed by 
combining three different indicators. Both ML and CEIS are 
further integrated to establish a qualitative prediction method 
for ADMET. Finally, the feasibility, rationality and effectivity 
of our method are validated through the relevant experiments. 
The results show that our method can be useful in promoting 
the development of anti-breast cancer drug candidates. 

 
Index Terms—Drug candidate, Quantitative and qualitative 

prediction, Machine learning, Imbalanced data, CEIS 

I. INTRODUCTION 
reast cancer stands as one of the most widespread 
malignancies affecting women health. Its incidence is 

increasing every year. In [1], 60-80% of individuals 
diagnosed with breast cancer present with estrogen receptor 
(ER)-positive tumor phenotypes. [2] have demonstrated a 
mechanistic association between estrogen receptor α subtype 
(ERα) activation and mammary carcinogenesis. As a result,  
therapeutic strategies for mammary carcinoma continue to 
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prioritize ERα due to its central role in tumor progression. 
The compounds demonstrating ERα antagonism show 
promising potential as anti-neoplastic leads in mammary 
carcinoma management. Currently, the potential active 
compounds are usually selected by predicting the ERα 
bioactivity. Then, the drug candidates can be further 
evaluated and identified. For the breast cancer treatment, its 
drug candidates also need to have some great medicinal 
kinetics properties and biological safety, such as Absorption, 
Distribution, Metabolism, Excretion and Toxicity (ADMET) 
[3]. So, it is also essential for drug candidates to predict their 
ADMET properties. 

   For saving the related time and cost in drug research and 
development, the current methods focus on establishing the 
bioactivity prediction model [4] to screen the potential active 
compounds. Specifically, the data is collected for various 
compounds targeting pathology-associated sites and their 
bioactivity, such as ERα and its related bioactivity. Then, a 
succession of molecular structure features is considered as 
stand-alone variables. The compound bioactivity metrics can 
serve as the response variables in establishing quantitative 
structure-activity relationship (QSAR) modeling, such as the 
values reflecting the biological activities of such compounds. 
Besides, the ADMET property also needs to be effectively 
predicted for determining whether the active compound 
makes ADMET property better or worse, such as the above 
five ADMET properties. Predicting the drug bioactivity and 
property can promote the drug candidate development of 
anti-breast cancer. Thus, a growing number of scholars have 
conducted the related research on predicting biological 
activity and ADMET property. 

In the early stages, Niculescu-Duvaz et al [5] formulated 
a QSAR relationship for predicting the biological activity. It 
can also illustrate the stereochemical features about cyclic 
moiety and uninterrupted conjugation in polienic chain. 
Through the integration of E-state calculations and 
physicochemical profiling,  [8] delineated molecular features 
governing ERα subtype selectivity. Zekri et al [9] developed 
an effective QSAR model about ERα positive antagonists. By 
using the molecular docking, they also investigated the 
binding characteristics between ERα and antagonists. In [10], 
a QSAR model is built by the bioactivity data and distribution 
with different structural features, such as quantitative 
molecular descriptors. These molecular structural features 
are further employed to predict the ADMET property. Then, 
Guan et al [11] formulated an ADMET-score (namely 
scoring function) for the compound medicinal-likeness. In 
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general, some relevant research [12]-[15] on drug biological 
activity and ADMET property has primarily been conducted 
from a traditional perspective. They concentrate on 
biochemical experiments and molecular structures. 

Nevertheless, significant room for enhancement exists 
in the process of developing drug candidates, given the 
dramatic increase in the number of available drugs. For 
example, it can be integrated with ML to accelerate the key 
stages of research and development [16], thereby reducing 
costs and saving time. Because ML has a better ability to 
process and analyze the high-dimensional data. Currently, the 
accelerated evolution of ML algorithms has introduced a 
novel computational paradigm to study drug activity and 
ADMET properties. For instance, Beheshti et al [17] selected 
some important descriptors with the aid of genetic algorithm 
(GA). QSAR modeling was also performed to predict the 
drug antimalarial activity by multiple linear regression 
(MLR).  For predicting the biological activity, Anter et al [18] 
adopted the extreme learning machine (ELM) to constructed 
a new QSAR model. Based on ML methods, the allosteric 
drug bioactivity prediction [19] was further studied from 
molecular dynamics. According to ensemble learning (EL), 
Shi et al [20] predicted the ADMET property by two-level 
stacking algorithm (TLSA). Feinberg et al [21] explicitly 
represented each molecule as a graph to identify the features, 
which were the most pertinent to each chemical task. The 
graph convolutional neural networks (GCNN) were utilized 
to predict the ADMET property. Then, a quantitative 
regression model [22] was developed by the graph attention 
network and GCNN. [22] also provided an optimization 
model and model explanation with the gradient-weighted 
class activation map. Furthermore, some other ML models 
and methods can be further integrated into the research on 
drug bioactivity and ADMET properties, such as multilayer 
perceptron (MLP) [23], back propagation neural 
network (BPNN)[24], adaptive boosting(AdaBoost) [25], 
light gradient boosting machine (LGBM) [25], extreme 
gradient boosting (XGBoost) [26], and deep learning (DL) 
[27]-[29], etc. 

In summary, ML has been successfully integrated into 
the drug candidate research on the basis of traditional 
methods, such as QSAR. Many examples show that this can 
reduce the experimental cost and time, effectively screen 
potential active compounds, and improve the pharmaceutical 
efficiency. Although they have achieved some good results, 
there are still some aspects that need to be further improved 
and optimized. For example, both qualitative and quantitative 
dimensional studies need to be fully considered for drug 
candidates. The unbalanced category data processing is also 
important for different drug candidate categories. Motivated 
by these observations, this paper is committed to establishing 
a quantitative and qualitative prediction method of anti-breast 
cancer drug candidates integrating data-driven perspective 
and ML. The main contributions and innovations can be 
concisely stated as below:  

(1) A drug molecular descriptor selecting method based 
on RF is developed to extract the important information from 
high-dimensional drug molecular descriptors. 

(2) From a quantitative perspective, a quantitative 
prediction method of ERα bioactivity based on ML is 
proposed for drug bioactivity prediction. 

(3) For unbalanced ADMET classes, a SMOTE-based 
data processing method is also developed to balance the 
unbalanced classes in different ADMET properties. 

(4) CEIS is constructed and a qualitative prediction 
method for ADMET is established by integrating the CEIS 
and ML. It aims to predict the ADMET property in drug 
candidates from a qualitative perspective. 

The rest of this paper is principally structured in the 
subsequent sections. Section. II develops a drug molecular 
descriptor selecting method based on RF, and introduces its 
whole process. Based on ML, Section. III advances a  
bioactivity quantitative prediction method and gives the 
related solution steps. Section. IV establishes a qualitative 
prediction method of ADMET based on CEIS and ML. It also 
designs the specific solution steps. In Section. V, some 
relevant experiments are implemented to demonstrate the 
proposed method. Finally, Section. VI condenses the key 
tasks in this paper and furnishes some prospective work 
orientations. 

II. DRUG MOLECULAR DESCRIPTOR SELECTING METHOD 
BASED ON RF 

In the existing drug candidate dataset, there are 729 
molecular descriptors with compound information. For some 
molecular descriptors, the compound values are filled with 0. 
Hence, they are invalid and should be eliminated. The 225 
molecular descriptors are eliminated, and the remaining 
number of molecular descriptors is 504. Due to the redundant 
information, the number of zeros exceeds 95% in some 
molecular descriptors. They have little effect on the ERα 
biological activity, and also should be eliminated. The other 
molecular descriptors are further retained as 403 in ERα 
bioactivity data. 

Aiming at removing the impact of data dimension and 
value range, a minimum-maximum normalization method is 
utilized to perform a linear transformation on the original 
data. Its formula is as follows: 

min( )
max( ) min( )

i
norm

i i

x x
x

x x
−

=
−

                      (1) 

Among them, x is the known data on the molecular 
descriptor corresponding to each compound, normx  is the 
normalized value, min( )ix  is the minimum value in molecular 
descriptor data, max( )ix  is the maximum value in molecular 
descriptor data. 

Molecular descriptors are essential for QSAR research. 
The reliability and validity of QSAR models largely depend 
on the accuracy of the screened descriptors. After the above 
data processing, the 403 remaining molecular descriptors are 
clearly characterized by excessive feature dimensionality and 
redundancy. So, it is necessary to obtain the most important 
molecular descriptors for ERα bioactive prediction. Inspired 
by [30] and data-driven perspective, this paper establishes a 
molecular descriptor selecting method based on RF.  

In the proposed method, it aims to employ each decision 
tree (DT) within RF to calculate the contribution of each 
molecular descriptor. Then, we take their average values, and 
compare the average contribution between different features 
for molecular descriptor selection. The specific operation is 
as follows: 
        (1) Adopt the bootstrap method to randomly select some 
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samples in the processed dataset as a training dataset. 
(2) Select d features (d<403) randomly from the 403 

molecular descriptors to form a new feature set. 
(3) Divide the sample set based on these d features, and 

find the best dividing feature by the Gini impurity.  
(4) Utilize the feature set in (2) to construct the DT, and 

further form into the RF. Then, the importance degree of 
molecular descriptors is calculated and sorted. The specific 
formula is: 

( ) )( )1 ( ( ) ( )
xi

Gini L R
i L R

Stree
VIM GI v w GI w GI

n ν
ν ν

∈
=  − −                         

(2) 

( ) ( )
1

1
K

c c
c

GI p pν νν
=

=  −                             (3) 

where ( )Gini
iVIM is the importance degree of molecular 

descriptors. ( )GI ν  is Gini information gain for molecular 
descriptor ix  at node v, , RLν ν denote the left and right 
nodes of v, , RLw w are the sample proportion assigned to the 
left and right nodes, cpν denotes the sample proportion for 
category c in v, 

ixS is the partition set for all nodes of ix  in 
treen  trees.  

Based on the above steps, we can obtain the molecular 
descriptors demonstrating significant bioactivity relevance.  
The importance degree of preferred molecular descriptors is 
shown in Figure 1.   

In Figure 1, the importance degree of MDEC-23 is 
particularly notable and prominent. However, the importance 
degree is relatively close for other neighboring molecular 
descriptors, such as C1SP2 and LipoaffinityIndex. Moreover, 
the top 20 molecular descriptors are shown in Table I, 
involving 10 categories. 
 

TABLE I 
STATISTICAL TABLE OF MOLECULAR DESCRIPTOR TYPES 

Descriptor type NUMBER Descriptor 

Atom count 1 nC 
Autocorrelation 

(charge) 
1 ATSc3 

BCUT 1 BCUTw-11 
Carbon types 1 C1SP2 
Chi cluster 1 VC-5 

Hbond acceptor count 1 nHBAcc 
Molecular distance 

edge 
2 MDEC-12, 

MDEC-23 
Topological polar 

surface area 
1 TopoPSA 

Molecular linear free 
energy relation 

1 MLFER_A 

Atom type 
electrotopological 

state 

 
10 

LipoaffinityI
ndex,maxssO
, ndssC, etc 

 
Among these categories, the most prominent category is 

Atom type electrotopological state, and it accounts for 50%. 
Specifically, it contains 10 molecular descriptors, including 
LipoaffinityIndex, maxssO, minsssN, maxHsOH, minsOH, 
minHsOH, minHBint5, SHsOH, SHBint10, and ndssC. 
Besides, the largest contribution (MDEC-23) belongs to the 
category of Molecular distance edge. 

In order to further prevent the overfitting and verify the 
rationality of the results in Figure 1, the correlation analysis 
and variable representative analysis are performed on the 

selected molecular descriptors. For the correlation analysis, 
we adopt the Spearman rank correlation coefficient, which is 
as follows: 

( )
1

2

6 ( )
1

1

n

i i
i

s

R Q
r

n n
=
 −

= −
−

                            (4) 

where iR denotes a molecular descriptor rank, iQ  is the rank 
of another molecular descriptor, and i iR Q− denotes the rank 
difference. 

According to formula (4), we calculate the Spearman 
rank correlation coefficient between the selected molecular 
descriptors. The specific results are shown in Figure 2. By the 
comparative analysis, the correlation coefficients are small 
between these molecular descriptors, and so their direct 
relevance is very low. This can justify the proposed selecting 
method. 

With regard to the variable representative analysis, the 
entropy weight method (EWM) is adopted to calculate the 
information entropy and cumulative weight for molecular 
descriptors. The related formulas are as follows: 

( )1

1 1 1
ln / log( / )( )

n m m

j ij ij ij ij
i j j

H n Y Y Y Y−

= = =
= −            (5) 

1

1
( 1, , )j

j m

j
j

H
w j n

n H
=

−
= =

− 
                     (6) 

where Hj is the information entropy in the jth molecular 
descriptor, and n denotes the sample number. Yij is the 
bioactivity data in the ith compound at the jth molecular 
descriptor, and wj denotes the information entropy weight. 

According to the formulas (5) to (6), Hj and wj are first 
calculated, and then we further calculate the cumulative 
weight for information entropy. Figure 3 and 4 present the 
pertinent outcomes. 

In Figure 4, the information entropy gradually increases 
for the selected molecular descriptors. Then, the cumulative 
weight is approximately 31.9% for information entropy. This 
means that the information entropy of the selected molecular 
descriptors can account for 31.9% in the total information 
entropy of all 403 variables. But, their average level is only 
4.96%. It can indicate that the selected top 20 molecular 
descriptors have a good representative level. This can further 
validate the rationality of the proposed selecting method.  

III. QUANTITATIVE PREDICTION METHOD OF BIOLOGICAL 
ACTIVITY BASED ON ML 

A. The quantitative prediction model of ERα biological 
activity based on ML  

According to the exiting bioactivity dataset, it has 1974 
compounds and the top 20 molecular descriptors against ERα 
for breast cancer treatment target. Then, the IC50 value can 
characterize the biological activity. It is effective in inhibiting 
the ERα activity. When the IC50 value is smaller, this 
indicates a higher bioactivity level and a more effective ERα 
inhibition. Meanwhile, it can be discovered that some IC50 
values are abnormally large in Figure 5(a). To address this 
issue, the previous data has been re-examined after removing 
the outliers, as shown in Figure 5(b).  

The compounds associated with the removed outliers 
are given in Table II. 
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Fig. 1. The importance degree of preferred molecular descriptors 

 

 
Fig. 2. The correlation graph of molecular descriptors 
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Fig. 3.  The distribution of information entropy and corresponding weight 

 

 
Fig. 4.  The cumulative weights of information entropy 

 
TABLE II 

STATISTICAL TABLE OF ELIMINATED COMPOUNDS 
 SMILES 

1 
 

2 
 

3 

CC(=CCc1c(O)c(O)cc([C@H]2CCc3ccc(O)cc3O2)
c1CC=C(C)C)C 

COc1cc(O)c(\C=C/C(C)(C)O)c2O[C@@H](CC(=O
)c12)c3ccccc3 

COc1cc(O)c(\C=C/C(C)(C)O)c2OC(CC(=O)c12)c3
ccc(O)cc3 

4 
 

5 
 

6 
 

7 

CC(C)[C@]1(O)CC[C@@]2(C)[C@H](O)CCC(=C
)[C@@H]2[C@H]1O 

CC1CC(=O)C2=C(C1)OC3=C(C2c4cc5ccccc5n4Cc
6ccccc6)C(=O)CCC3(C)C 

CC1(C)CC(=O)C2=C(C1)OC3=C(C2c4cc5ccccc5n
4Cc6ccccc6)C(=O)CCC3(C)C 

CC1CC(=O)C2=C(C1)OC3=C(C2c4cc5ccccc5n4Cc
6ccccc6)C(=O)CC(C)C3 

 
Combined with [31], the compound bioactivity value 

against ERα is typically measured by the pIC50 value. pIC50 is 
usually positively correlated with biological activity. It can 
also be regarded as a useful tool in predicting the compound 
bioactivity against ERα. Meanwhile, the conversion formula 
between pIC50 and IC50 is as below: 

50 10 509 logpIC IC= −                        (7) 
Then, the quantitative prediction model is constructed 

for ERα biological activity by implementing EL, such as 
random forest regression (RFR) and gradient boosting 
regression tree (GBRT). 

In RFR, the combination regression of multiple DTs is 
used to calculate the biological activity as follows: 

( ) ( ), , ,n n Q n nr X D E r X Q D=                        (8) 

where nD  denotes the total dataset, QE  is the expectation 
associated with X, and ( )1 2, , , , , ,i kX X X X X k n<  can 
denote the random parameters of molecular descriptors in 

nD . Then, we have: 

( )
( )

( )

( )

,
1

,

,
1

1
, , 1

1

i n

n

i n

n

i X A X Q
i

n n n E X Q

X A X Q
i

Y
r X Q D

∈  
=

  

∈  
=

=



         (9) 

where iY  denotes the dependent variable corresponding to 
iX  in the learning samples, [ ]1   is the indicator function. If 

the subscript condition is met, there will be [ ]1 1= ; if not, 
there is [ ]1 0= . ( ),nA X Q  is a random unit partition with X , 
and the judgment condition ( ),nE X Q is as below: 

( ) ( ),
1

, 1 0
i n

n

n X A X Q
i

E X Q ∈  
=

 = ≠ 
 
                 (10) 

By combining with the formula (8) and (9), the 
bioactivity regression estimation in RFR is:  

( )
( )

( )

( )

,
1

,

,
1

1
, 1

1

i n

n

i n

n

i X A X Q
i

n n Q n E X Q

X A X Q
i

Y
r X D E

∈  
=

  

∈  
=

 
 
 =
 
  




           (11) 
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Fig. 5.  The comparison of IC50 outliers before and after elimination 

 
For GBRT, assume the bioactivity dataset is D, its 

quantitative bioactivity prediction is denoted as ( )f x .  
Next, we initialize the weak learner as: 

( ) ( )0
1

arg min ,
n

i
c i

f x L y c
=

=                      (12) 

For the iteration 1,2, ,m M=  , the negative derivative  
of samples is calculated as: 

 
( )( )

( )
( ) ( )1

,

m

i i
Mi

i f x f x

L y f x
r

f x
−=

 ∂
= −  

∂  
            (13) 

Then, we use ( ) ( ), , 1, 2, ,i mix r i n=   to obtain the m-th 
regression tree by fitting a classification and regression tree 
(CART). , 1,2, ,mk j JR =   denotes the terminal node partition. J is 
the terminal counts in regression tree m. Regarding the leaf 
region, the best bioactivity fitting value can be calculated as: 

( )( )1arg min ,
i Mk

mk i M i
c x R

c L y f x c−
∈

= +          (14) 

Hence, the former learner is further updated as: 

 ( ) ( ) ( ) ( )1
1 1

M K

M m mj mj
m j

f x f x f x c I x R−
= =

= + = ∈    (15) 

B. The solution steps of quantitative prediction model with 
biological activity  

According to the bioactivity quantitative prediction 
model developed in Section III.A, the detailed solution 
procedures are structured through the following steps. 

Step 1:  Further process the IC50 outliers in Section III.A 
based on the processed data in Section II. 

Step 2:  Randomly shuffle and split the processed data 
in Step1, and it is partitioned into training (80%) and testing 
(20%) subsets. 

Step 3: Based on the established RFR and GBRT 
models in Section III.A, pIC50 is used as the prediction label. 
Ten-fold cross-validation is employed to train the models, 
with optimal parameter selection occurring during the 
training iterations. The developed model is evaluated on the 
testing subsets from Step 2. The IC50 value is computed by 
the conversion formula (7) and pIC50. 

Step 4:  Conduct the model evaluation by calculating 
the evaluation metrics between the pIC50 model-predicted 
values and its actual values, including calculating the mean 
absolute error (MAE), the mean absolute percentage error 
(MAPE), the root mean square error (RMSE), and the 
goodness of fit (R2). 

IV.  QUALITATIVE PREDICTION METHOD OF ADMET BASED 
ON CEIS AND ML 

A. SMOTE-based data processing method for unbalanced 
ADMET classes 

In the existing biological activity dataset, the five major 
properties of toxicity or quality will significantly affect the 
ADMET property. Concretely, the ADMET property mainly 
needs to consider Caco-2, CYP3A4, human Ether-a-go-go 
Related Gene (hERG), Human Oral Bioavailability (HOB) 
and Micronucleus (MN). Thus, they can be effectively 
classified and predicted to determine whether the active 
compound makes the ADMET property better or worse. 
According to the ADMET property data, both 0 and 1 are 
utilized to denote the category labels. It is converted into the 
binary classification problem. When the Caco-2 or HoB 
category labels are 1, it is better for ADMET property. While 
the CYP3A4, hERG or MN category labels are 0, the 
ADMET property is better.  

Meanwhile, the imbalance categories obviously exist in 
the ADMET property data. This can significantly affect the 
construction and performance in predictive models. Inspired 
by [32] and data-driven perspective, an unbalanced ADMET 
class data processing method is established by incorporating 
the synthetic minority oversampling technique (SMOTE). It 
can reasonably expand the original data and balance the ratio 
of unbalanced category labels to 1:1. Its operational steps are 
outlined as below: 

(1) Use the idea of k nearest neighbors (KNN) [33],[34] 
to construct the k nearest neighbors for the ADMET minority 
categories.  

(2) Randomly select the N samples for stochastic linear 
interpolation among the k nearest neighbors from (1), and the   
choice of N depends on the final desired equilibrium rate. For 
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each selected sample point, the subsequent formula (16) is 
employed to build a new ADMET minority-class sample. 

(0,1) ( ), 1,2, ,new i j ix x rand x x j M= + × − =        (16) 
Where jx is a sample randomly chosen from the k nearest 

neighbors, ix  denotes the ADMET minority-class sample, 
and (0,1)rand  denotes the random number between 0 and 1. 

(3) Repeat (1) and (2) to iteratively update each of the 
minority category in five different unbalanced categories for 
expanding each imbalance category to a ratio close to 1:1. 

Based on the above steps, the imbalance categories are 
processed for five different ADMET properties. The results 
are given in Table III. Among them, the expanded categories 
of Caco-2 and HOB are 1. For CYP3A4, hERG and MN, 0 is 
regarded as their expanded categories. 

 
TABLE III 

RESULT TABLE OF UNBALANCED DATA PROCESSING 

 Original 
class ratio 

Original 
dataset size 

Current 
dataset size 

Added 
class 

Caco-2 2:1 1974×504 2429×504 1 
CYP3A4 1:3 1974×504 3000×504 0 

hERG 5:6 1974×504 2192×504 0 
HOB 3:1 1974×504 2992×504 1 
MN 1:3 1974×504 2894×504 0 

 

B. The qualitative prediction model of ADMET based on 
CEIS and ML 

According to the ADMET property, its processing and 
analysis, a qualitative prediction model of ADMET property 
is established by integrating ML and CEIS. Likewise, it is 
also mainly on the basis of gradient boosting decision tree 
(GBDT) and random forest classification model (RFC). For 
GBDT, suppose that the bioactivity dataset is D*, and the 
ADMET qualitative prediction is denoted by * ( )f x .Then, a 
weak learner ( )0F x  is initialized as: 

  ( ) ( )
( )0

1
log

1 1
P Y x

F x
P Y x

=
=

− =
                      (17) 

where ( )1P Y x=  is the proportion of 1y = in the training 
dataset. Next, the M* classification decision trees of ADMET 
property are constructed by using the priori information. For 
the iteration * *1, 2, ,m M=  , the negative derivative of cost 
function corresponding to m*-th tree is computed: 

( )( )
( ) ( )* *

*
*

*, 1

,i i

m i m
i

L y f x
r f x

f x −

 ∂
 = −

∂  
               (18) 

Then, ( )( )*, 1, 2, ,i m i
x r i n=   is used to fit the basic 

model: 

( ) ( )* * *

1

J

m m j m j
j

f x c I x R
=

= ∈                      (19) 

( )( )( )( )* *

*
1

arg min log 1 exp
i m j

i im j m
x R

c y f x c
−

∈

= + − +   (20) 

       Finally, the above process is repeated, and the final 
GBDT model is constructed by utilizing the above m* basic 
models, which is: 

( ) ( ) ( ) ( )
*

* * * * *
*

1
11

M J

M M m m j m j
jm

f x f x f x c I x R
−

==

= + = ∈   (21) 

For RFC, its basic structure is similar to RFR. The 
ensemble classifier of RFC can be briefly described as 

( ), , 1, 2,kh x k nθ =  , where x denotes the input bioactivity 
data, k is the DT number in RFC. kθ denotes the parameter 
vector of k-th DT. This is an independently and identically 
distributed random vector. Meanwhile, it is independently 
and equally determined by learning on the independent and 
equally distributed bootstrap sets. The ADMET qualitative 
predictions for x are determined by voting from each DT in 
the RFC, and the combined average votes are utilized to 
determine the corresponding category for ADMET property. 

 Besides, the CEIS is constructed by combining three 
different indicators. Moreover, CEIS is also introduced into 
the qualitative prediction model of ADMET property. It 
mainly combines the accuracy, precision and recall. When 
CEIS is larger, there is a better effect for the qualitative 
prediction of model. The specific formulas are as below: 

       lCEIS Precic sia onAc ur cy Recal= + +           (22) 

      TP TNAccuracy
TP TN FP FN

+=
+ + +

              (23) 

     TPPrecision
TP FP

=
+

                                (24) 

         TPRecall
TP FN

=
+

                                    (25) 

where TP, TN, FP, and FN are the true positive, true negative, 
false positive, and false negative in the confusion matrix. 

C. The solution steps of qualitative prediction model with 
ADMET property 

According to the qualitative prediction model developed 
in Section IV.B, the relevant solution processes are devised 
through the following steps: 

Step 1:  Use the SMOTE-based data processing method 
in Section IV.A to deal with the imbalance category in 
ADMET property data, including the five different ADMET 
properties: Caco-2, CYP3A4, hERG, HOB, and MN. 

Step 2:  Randomly disrupt and divide the processed data 
in Step1, and it is partitioned into an 80% training subset and 
a 20% testing subset. 

Step 3: Train the RFC and GBDT models in Section 
IV.B, and adopt the grid search to optimize the model 
parameters for five different ADMET classification targets. 

Step 4: Test the optimal model from Step 3 training on 
the test set for five different ADMET properties, and evaluate 
the model prediction results by CEIS, involving Accuracy, 
Precision and Recall. 

V. EXPERIMENTAL ANALYSIS AND RESULTS 

A. The quantitative prediction experiment of ERα biological 
activity 

According to the existing ERα bioactivity dataset, the 
experiments are implemented by the methods and procedures 
in Section II and III. The ERα biological activity dataset is 
randomly disrupted and separated into distinct subsets. 
Meanwhile, BPNN, generalized regression neural network 
(GRNN) [35] and support vector machine regression (SVR) 
[36], [37] are also introduced for comparative experiments. 
Through the model training and ten-fold cross-validation, the 
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optimal parameters are obtained and shown in Table IV. All 
the programs of our experiments are coded in Python. 

 
TABLE IV 

TABLE OF OPTIMAL PARAMETERS IN QUANTITATIVE PREDICTION MODELS 

Model Parameter 
name 

Parameter 
value 

RFR n_estimators 200 
 max_depth 12 
 max_features 'log2' 

GBRT n_estimators 50 
 learning_rate 0.05 
 max_depth 4 

SVR Kernel 'rbf' 
 n_estimators 100 
 learning_rate 0.05 

BPNN leraning_rate 0.1 
 Epochs 800 
 hide_num 10 

GRNN σ  0.7 
 
Figure 6 shows the relevant prediction results in our 

experiments. Then, we also adopt four different evaluation 
indicators to further assess the quantitative prediction results. 
Based on them, Table V and Figure 7 show the related 
evaluation results from five different models. 

 
TABLE V 

STATISTICAL TABLE OF QUANTITATIVE PREDICTION EVALUATION RESULTS 

Model MAE MAPE RMSE R2 

RFR 0.2107 0.0319 0.3298 0.9428 
GBRT 0.2074 0.0331 0.3875 0.9124 
GRNN 0.2234 0.0454 0.4545 0.7834 
BPNN 0.4002 0.0534 0.5634 0.6434 
SVR 0.6845 0.1087 0.8964 0.6046 

 
According to Figure 6, Figure 7 and Table V, it can be 

discovered that RFR and GBRT have a larger advantage in 
bioactivity quantitative prediction and generalization ability 
by comparing the effect of bioactivity prediction.  

Furthermore, the test samples are randomly selected to 
further analyze the quantitative prediction ability of RFR and 
GBRT for IC50. Figure 8 shows the related prediction results 
about IC50. 

 In Figure 8, the IC50 predicted values from RFR and 
GBRT are lower than 200 within a sample range of 0 to 30.  
In the range of 30 to 40 samples, their IC50 predicted values 
have increased in a certain extent. Then, their IC50 predicted 
values are reduced to less than 150. Thus, the IC50 predicted 
trend is clearly consistent in RFR and GBRT. This can also 
verify their stability and effectiveness. 

In conclusion, these results can validate the rationality 
and efficacy of the quantitative bioactivity prediction method 
in Section III. Meanwhile, the molecular descriptors selected 
method in Section II not only achieves better results for RFR 
model, but also applies to the GBRT model. This can further 
validate the reliability of molecular descriptor selection in 
Section II.  

B. The qualitative prediction experiment of ADMET 
property 

According to the existing ADMET property dataset, the 
experiments are conducted by the methods and procedures in 
Section II and IV, and Python is also adopted as the primary 

experiment tool. Then, the ADMET property dataset is also 
randomly disrupted and separated into distinct subsets. Then,  
KNN, support vector machine (SVM) [38],[39], DT [40], [41] 
and logistic regression (LR) [42] are also introduced for 
comparative experiments. The grid search method is utilized 
in our model training to determine the optimal parameters, 
and the accuracy is as an evaluation index for optimal 
parameter selections.  

For RFC, the optimal parameter selection is shown in 
Figure 9. For other models, their optimal parameters are also 
obtained through the grid search. They are further given in 
Table VI. Regarding the five different ADMET properties, 
CEIS is adopted to evaluate the experiment results from 
different models. These results are tabulated in Table VII and 
graphically represented in Figure 10. 

According to Table VII and Figure 10, the optimal 
qualitative prediction model is RF for Caco-2, hERG, and 
HOB. For CYP3A4 and MN, their best qualitative prediction 
model is GBDT. Table VIII gives the optimal model for five 
different ADMET properties. The RFC and GBDT have a 
significant advantage in the ADMET qualitative prediction. 
It can also verify the rationality and validity of the qualitative 
prediction method of ADMET property in Section IV. 

 
TABLE VI 

TABLE OF OPTIMAL PARAMETERS IN QUALITATIVE PREDICTION MODELS 

Model Parameter 
name 

Parameter 
value 

RFC n_estimators 45 
 max_depth 16 
 max_features 11 

GBDT n_estimators 200 
 learning_rate 0.1 

SVM kernel 'rbf' 
 class_weight 'balanced' 

KNN n_neighbors 5 
 leaf_size 30 

DT max_depth 10 
 min_samples 

_split 
min_samples_

leaf 

2 
 

1 

LR max_iter 
warm_start 

10 
False 

 
TABLE VII 

STATISTICAL TABLE OF QUALITATIVE PREDICTION EVALUATION RESULTS 

 RFC SVM KNN GBDT LR DT 

Caco-2 2.810 2.673 2.645 2.800 2.753  2.753 
CYP3A4 2.895 2.811 2.807 2.900 2.875  2.875 

hERG 2.782 2.645 2.658 2.753 2.679  2.679 
HOB 2.774 2.637 2.628 2.769 2.615  2.615 
MN 2.922 2.764 2.776 2.964 2.788  2.788 

 
For the five different ADMET properties, the optimal 

models in Table VIII are further validated by the confusion 
matrix, as shown in Figure 11. 
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                          (a) The prediction result of RFR                                                          (b) The prediction result of BPNN 

       
                (c) The prediction result of GBRT                                                          (d) The prediction result of SVR 

 
  (e) The prediction result of GRNN 

Fig. 6.  The quantitative prediction results of ERα biological activity

In Figure 11, the x-axis denotes the predicted values, 
while the y-axis represents the true values. The yellow 
diagonal portion denotes the correctly categorized number, 
and the purple diagonal denotes the incorrectly categorized 
number. It is evident that the qualitative prediction effects on  
five different properties are significantly improved by the 
optimal models in Table VIII. The correctly classified 

number is much larger than the number of incorrectly 
classified samples. It can indicate that the optimal qualitative 
prediction models in Table VIII possess excellent qualitative 
prediction ability and generalization ability. This can further 
validate the reasonability and effectivity of the qualitative 
prediction method established in Section IV. 
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Fig. 7.  The four evaluation results in five different models 

 
Fig. 8.  The IC50 prediction results for RFR and GBRT

 

 
Fig. 9.  The optimal parameter selection of RFC 

 

 
Fig. 10. The evaluation results of different models in five different ADMET properties 
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(a)  Caco-2 

  
(b) CYP3A4 

 
(c) hERG 

 
(d) HOB  

 
(e) MN  

Fig. 11. Confusion matrix for five different ADMET properties

 
TABLE VIII 

STATISTICAL TABLE OF OPTIMAL QUALITATIVE PREDICTION MODEL IN FIVE 
DIFFERENT ADMET PROPERTIES 

ADMET MODEL 

Caco-2 RFC 

CYP3A4 GBDT 

hERG RFC 

HOB RFC 

MN GBDT 

 

VI. CONCLUSION  
In this paper, we propose a quantitative and qualitative 

prediction method incorporating data-driven perspective and 
ML to solve the quantitative and qualitative prediction 
problem for anti-breast cancer drug candidates. In order to 
extract the most important molecular descriptors from 
high-dimensional compound features, a drug molecular 
descriptor selecting method is established based on RF, and 
we obtain the top 20 molecular descriptors, involving 10 
categories. They have been validated through the correlation 
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and representative analyses. Then, some important methods 
are developed and studied, including the SMOTE-based data 
processing method for unbalanced ADMET classes, the 
quantitative prediction method of ERα bioactivity based on 
ML, and the qualitative prediction method of ADMET based 
on CEIS and ML. Through the relevant experiments and 
comparative analysis, the ERα biological activity prediction 
problem is resolved, and the category imbalance problem is 
also tackled under five different ADMET properties. The 
optimal models are also identified for five different ADMET 
properties. For instance, the final qualitative prediction 
model is RFC for Caco-2, hERG and HOB. Moreover, 
GBDT is the final qualitative prediction model for CYP3A4 
and MN. Finally, the experimental results demonstrate that 
the proposed approach has superior predictive performance 
in quantitative and qualitative aspects. This also validates the 
viability, rationality and efficacy of our method.  

In terms of future work, it can be summarized as follows: 
(1) For the model parameter optimization, some advanced 

optimization algorithms [43] are considered to augment 
our model’s generalization ability. 

(2) While ensuring the model generalization ability, the 
model interpretability is also very crucial, and so the 
interpretable methods [44] can be further introduced into 
this paper. 

(3) The existing dataset in this paper is only analyzed as a 
case study, but it is necessary to further improve our 
method in a more complex medical environment, such as 
combining with DL [45], [46]. 
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