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Abstract—Accurate traffic prediction is crucial for the func-
tionality of Intelligent Transportation Systems(ITS). However,
the significant nonlinearity and complexity of spatio-temporal
relationships in traffic flow frequently constrain the predictive
accuracy of many models, which often combine temporal
and spatial components without effectively capturing spatio-
temporal characteristics. To address this, we developed a
Flow Attention-based Dynamic Graph Convolutional Recurrent
Network (FADGCRN) model. FADGCRN combines a GRU
model with flow attention and a dynamic graph convolutional
recurrent network, utilizing efficient depthwise separable con-
volutions. It employs KAN’s learnable activation functions to
generate dynamic graphs from time-varying traffic signals, en-
abling the simultaneous extraction of both spatial and temporal
features. Additionally, the model integrates a flow attention
mechanism based on the principle of network flow conservation,
which is used for attention weight calculation within the GRU.
This design allows the model to effectively allocate attention
resources across different time steps, capturing both short-
term and long-term dependencies in traffic flow more efficiently.
Furthermore, by using LSTM, the model can map input data
into various representational spaces. This approach enhances
the model’s ability to capture temporal correlations when
processing long sequences of data, while also minimizing the
influence of specific inductive biases that traditional attention
mechanisms may face. Through rigorous evaluation using four
authentic traffic datasets, our model has shown remarkable
performance, clearly exceeding that of other baseline models.

Index Terms—Traffic forecasting, Dynamic graph generation,
Graph convolution network, Flow attention mechanism.

I. INTRODUCTION

ITH the rapid urbanization and the surge in vehi-

cle numbers, transportation systems are encountering
unprecedented challenges. Traffic congestion and frequent
accidents have significantly impacted travel efficiency and
safety. Particularly on highways, severe traffic congestion not
only disrupts the flow but also heightens the risk of acci-
dents. Intelligent Transportation Systems (ITS) are crucial
in tackling these issues. ITS enhances traffic management
and optimization by integrating information technology and
sensor technology. Traffic forecasting, a key component
of ITS, has attracted increasing attention in recent years.
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Fig. 1. Spatial-temporal correlation

Accurate prediction of traffic flow can greatly reduce con-
gestion, thereby enhancing the overall efficiency and safety
of transportation systems.

The fundamental challenge in traffic flow prediction, a
spatio-temporal forecasting problem, is the accurate mod-
eling of complex spatio-temporal correlations in traffic data.
The inability of traditional methods to simultaneously cap-
ture spatial and temporal dependencies often leads to subop-
timal prediction outcomes. Fortunately, advancements in the
transportation industry have led to the widespread installation
of cameras, sensors, and other data collection devices on
highways. In terms of temporal correlation, traffic conditions
fluctuate across different time periods. For instance, traffic
flow tends to be higher during morning, noon, and evening
periods compared to other times, while holidays exhibit
markedly different traffic patterns compared to regular work-
days.Furthermore, a traffic mishap might happen within a
specific timeframe, leading to traffic jams. Unavoidably, the
traffic volume of the impacted segment in the following time
will be affected. Concerning spatial interdependence, when
various roads are linked, the traffic condition of one particular
road can exert various effects on the adjacent connected
roads. To be more specific, upstream roads have the potential
to impact downstream ones. Meanwhile, downstream roads
can affect upstream roads through feedback.In Figure 1, node
A is represented by the purple circle, while its spatially
connected nodes B, C, and D are marked by red circles.
Here, the blue arrow symbolizes spatial dependence, while
the green arrow represents temporal correlation, and yellow
arrows indicate spatio-temporal correlations. 7" and T + 1
represent two consecutive time steps on the time axis.
Specifically, node A influences nodes B, C, and D at time ¢
and also affects itself at time ¢+ 1. Because of spatiotemporal
correlation, node A at time ¢ can even influence on nodes
B, C, and D at time t + 1, as Figure 1.
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Classical statistical models gained popularity in their early
stages due to their straightforward principles and rigorous
mathematical foundations. For example, C.K. Moorthy et
al. introduced the ARMA [1] for traffic forecasting. Later,
M.Van Der Voort et al. enhanced the ARMA model by in-
corporating differencing to model time-varying relationships,
leading to the creation of the ARIMA [2]. Deep learning has
become a popular approach for traffic flow prediction, ad-
dressing the shortcomings of traditional statistical methods.
SVR models were proposed by M.Lippi and colleagues for
traffic forecasting. N. Zarei and team introduced Random
Forest methods for traffic prediction, which have shown
promising results in handling complex traffic patterns. Ad-
ditionally, P.Cai and others proposed the KNN model for
short-term traffic forecasting, demonstrating its effectiveness
in scenarios requiring rapid predictions. Zhuang and Caol[5]
proposed a short-term traffic flow prediction method using
a convolutional neural network-bidirectional long short-term
memory network (CNN-BiLSTM) with multi-component in-
formation. Chai et al. [18] developed a multi-feature fusion
short-term traffic flow prediction model based on deep learn-
ing. Hu et al. [6] introduced the attention mechanism theory
and considered the advantages of LSTM and, while RNN
models, they used the LSTM-RNN model to predict short-
term traffic flow. A hybrid deep learning model for short-
term traffic volume prediction was proposed by Zheng et
al. [7], integrating a convolutional-long short-term memory
network (Conv-LSTM) with an attention mechanism. Sim-
ilarly, an urban traffic state prediction method based on a
self-attention long short-term memory network (SA-LSTM)
was introduced by Yu et al. [9]. However, these methods
are limited by slower computational speeds. Moreover, when
attempting to capture correlations in long-term sequences,
they face risks of gradient vanishing or explosion. Addi-
tionally, they are limited to capturing temporal correlations
and fail to incorporate spatial information from traffic data,
resulting in poorer prediction performance. These methods
fail to consider the topological structure of the road network,
resulting in insufficient exploitation of spatial relationships
across regions.

Consequently, spatiotemporal models have gradually
emerged, opening up a new chapter in traffic flow predic-
tion. These models are dedicated to deeply integrating the
temporal and spatial dimensions, uncovering the complex
dependencies hidden within. Dai et al. [3] proposed a method
for short-term traffic flow prediction in urban road sections,
combining spatiotemporal analysis with GRU. Lv et al. [4]
developed a temporal multi-graph convolutional network,
which captures spatial, temporal, and semantic relationships
among global road network features, providing a broader
perspective for traffic flow prediction. Zhao et al. [5] de-
signed a Temporal Graph Convolutional Network (T-GCN),
using graph GCN to extract spatial features of traffic flow
and GRU to model temporal dependencies. Zhang et al. [26]
introduced a traffic volume prediction model using a spatio-
temporal convolutional graph attention network, combining
graph attention and convolutional neural networks to better
capture spatio-temporal traffic flow characteristics. Do et
al. [8] utilized spatio-temporal attention to capture spatial
features between road sections and temporal dependencies
between time steps. The STDSGNN [22] integrates multi-

head graph attention and full convolution to model spatial-
temporal correlations. Wang et al. [28] proposed the TBC-
GNODE model, addressing shallow GNN limitations by us-
ing TBC for temporal and GNODE for spatial dependencies,
extracting long-range spatio-temporal dependencies through
parallel and residual structures. Spatial-temporal correlations
are captured by STGODE [21] through the use of tensor-
based ordinary differential equations. These advancements
in spatio-temporal neural networks, capable of modeling
complex dependencies, have become essential for tasks like
travel time estimation, traffic demand prediction, and traffic
speed and flow prediction [10], [12], [13]. Spatio-temporal
models model data using spatial and temporal dimensions.
Their excellent performance has received more and more
attention. Spatiotemporal graph modeling, owing to its re-
markable versatility, has been extensively applied to address
various time series prediction challenges, including traffic
forecasting. At present, many traffic prediction models have
been developed [14], [15], [16].

In the early research on traffic flow forecasting related
to spatial dependencies, researchers relied on specific prior
knowledge, such as the distances between road segments and
the similarity of Points of Interest (POI), to construct graph
structures that represent spatial correlations. This approach
allowed researchers to quantify the similarity between nodes
using Diffusion Convolutional Recurrent Neural Networks
(DCRNN) [17] and Spatial-Temporal Graph Convolutional
Networks (STGCN) [19], and to construct an adjacency
matrix based on this, thereby defining the topological struc-
ture of the graph. However, the adjacency matrix generated
through this approach lacks a direct link to the forecasting
task. Its performance is heavily influenced by the accuracy
of prior knowledge and the logical soundness of the con-
struction method, thereby restricting the model’s capacity to
capture spatial correlations.

To address this limitation, researchers have started ex-
ploring adaptive adjacency matrices. Graph WaveNet [20]
and the Coupled Layer-wise Convolutional Recurrent Neural
Network (CCRNN) leveraged adaptive adjacency matrices to
enhance spatial feature extraction, achieving significant suc-
cess, although they still required predefined graph structures
for optimal results. The Adaptive Graph Convolutional Re-
current Network (AGCRN) [10] and the Multi-Task Spatio-
Temporal Graph Neural Network (MTGNN) [20] further
improved the adaptive adjacency matrix, eliminating the
reliance on predefined matrices while delivering comparable
performance. However, both predefined and adaptive matri-
ces share a significant limitation: their weights remain static.
Traffic conditions are dynamic, with spatial correlations that
change over time. The traffic network undergoes complex
changes, which predefined graph structures or adaptive ma-
trices are unable to fully represent.

To address these issues, a Flow Attention-based Dynamic
Graph Convolutional Recurrent Network (FADGCRN) is
proposed. Our approach, which requires no prior knowledge,
integrates spatio-temporal embeddings derived from traffic
signal time data with dynamic signals extracted from traffic
signals. This combination is used to generate a dynamic
graph and modify the mapping method to KAN. The prin-
ciple of flow conservation is incorporated into the attention
mechanism, enabling a natural competitive mechanism to be
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established without the need for specific inductive biases.
This distinctive competitive mechanism efficiently resolves
the issue of quadratic complexity issue associated with
computing attention weights in traditional attention mecha-
nisms. The integration of a time series model and multi-head
flow attention enables the model to improve its predictive
performance, as it captures a wide range of temporal changes
and long-term dependencies. The RNN-based dynamic graph
convolutional module (FADGCRU) is employed to extract
the spatio-temporal dependencies of traffic signals, utilizing
depthwise separable convolution.The key contributions of
this research are as follows:

(1) A time-series flow attention mechanism is introduced,
replacing the traditional attention weight calculation module
with a novel source competition mechanism and sink alloca-
tion mechanism, thereby eliminating the influence of specific
inductive biases. The use of LSTM networks instead of
linear transformations in the attention mechanism enhances
the model’s ability to capture temporal correlations in long
time series.

(2) In the dynamic graph generation process, KAN is used
instead of MLP network, and by redefining the role and
operation of the activation function, KAN can adaptively
adjust the parameters and operational modes of the function
based on the data characteristics and learning progress,
thereby more effectively capturing complex patterns and
relationships within the data.

(3) The integration of combining the flow attention mech-
anism with RNN can better capture the time-dependent
relationship of time series data, adapt to dynamic changes,
and generate richer feature representations at the same time,
enhancing the model’s generalization capability; Addition-
ally, this integration enhances model efficiency and inter-
pretability.

(4) Experiments on four authentic traffic datasets confirm
that our model consistently surpasses the benchmark.

The subsequent is the structure of this article:

Part I: We present the research focus of this article, discuss
the existing challenges in the field of traffic prediction, and
introduce the background and significance of the research.

Part II: We review existing related research work, analyse
their strengths and limitations, and point out the advantages
of the method in this article in overcoming these disadvan-
tages.

Part III: We introduce in detail the model structure and
methodology proposed in this article.

Part IV: We validate the proposed method’s effectiveness
through extensive experiments and compare it with existing
models.

Part V: We summarize the study’s findings, discuss its
limitations, and suggest future research directions.

II. RELATED WORK
A. Traffic flow prediction

Traffic prediction, a thoroughly explored field in intelligent
transportation systems, can be regarded as a spatio-temporal
forecasting task. Real-time data collected by road sensors
is employed to predict traffic conditions. These technolo-
gies play a vital role in advancing smart city transporta-
tion systems. Initial research in traffic prediction primarily

depended on conventional statistical approaches, including
HA, ARIMA, and VAR. Nevertheless, these methods require
extensive feature engineering and struggle to handle highly
nonlinear traffic data, leading to limited predictive accuracy.
However, these methods have specific assumptions for data.
But in reality, complex traffic data often can not meet these
assumptions, resulting in unsatisfactory performance in prac-
tical applications. Subsequently, the vector autoregression
model in machine learning was introduced into the field of
traffic prediction. It can model more complex data. However
this method requires elaborate feature engineering and can
not handle traffic data with highly nonlinear relationships. At
the same time, it can only capture temporal information and
ignore the complex correlations between time series. With
the breakthroughs of deep learning in other fields, it has
been applied to spatio-temporal data prediction, especially
in traffic flow prediction. For instance, Zhang et al. [23]
constructed the ST-ResNet model based on residual con-
volutional units, focusing on the spatio-temporal prediction
of crowd flow. Yao et al. proposed a model that combines
a CNN and LSTM Network, aiming to jointly model the
spatio-temporal dependencies of traffic data. Yao et al. [24]
also further proposed a spatio-temporal dynamic network
that can dynamically learn the similarities between different
locations for taxi demand prediction. However, the input
data of these models must be standard two-dimensional or
three-dimensional grid data, which to some extent limits their
application scenarios. The GCGRU model by Xu et al. [25]
uses Graph Neural Networks and Recurrent Neural Networks
to capture spatial dependencies and temporal correlations in
traffic data, enhancing prediction accuracy.

B. Graph convolutional network

In traffic flow prediction, traditional CNNs struggle with
non-Euclidean graph-structured data, while GCNs excel.
Niepert et al. [27] proposed a heuristic linear method for
selecting node neighborhoods in GCNs, achieving effective
predictions. Li et al. [13] developed DCRNN, modeling
traffic flow as a diffusion process to capture spatial de-
pendencies in directed graphs. Yu et al. [16] introduced
STGCN, using graph convolution for spatial dependencies
and 1D convolution for temporal correlations, ensuring fewer
parameters and faster training. Wu et al. [29] created Graph
WaveNet, leveraging an adaptive dependency matrix and
stacked 1D-CNNs to enhance spatiotemporal modeling. Bai
et al. [10] proposed AGCRN, featuring adaptive modules
for node-specific patterns and dynamic spatial dependencies.
Song et al. [19] introduced STSGCN, focusing on local
spatio-temporal correlations but neglecting global relation-
ships. Tan et al. [30] developed STGPCN, generating cross-
spatiotemporal graphs to capture complex node interactions.

C. Attention mechanism

In the field of transportation, attention mechanisms are
extensively utilized. These mechanisms filter critical infor-
mation by assigning varying weights to input data, enhancing
computational efficiency, handling variable-length sequences,
and enabling the capture of long-term dependencies. They
play a crucial role in applications such as speech recognition
and traffic flow prediction. Xu et al. [31] developed an
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image caption generator employing both ”soft” deterministic
and “hard” stochastic attention mechanisms, validating its
efficacy through visual analysis. Velickovic et al. [32] merged
graph convolution with self-attention to create the Graph
Attention Network, achieving notable success in process-
ing graph-structured data. Guo et al. [19] introduced the
ASTGCN model, which incorporates a novel spatiotempo-
ral attention mechanism to enhance traffic flow prediction
accuracy. Li et al. (as cited in [33]) put forward Detector-
Net, which incorporated a multi-view time attention module
along with a dynamic attention module. These modules
were designed to model both the long-term and short-term
temporal dependencies. Zhang et al. [34] designed a spatial
self-attention mechanism, integrating it with the Chebyshev
network and LSTM to form the SACRN model, aimed at
capturing intricate spatiotemporal relationships. Wu et al.
[35] integrated the concept of flow conservation into the
attention mechanism, introducing the flow attention mech-
anism, which enhances model universality and reduces com-
putational overhead. Despite these advancements, traditional
attention mechanisms and their variants still face challenges
in capturing complex spatiotemporal relationships. When
applied to large-scale traffic data, there is a need to improve
the model’s generalization capability and computational ef-
ficiency. Further studies may investigate incorporating the

flow attention mechanism with time models and graph con-
volutional networks to better capture comprehensive spatio-
temporal correlations. By refining and retaining the multi-
head attention approach, the model’s expressive power can
be further enhanced, leading to superior performance in
complex traffic flow prediction tasks.

III. PRELIMINARIES

In this part, the foundational concepts of transportation
networks and traffic signals are presented, together with the
prediction challenges that remain to be resolved.

Definition 1.Traffic Sensor. A traffic detector is a gadget
installed within a traffic infrastructure, such as a roadway
network. It registers data associated with traffic, including
the throughput of passing motor vehicles and their speeds.

Definition 2.Traffic Network. The traffic network can
be depicted as a graph G = (V,E, A). Here, V is a set
encompassing N nodes, each denoting a sensor situated at
specific spots in the road network. These sensors are assigned
the task of gathering traffic - relevant data at their respective
positions. F represents the edge set, and A is a graph
formulated based on elements like the distances between
pairs of nodes in the network. Our framework makes use
of a dynamic adjacency matrix.

Definition 3.Traffic Forecasting. Given the historical traf-
fic readings Xp = [24_p4; - Zt—;, 7] belonging to the
space RP*N*C the aim of traffic prediction is to forecast
the future traffic readings Yo = yi, y4+1 - - - Y1+ which fall
within the space RO*N*C,

IV. MODEL FRAMEWORK

This section provides the particulars of FADGCRN. As
illustrated in Figure 2, the FADGCRN framework com-
prises a Dynamic Graph Generation module designed to
automatically capture dynamic spatial dependencies. Along
with the input data, it is fed into the FADGCRU module,
which incorporates skip connections and reverse prediction
mechanisms, enhancing the flow of information and allowing
the model to better integrate features from different levels,
thereby improving overall performance.
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A. Dynamic graph generation based on KAN

The FADGCRN framework incorporates a dynamic graph
generation method, as depicted in Figure 4, which effec-
tively captures dynamic spatial dependencies in sensor data.
Consequently, this approach does not depend on a prede-
fined adjacency matrix. In the construction of adjacency
matrices, most existing studies rely on the geographical
distance between traffic nodes or dynamical model similarity
functions. However, the predefined adjacency matrices based
on geographical distance do not always accurately reflect
the true associations between nodes. As shown in Figure
3 , which shows part of the road network structure, with
orange dots representing different traffic nodes. Although
Figure 3 shows that node vl is geographically close to
node v5, in reality, the association between vl and v2
is stronger, and even the association between vl and v4
(which are geographically far apart) exceeds that between
vl and v5. Therefore the predefined adjacency matrices
obtained solely from geographical distance calculations are
inaccurate. Manually designing predefined adjacency matri-
ces can improve accuracy but it requires customization for
each specific area and relies on the knowledge of domain
experts, limiting its generalization capability. Additionally,
constructing adjacency matrices based solely on sequence
similarity often fails to fully capture spatial correlations,
potentially introducing significant biases.

To comprehensively capture the dynamic spatial depen-
dence of the road network at different time points, we design
a Spatiotemporal Embedding Generator (STE Generator).
The crucial process of the generator is to find out the daily
embedding T”and weekly embedding 7" corresponding
to the time of the current traffic signal Xp. Subsequently,
element-wise product operations are carried out between
these embeddings and the spatial embedding £ to produce
the new spatiotemporal embedding E’, as defined in Equa-
tion (1).

E =ExTP xTW (D)

Here, TP and T"W are the daily and weekly embeddings
respectively derived from the time step P = [t— P+1, ..., t].
And the symbol represents the element-wise product opera-
tion.

At each time step t, the input for that step is processed
through a KAN layer to extract dynamic signals, as formu-

lated in Equation (2):
Fi = KAN(x¢) 2)

The KAN layer is capable of learning complex nonlinear
relationships within the data, thereby capturing patterns that
change over time. The dynamic graph is then generated as
described in Equation (3):

E: = tanh(F. x E) (3)

The relationships between nodes are adjusted by the model
based on current dynamic signals, allowing for adaptive
changes, and the activation function can enhance sensitivity
to temporal changes.

The principle of KAN in the aforementioned formula is
as follows: The KAN (Knowledge-Aware Network), and the
architecture can be seen in Figure 4. I adopted makes this
method more advantageous and is especially suitable for any
scenario lacking prior knowledge.

The Kolmogorov-Arnold network (KAN)is an innovative
neural network,as in Equation (4).

It focuses on the Kolmogorov-Arnold (KAR) representation
theorem rather than the typical universal approximation
theorem in traditional neural networks. In a nutshell, KAN
fundamentally transforms the paradigm of the MLP by
redefining the role and operation of activation functions.
Unlike the static and unlearnable activation functions in MLP,
KAN incorporates univariate functions that serve both as
weights and activation functions and are adjusted as part of
the learning process, as Figure 4. Its main functions include:

Adaptive Grid: Utilizing B-spline basis functions, the grid
is dynamically modified based on the input data distribution
to maximize the model’s representational capacity.

Spline Weights: Spline weights are incorporated to boost
the model’s nonlinear capabilities. These weights are deter-
mined via curve fitting techniques.

Multi-layer Structure: KAN modules can be stacked to
form deep networks by combining multiple KANLinear
layers.

Activation Functions: KAN supports various activation
functions, with the Sigmoid Linear Unit (SiLU) as the default
choice.
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Regularization: The model incorporates L1 regularization
and entropy calculations to control complexity and improve
generalization.

In order to fulfill the criteria for Chebyshev polynomials,
the dynamic matrix is normalized according to Equation (5):

D *AiD F =D * (Retu(E, x ET)D; %) )

In Equation (5),the dynamic graph embedding F; is mul-
tiplied by its transpose £, the interactions and associations
between nodes are captured, which allows us to infer the
spatial dependencies between nodes.

The dynamic convolution formula is expressed as Equation

©6) :
Zy = (Ix + D] "AID; *)X® + b=
1

1 _1 (6)
(Iy + D; * (Relu(E;, x ET))D; ?)X® +b

Subsequently, the GCN is enhanced using the node adap-
tive parameter learning module. This component allows the
model to capture distinct traffic patterns for individual nodes
through matrix decomposition. ® belongs to RNXCxF,
Then, in order to optimize the GCN and prevent overfitting
at the same time, the weight matrix is decomposed into a
node parameter matrix F, belongs to RN*4 and two weight
matrices W, RAXCXF 3pd bg R*™F, where d i= N and
& =E;,W4, b= E4by, The optimized GCN can be expressed
as follows:

Zy = (Iy + D; 2 A2D; H\XE,W, + Egby =
_1 _1
(In + Dy * (ReLU(E, x EF))D; *)XE,W, + E,b,
(7

B. Dynamic graph convolution recurrent module based on
flow attention

A temporal sequence flow attention mechanism [35] is
proposed, which utilizes LSTM to map input data, as shown
in Figure 5. Algorithm 7 outlines the training process of the
model. Competition among information flows is promoted
by the flow attention mechanism through the enforcement
of conservation principles at both the source (where data
is retrieved from the previous layer) and the sink (where
data is forwarded to the next layer). The incoming flow
of each sink is normalized to 1, compelling the outgoing
flows from the source to compete based on their unique
spatial arrangements. This method guarantees efficient infor-
mation transfer and strengthens the model’s ability to model
complex dependencies. Similarly, the source’s outgoing flow
is fixed to 1, forcing the sinks to compete for the single

available flow. Once Q, K, and V are obtained via LSTM
mapping, conservation is maintained at both the source and
sink through the normalization of Q and K, respectively, as
illustrated in Figure 5. For a system with n sinks and m
sources, the normalization processes are defined in Equations
(8) and (9).

©(Q)
A ()
o(K)
0 )

Here, ¢ is defined as a non-negative nonlinear function,
with I and O representing the inflow of sinks and the
outflow of sources, respectively. Equation (8) indicates sink
conservation, and Equation (9) indicates source conservation.
Normalization ensures that the outflow from the source and
the inflow to the sink are balanced, maintaining the stability
of the information flow. The detailed steps for this process are
outlined in Equation (10) and Equation (11), which provide
a clear framework for achieving conservation in the system.

/ iltﬂ(Kj)T

I =¢@Q—G— (10)
, Zn: (o))"

O = p(K)=——— (11

The flow-attention is composed of three key components:
competition V', aggregation A, and allocation R, as de-
scribed by the following equations:

V' = softmaz(0) x V (12)
4= 2D oy (13)
R = LayerNorm(sigmoid(I ) x A+ H)  (14)

The module’s input is denoted by H. An advanced
reweighting process, which follows the conservation of input
flow, promotes competition among information flows. Infor-
mation aggregation is performed according to the associative
properties of matrix multiplication. By filtering the incoming
flow for each sink, the allocation mechanism generates the
module’s final output. To address network degradation and
minimize the risk of gradient vanishing, we incorporate a
residual mechanism combined with layer normalization.

In our experiments, GRUs within RNNs exhibited re-
markable ability in capturing both temporal and spatial de-
pendencies. By introducing the DG conv(implementation of
the dynamic graph convolutional network from the previous
section), graph convolution operations are incorporated, and
a flow attention mechanism is introduced, enabling the model
to consider the connections and interactions between nodes
when updating states, as depicted in Equation (6). The Flow-
Attention-DGRU can be expressed as follows.

re = o(0[xs||Hy—r, EJEW, + Eb,) (15)

ug = 0(0[z4||Hi—1, Bt] EW, + Eb,,) (16)

hy = tanh(0]azy||re x Hy_1, BJEW, + Eb.) x A, (17)
Hy = e X Hi oy + (1 — ) X hy (18)
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Here, z; and H; represent the input and output at time V. EXPERIMENTAL EVALUATION
step t. The output of the attention mechanism is denoted A pgrasets

by A;. The sigmoid activation function is represented by
0. The dynamic graph generation is indicated by 6. The
concatenation operation is symbolized by ||. The learnable
parameters include W,., W,,, W, b, b,,, and b..

Backcasting, as illustrated in Figure 2, aids in analyzing
historical data and patterns. It offers insights into the system’s
past evolution and can be utilized to inform predictions.
Following FADGCRU, there is an output sub-layer com-
posed of linear layers. This sub-layer produces two outputs:
§ = Linear(H,,), 2* = Linear(H),),x), — «, indicates that the
learned information has been removed. Each prediction step
is adjusted based on the outcomes of the preceding step, en-
hancing the accuracy and stability of multi-step forecasting.
Finally, the multi-step prediction results are added.

Algorithm 1 Training the FADGCRN model

1: Input: N, T, T’, X, traffic graph features, training
epochs;
2: for epoch = 0 to epochs - 1 do

3: Randomly initialize learnable parameters of
FADGCRN;
4: Generate a dynamic graph embedding:
E; = tanh(F; x E');
5: Generate the dynanlﬁc graplll convolution:
Zy=(INn+ D, 2AlD, >)X®+b=
(In + D; *(ReLU(E, x ET))D; )X + b
6: Combine the dynamic graph convolution method
with the RNN module and replace the matrix
product in GRU with the normalized recurrent unit
of the previous step’s dynamic graph convolution;
7: Use the flow attention mechanism to adjust weights
output Hy;
8: Skip connection and multi-step prediction
§ = Linear(H,,);2" = Linear(H,)
9: Compute loss £ = loss(f/, Yire)s
10 Optimize trainable parameters using gradient de-
scent;
11: end for

12: Output: the learned FADGCRN model;
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We evaluated our model’s effectiveness by conducting
comparative experiments on four real-world highway traffic
datasets, as detailed in TABLE 1. We split the datasets into
training, validation, and test sets in a 6:2:2 ratio.

1) Data: The PEMSD3 dataset, gathered by the Caltrans
Performance Measurement System (PeMS), comprises data
from 358 sensors spanning September to November 2018.
Data is captured every 5 minutes, yielding 26,208 time slices.

The PEMSD4 dataset, sourced from CalTrans PeMS,
encompasses data from January 1, 2018, to February 28,
2018, including 307 sensors. The data is recorded every 5
minutes, producing 16,992 time slices.

The PEMSD7 dataset, sourced from PeMS, encompasses
data from May to August 2017, including 883 sensors. The
data is recorded every 5 minutes, producing 28,224 time
slices.

The PEMSDS8 dataset, sourced from CalTrans PeMS,
encompasses data from July 1, 2018, to August 31, 2018,
including 170 sensors. The data is recorded every 5 minutes,
producing 17,833 time slices.

2) data normalization method: Standard normalization
usually normalizes data to an interval with a mean value
of 0 and a standard deviation of 1. The formula is given as
follows:

T—H
o

In this context, x is used to denote the original data
value, p is defined as the mean of the data, and o is
identified as the standard deviation of the data. Through
standard normalization, data of different features can have
a similar scale, which helps improve the convergence speed
and prediction ability of the model. Because when the
scale differences of data are large, the model may be more
inclined to learn features with larger numerical values and
ignore features with smaller numerical values. Normalization
ensures a more balanced importance of each feature in model
learning, enhancing the model’s performance. In traffic flow
prediction, the normalized traffic flow value obtained through
model prediction needs to be inversely normalized to the
actual traffic flow value before actual analysis and decision-
making can be carried out. The formula is as follows:

Tnormalized =

ZToriginal = Tnormalized X O +u
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TABLE 1
DATASETS DETAILS

Datasets Nodes Rate  Time steps Time Range

PEMSD3 358 26208 5min 2018.09 - 2018.11
PEMSD4 307 16992 Smin 2018.01 - 2018.02
PEMSD7 883 28224 Smin 2017.05 - 2017.08
PEMSDS 170 17856 5min 2016.07 - 2016.08

where Z,,iginq is the original data value after inverse
normalization,Z,,ormaiized 1S the data value after standard
normalization, and is the mean of the original data.

B. Experimental settings

The model is implemented in PyTorch 1.9.1, with com-
putations accelerated on an NVIDIA 3090 GPU. For the
PEMSO04 dataset, AdamW is chosen as the optimizer, with
the learning rate set to 0.007 and a Multi-Step Learning Rate
Scheduler used, along with a batch size of 32. For PEMSO0S,
AdamW is similarly selected, with a learning rate of 0.008
and a cosine decay schedule applied, and a batch size of
32. In the case of PEMS03, AdamW is utilized, with the
learning rate fixed at 0.009 and a Multi-Step Learning Rate
Scheduler employed, with a batch size of 64. For PEMS07,
AdamW is applied, with a learning rate of 0.001 and a
cosine decay schedule implemented, and a batch size of 16.
Overfitting is prevented through the use of early stopping
and regularization techniques. All experimental results are
subjected to significance tests (t-tests with p<<0.05).

All baseline models are assessed using three widely recog-
nized traffic prediction metrics: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Mean Absolute Per-
centage Error (MAPE). These metrics enable a thorough
evaluation of the models’ accuracy and robustness. The
model’s performance is measured using three key indicators:

1 — .
MAE = — Y, - Y; 19
n;I | (19)
(20)
1 |V — Y
MAPE = =~ =" %100 (21)
n; Y]

C. Baselines

We have chosen a wide range of baseline models with
publicly available official codes, encompassing traditional
approaches, typical deep learning techniques, and the latest
state-of-the-art methods.

ARIMA [36]: This model integrates autoregressive and
moving average components to forecast future values by
fitting time series data.

HA [37]: The model treats traffic flow as a cyclical process
and forecasts future time intervals future periods using the
weighted average of past periods.

VAR [37]: Vector autoregression assumes stationarity in
the time series and estimates relationships between the series
and its lagged values.

FC-LSTM [38]: The fully connected LSTM network is
a well-known architecture, highly effective at capturing se-
quential dependencies.

DCRNN [17]: The fully connected layer in GRU can be
replaced by a diffusion convolutional layer. As a result, a
new type of diffusion convolutional gated recurrent unit is
formed.

AGCRN [10]: AGCRN employs an adaptive graph and a
GRU to capture spatio-temporal features.

Graph WaveNet [29]: This model layers gated TCN and
GCN to simultaneously capture both spatial and temporal
dependencies.

ASTGCN [19]: This approach integrates spatiotemporal
attention mechanisms to effectively model the dynamic spa-
tiotemporal characteristics of traffic data.

STSGCN [19]: Designed to efficiently model local spa-
tiotemporal relationships, STSGCN also addresses the het-
erogeneity of spatiotemporal data.

STFGNN [39]: The spatiotemporal fusion graph neural
network integrates multiple spatiotemporal graphs to effec-
tively capture complex spatiotemporal correlations, enhanc-
ing the model’s ability to handle dynamic traffic patterns.

STSGRU [40]: This model introduces a spatial-temporal
shared GRU, designed to capture long-term temporal char-
acteristics by examining weekly traffic trends. It employs
a shared weight mechanism to support predictions across
multiple scenarios.

LEISN-ED [41]: This network features a module dedi-
cated to long-term dependencies, enhancing the transfer of
extended temporal features. It also integrates dual spatial
feature extraction pathways to independently gather both
explicit and implicit spatial attributes.

DSTAGNN [42]: The dynamic spatial-temporal aware
graph neural network makes use of a sophisticated multi-
head attention approach. It is this mechanism that allows the
network to model dynamic spatial interactions. Meanwhile, it
captures temporal dependencies by carrying out multi-scale
gated convolutions on features with multiple receptive fields.

VI. EXPERIMENT RESULTS AND ANALYSIS
A. Performance on PeMS Datasets

TABLES II and III compare the performance of vari-
ous models across four datasets. Our model consistently
outperforms others, achieving the highest accuracy within
12 time steps. Traditional approaches and machine learning
techniques, which focus exclusively on temporal relation-
ships and demand data stationarity, are not well-suited for
modeling the spatiotemporal features of traffic data. As
shown in the tables, these methods perform poorly. The
FC-LSTM model leverages deep learning techniques to ef-
fectively capture temporal patterns in traffic data, yielding
promising results. However, its inability to incorporate spatial
relationships limits its overall performance, making graph-
based models more accurate. These findings highlight the
critical importance of integrating spatial dependencies in
traffic data modeling.

Among graph-based models, Graph WaveNet effectively
captures the combined impact of temporal and spatial factors
on traffic flow changes, and ASTGCN’s attention mechanism
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TABLE 11
PERFORMANCE COMPARISON OF VARIOUS MODELS ON PEMSD4 AND PEMSD8 DATASETS

Variants PEMSD4 PEMSDS8
MAE RMSE MAPE MAE RMSE MAPE
HA 38.03 59.24 27.88% 34.86 59.24  27.88%
ARIMA 33.73 48.80 24.18% 31.09 4432 22.73%
VAR 24.51 38.61 17.24% 19.19 29.81 13.10%
FC-LSTM 26.77 40.65 18.23% 19.19 29.81 13.10%
DCRNN 21.22 33.44 14.17% 17.86 27.83 11.45%

GraphWaveNet ~ 24.89 39.66 17.29% 18.28 30.05 12.15%
ASTGCN(r) 22.92 35.22 16.56% 18.25 28.06 11.64%
MSTGCN 23.96 37.21 14.33% 19.00 29.15 12.38%

STSGCN 21.19 33.65 13.90% 17.13 26.80 10.96%
STFGNN 20.48 32.51 16.77% 16.94 26.25 10.60%
STSGRU 20.11 31.80 13.86% 15.68 25.12 10.67%
LEISN-ED 20.84 32.82 13.77% 16.81 25.97 10.62%
AGCRN 19.83 32.26 12.97% 15.95 25.22 10.09%

s

DSTAGNN 19.30"  31.46 1270"%  15.67° 2477  9.94"%
Our model 18.75  30.85 12.29% 1461 2371  9.51%

TABLE III
PERFORMANCE COMPARISON OF VARIOUS MODELS ON PEMSD3 AND PEMSD7 DATASETS

Variants PEMSD3 PEMSD7

MAE RMSE MAPE MAE RMSE MAPE

HA 31.58 52.39 33.78% 45.12 65.64 24.51%
ARIMA 3541 47.59 33.78% 38.17 59.27 19.46%
VAR 23.65 38.26 24.51% 50.22 75.63 32.22%
FC-LSTM 21.33 35.11 23.33% 29.98 45.94 13.20%
DCRNN 17.99 30.31 18.34% 25.22 38.61 11.82%

GraphWaveNet 19.12 32.77 18.89% 26.39 41.50 11.97%
ASTGCN(r) 17.34 29.56 17.21% 24.01 37.87 10.73%

MSTGCN 19.54 31.93 23.86% 29.00 43.73 14.30%
STSGCN 17.48 29.21 16.78% 24.26 39.03 10.21%
STFGNN 16.77 28.34 16.30% 23.46 36.60 9.21%
STSGRU 15.45 24.13 15.85% 21.50 34.40" 9.08%
AGCRN 15.98 28.25 15.23% 22.37 36.55 9.12%

*

DSTAGNN  1557" 2721  14.68% 21.42° 3451  9.01"%
Our model 1513 2621°  1493°% 2076 3420  8.92%

O HA o HA O HA
VAR VAR VAR
45 SVR SVR SVR
- FC - LSTM - FC-LSTM @ FC-LSTM
DCRNN DCRNN DCRNN
40 Graph WaveNet Graph WaveNet Graph WaveNet
ASTGCN a ASTGCN ASTGCN
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(a) MAE on Different Models (b) RMSE on Different Models (c) MAPE on Different Models

Fig. 7. Forecasting Metrics on Different Models on PEMSD4
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Fig. 10. Prediction Curves in PEMSD4 - Node 166

has strong capabilities in capturing long-term dependencies.
Both models demonstrate strong predictive performance.
However, the temporal and spatial modeling components
in these models are relatively basic. STSGCN overcomes
this limitation by employing multiple local spatiotemporal

subgraphs to capture the heterogeneity of spatiotemporal
data, facilitating a more detailed analysis of interactions
within the data. DCRNN, on the other hand, captures spatial
correlations through predefined graph structures. Overall,
these models achieve competitive predictive results.
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TABLE IV
THE ABLATION EXPERIMENTS OF TRAFFIC FORECASTING ON THE PEMSD®8 DATASETS.

Variants Horizon 3 Horizon 6 Horizon 12
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
adaptive graph 149895 234018 9.5200% 159889 25.1729 10.1600%  17.9389  27.9300 11.4700%
normal_attention 13.7118  21.9705 8.94% 14.5282  23.6381 9.4900% 16.0739  26.2743  10.9400%
mlp 13.7909  22.0924  8.8800%  14.5840  23.8067 9.38% 16.2165 26.3147  10.6300%
normal_convolution ~ 13.9500  22.4365 9.03% 15.0233  24.3405 9.6000% 16.7474  27.0659  11.0500%
gru 137752 22.1133  8.9800%  14.7108  23.9632 9.6200% 16.3046  26.4615  10.7300%
liner 14.0756  22.6121  9.0300%  14.9848  24.2826 9.5500% 16.5409  26.8044  10.8200%
residual mechanism  13.7459  22.6523  8.7800%  14.6219  23.8923 9.5300% 16.3029  26.4587  10.8200%
final 13.7022  21.9770 8.86 % 14.5009  23.6130 9.4200% 16.0395  26.2240  10.7500%
TABLE V
THE ABLATION EXPERIMENTS OF TRAFFIC FORECASTING ON THE PEMSD4 DATASETS.
Variants Horizon 3 Horizon 6 Horizon 12
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
adaptive graph 18.6468  29.8989 12.5300% 19.6763  31.5302 13.2700% 21.4254  34.1258 14.6300%
normal_attention 17.8720  29.2138 11.9000% 18.7983  30.7966 12.44 % 20.2011  33.6561 13.3800%
mlp 18.1188  29.4890 12.2600% 18.9949  30.9338 12.7800% 20.8061  33.6175 14.1100%
normal_convolution  17.8555  29.2578 11.8900% 18.7579  30.7989 12.4000%  20.4620 33.5414 13.3800%
gru 17.9586  29.3307 12.3100% 18.7498  30.7693 12.8400% 20.2466  32.9706 13.6200%
liner 18.2883  29.6325 12.3300% 19.2083  31.1387 12.8700% 21.0421  33.7626 14.4700%
residual mechanism  17.9034  29.2307 12.3073% 18.7652  30.7372 12.7405% 20.2565  33.1706 13.5216%
final 17.8182 29.3974  10.9900%  18.7334  30.7652 12.4100% 20.1841 33.8032  13.3300%

However, the effectiveness of predefined graph struc-
tures significantly influences the model’s final performance.
LEISN-ED addresses this limitation by employing two graph
convolution branches: one extracts explicit spatial features
based on adjacency matrices derived from spatial topology,
while the other captures implicit spatial features using adja-
cency matrices generated from trend similarity. Models such
as AGCRN further enhance spatial relationship modeling
by producing adaptive matrices, achieving superior results.
However, the aforementioned graph models still rely on
static graph structures, failing to account for the dynamic
nature of the data. DSTAGNN utilizes a data-driven dy-
namic spatiotemporal aware graph approach to develop a
new spatiotemporal attention module, which captures dy-
namic temporal dependencies between nodes through an
enhanced multi-head attention mechanism. Additionally, a
spatial attention module is employed to refine graph con-
volution operations, enabling the capture of dynamic spatial
dependencies between nodes. This results in the best pre-
dictive performance among the selected baselines. TABLES
II and I present the one-hour ahead prediction results
on four datasets, where the bold numbers denote the op-
timal outcomes and the numbers with an asterisk(*) sig-
nify the second-best results. Compared to other baseline
models, FADGCRN, which constructs dynamic matrices
using weekly and daily embeddings, consistently achieves
competitive results, demonstrating superior accuracy. The
Figure 7 and 8 further presents the performance of different
models in multi - step prediction on the PEMSD4 and
PEMSDS datasets, covering nine models such as HA and
SVR. Through three metrics, the performance of each model

under three time horizons of 15 minutes, 30 minutes, and
60 minutes is compared. In multi-step prediction, the best
performance is almost consistently achieved by the model
proposed in this study.

In Figure 9 and 10, we intercept one day on the test set
of PeMSD4 and randomly select two nodes. Then, we draw
the 24-hour prediction curve and a clearer 4-hour prediction
curve respectively and compare them with the true values.

VII. ABLATION EXPERIMENTS
A. module ablation experiments

The impact of removing or modifying individual compo-
nents is evaluated through ablation studies, which analyze the
system’s overall performance. In the context of traffic flow
forecasting, these studies are frequently used to identify the
significance and influence of individual components within a
comprehensive model. To assess the effectiveness of various
modules in FAGCRN, we developed six variants of the
FADGCRN model. Each variant was tested under optimal
conditions. We compared the prediction outcomes of these
six variants with FAGCRN on the PeMSD4 and PeMSDS8
datasets.

(1)’adaptive graph’: Replacing the dynamic graph genera-
tion mechanism with the adaptive graph generation mech-
anism effectively demonstrates the advantage of dynamic
graph generation in capturing spatio-temporal dependencies.

(2)’normal attention’: The unique advantages of the flow
attention mechanism can be effectively verified when the
traditional attention mechanism is utilized to replace it.

(3)’'mlp’: In the process of dynamic graph generation,
replacing the KAN with a MLP highlights the significant
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advantages of KAN.

(4)’normal convolution’: Replacing the depthwise sep-
arable convolution with ordinary convolution successfully
verifies that the depthwise separable convolution has stronger
data modeling capabilities.

(5)’gru’: Substituting LSTM with GRU in the flow at-
tention mechanism demonstrates that LSTM significantly
improves the modeling of time series data.

(6)’linear’: Using a linear layer instead of LSTM in the
flow attention mechanism confirms LSTM’s superior ability
to model time series data effectively.

(7)’the residual mechanism’: Removing the parts related
to residual connections in the FADGCRU module and letting
the model perform calculations in a conventional feed -
forward manner effectively demonstrates the advantages of
residual connections.

TABLES IV and V present the results of ablation ex-
periments for six variants of the FADGCRN model on the
PEMSD4 and PEMSDS8 datasets. Although the evaluation
metrics are not the lowest in some ablated modules, the
overall experimental results of the model in this study are
superior to those of the other variants in the ablation experi-
ments. The precision of this model is significantly enhanced
compared to variants using adaptive graphs, linear mappings,
conventional convolutions, the residual mechanism or MLPs.
This indicates that, after comprehensively considering the
advantages of various modules, the model can better predict
traffic flow in both long-term and short-term predictions. The

15min  30min 60min ave‘rage

(b) RMSE on PEMSD8

0.08 15min 30min 60min average

(c) MAPE on PEMSD8

“final” version, which employs dynamic graph generation
with KAN, LSTM mapping, and depthwise separable con-
volutions, can more accurately capture the trends in traffic
flow changes, providing a more reliable basis for traffic
management and planning.

B. Time embedding

To assess the impact of daily and weekly time embeddings,
we designed two variants for ablation studies:

Variant D: This variant only uses daily embedding and re-
moves weekly embedding to generate dynamic embeddings.

Variant W: This variant only relies on weekly embedding
and removes daily embedding to generate dynamic embed-
dings.

The experiments utilized the PEMSD4 and PEMSDS8
datasets, widely recognized in traffic forecasting research.
The average values of all evaluation metrics were calculated
and analyzed to assess the performance of each variant. As
shown in Figure 11 and 12, the results are presented. In brief,
all three types of time embeddings are effective. Meanwhile,
using both weekly embedding and daily embedding is the
most effective, whether for short-term prediction or long-
term prediction.

VIII. PARAMETER ANALYSIS

The impact of two hyperparameters, numbers of heads and
embedding dimension, is analysed. In experiments on the
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Fig. 13. Sensitivity to numbers of heads on PEMSD4
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PEMSDS and PEMSD4 dataset, we change the value from
1 to 3 on PEMSD4 and 1 to 4 on PEMSDS, and vary the
value of among 4, 8, 16, and 32.

A. Sensitivity to numbers of heads

In the multi-head attention mechanism, the article tested 1
head,2 heads, 3 heads, and 4 heads(PEMSDS) respectively.
As depicted in Figure 13, 14, among them, H1 has the
smallest radius, 1 head has the best effect. First of all,
when there is only 1 head, the model can focus more on
specific aspects of the input data without being distracted by
multiple parallel attention processes, improving the accuracy
of encoding. Moreover, a single head is less likely to overfit.
When there is a single head, since there are fewer parameters
to adjust, the model is easier to generalize to new data.
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B. Sensitivity to D

Figure 15 illustrates the impact of varying embedding
dimensions on model performance. D represents the em-
bedding dimension of FADGCRN. In this case, the model
achieves optimal performance only when D falls within a
particular range. This implies that there is an optimal range,
often referred to as the ”Goldilocks zone,” for the embedding
dimensionality. If D is too small, the model fails to ade-
quately capture both spatial and temporal information, which
results in decreased performance. Conversely, excessively
large values of D may lead to overfitting.

IX. CONCLUSIONS

This study introduces a dynamic graph convolutional re-
current network augmented with a flow attention mechanism
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for traffic flow prediction. Comprehensive experiments were
carried out on four real-world traffic datasets, and the exper-
imental results are rigorously compared and analysed with
the baseline model. The main findings are outlined below:

(1) We introduce a flow-attention mechanism grounded
in the “conservation of flow” theory, which adeptly ad-
dresses the degradation issues faced by conventional attention
mechanisms when processing lengthy sequence data while
preserving the model’s versatility and expressive power.
By incorporating source competition and sink distribution
mechanisms, this approach not only mitigates computational
complexity but also chieves superior predictive performance.
The integration of LSTM’s nonlinear feature mapping en-
hances the mechanism’s ability to capture both long-term
and short-term dependencies within traffic flow data, with
experimental evidence affirming its efficacy in both short-
term and long-term forecasting scenarios.

(2) Given the intricate spatio-temporal distribution of traf-
fic flow data, which can exhibit heterogeneity across various
regions and time periods, we propose a dynamic graph
generation framework that leverages daily and weekly em-
beddings. This method more effectively captures the global
temporal and local spatial relationships between nodes, sig-
nificantly bolstering predictive accuracy. The adaptive grid
of KAN, capable of dynamic adjustment in accordance with
the distribution of traffic flow data, better accommodates
the data’s characteristics, thereby enhancing the network’s
expressive capabilities. Consequently, the integration of the
KAN module with GCN in this paper effectively uncovers the
latent spatio-temporal correlations within traffic flow, facil-
itating efficient feature information propagation and further
elevating the model’s performance.

(3) Traffic flow data, being a quintessential time series,
is adeptly handled by GRU, which excels at capturing
sequential dependencies and retaining historical information.
The flow attention mechanism further intensifies the focus on
critical time points or intervals, enabling the model to more
precisely comprehend the evolution of traffic flow and adapt
to its dynamic fluctuations.

(4) Ablation experiments conducted in this study validate
the critical role each key module plays in the traffic flow
prediction task. The experimental outcomes reveal that the
model’s predictive performance on two datasets significantly
surpasses that of the baseline model, thereby fully demon-
strating the model’s robust generalization and predictive
capabilities.

Future research directions:

(1) Model Optimization: Future work could explore ad-
vanced structural algorithms, such as fusing the advantages of
multiple deep learning models, incorporating reinforcement
learning to optimize the parameter decision-making process
or exploring more effective attention mechanism models.
At the same time, study the online update and adaptive
adjustment of the model to adapt to the real-time changes
of traffic.

(2) Multi-source Data Fusion: Future research could fo-
cus on integrating multiple data sources(like weather, road
events, social media data, etc.), integrate and process multi-
source heterogeneous data, and mine associated comple-
mentary information to improve the prediction ability and
adaptability.
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