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Abstract—Shared Decision-Making (SDM) is a crucial
approach in clinical practice that aims to integrate patient
preferences with medical expertise. However, existing SDM
approaches often rely on artificial processes and fixed
strategies, which limit their ability to adapt to nuanced
preferences and diverse concession patterns in complex
medical decision scenarios. To address these limitations,
we propose the Actor-Critic (AC) Network-Based Agent
Negotiation Model for SDM (ACANM-SDM) by employing
agent-based technology and adaptive negotiation strategies
to automate the SDM process. The ACANM-SDM consists
of three key components: (1) a preference representation
module using trapezoidal fuzzy affiliation functions, (2) a
pre-training data generation mechanism based on issue
weights, and (3) dual AC networks for training adaptive
offer and acceptance strategies. Specifically, the preference
module captures doctor-patient preferences, which serve as the
pre-training data inputs to the AC networks. These networks
then generate and evaluate negotiation strategies, adapting to
individual concession patterns. Finally, the generated strategy
is applied to the doctor-patient agent and the alternating
bidding protocol is used to build the SDM automatic
negotiation model. Experimental results on real-world clinical
datasets demonstrate that ACANM-SDM outperforms four
state-of-the-art methods in shared decision-making tasks.
Notably, ACANM-SDM achieves a 26% improvement in social
welfare utility compared to the best-performing baseline.
Furthermore, ACANM-SDM enhances efficiency by reducing
the average number of negotiation rounds by 50%.

Index Terms—Shared Decision-Making, Deep Reinforcement
Learning, Actor-Critic Network, Automated Negotiation,
Multi-Agent.

I. INTRODUCTION

THE rapid advancement of medical technology, along
with a growing focus on patient individuality make the

traditional paternalistic decision-making model inadequate
for modern healthcare. This is particularly evident in the
treatment of major and chronic diseases, which usually
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require high levels of patient participation [1]. In response,
Shared Decision-Making (SDM) emerges as a more inclusive
healthcare model that actively involves patients and medical
professionals in the development of treatment plans [2].
However, several factors hinder the implementation of SDM,
including limited consultation time, poor communication
skills among some healthcare providers, and patients’ lack
of confidence in their medical knowledge.

To overcome these barriers, efforts are made to automate
the SDM process. A promising solution is the use
of agent-based automated negotiation, which models the
preferences and goals of both parties using utility functions
and facilitates agreement through negotiation strategies. This
technology shows success in various domains, offering
efficient and effective decision-making results [3, 4, 5, 6].

While agent-based automated negotiation models show
promise, many rely on linear utility functions, which are
too simplistic to capture the complexity of real-world
doctor-patient interactions [7, 8]. Medical decisions often
involve nuanced subjective preferences that cannot be
accurately represented by linear models. To address this
limitation, fuzzy membership functions are introduced to
represent the preferences of both doctors and patients,
allowing for a more flexible and accurate modeling of their
subjective preferences. This approach aligns more closely
with the uncertainties and trade-offs inherent in medical
decision-making, making it better suited for the complexities
of SDM. For example, Lin et al. [9] proposes a model
that frames preference negotiation in SDM as a problem of
distributed fuzzy constraint satisfaction. This model involves
designing doctor and patient agents to negotiate, with the
results being transformed into treatment plans through a
recommendation model.

Additionally, current SDM automated negotiation models
often rely on fixed negotiation strategies based on machine
learning techniques such as genetic algorithms and Bayesian
algorithms[10, 11]. These fixed strategies lack adaptability
to different types of users, such as patients and healthcare
providers, as well as to their unique concession behaviors
during negotiations. When the negotiation domain is wide,
this results in a lower utility of the negotiation outcomes
and necessitates additional rounds of negotiations to achieve
consensus. Several studies propose adaptive strategies that
utilize deep reinforcement learning algorithms to effectively
address the limitations of fixed negotiation strategies. For
example, Bakker et al. [12] propose the RLBOA negotiation
model, which employs Q-learning within a reinforcement
learning framework to enhance the adaptability of an agent’s
bidding strategy through experiential learning. However,
this approach does not support continuous actions, limiting
its applicability in more complex negotiation scenarios.
Bagga et al. [7] introduce ANEGMA, a model that enables
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agents to learn negotiation strategies during concurrent
bilateral negotiations in dynamic e-markets. By employing
an Actor-Critic (AC) Network and utilizing model-free
reinforcement learning, ANEGMA develops negotiation
strategies pre-trained with synthetic market data, reducing
exploration time in actual negotiations.

In summary, while each model contributes to the field,
they predominantly focus on linear utility and preferences
and rely on fixed negotiation strategies. This approach is
insufficient to address the complexities of the SDM domain.
Taking into account the above limitations and considering the
preferences of both doctors and patients, this paper proposes
an automated negotiation model for SDM based on fuzzy
theory and the DRL algorithm for AC networks, named
Actor-Critic (AC) Network-Based Agent Negotiation Model
for SDM(ACANM-SDM). The model offers an innovative
approach to resolving the optimization problem of offer and
acceptance strategies, with the main contributions being the
strategies. To overcome these limitations and better account
for the nuanced preferences of both doctors and patients,
this paper proposes a novel automated negotiation model for
SDM, based on fuzzy theory and a DRL algorithm designed
for AC networks, named ACANM-SDM. This model offers
an innovative solution to optimize both offer and acceptance
strategies, with the following key contributions:

(1) To facilitate automated negotiation and streamline
the shared decision-making process, the model utilizes
agent-based techniques to improve communication between
doctors and patients. It incorporates trapezoidal fuzzy
membership functions to represent the preferences of both
parties, thereby addressing the limitations of linear utility
models in complex SDM scenarios.

(2) The model creates a set of pre-trained data based
on issue weights in doctor-patient negotiations to simulate
users’ concession behaviors. It employs two AC networks
to develop strategies for bidding and acceptance, enabling
the negotiation strategies to learn various concession patterns
from different doctor-patient interactions. This approach
effectively reduces negotiation time and enhances efficiency.
Additionally, an alternating offer protocol is implemented to
facilitate bilateral negotiation between the doctor and patient
agents.

(3) Experimental results demonstrate that ACANM-SDM
performs exceptionally well in SDM scenarios, providing
robust decision support for both doctors and patients.

The rest of this paper is organized as follows: Section
II reviews related work, offering an overview of existing
methods in SDM and their limitations. Section III introduces
the design and implementation of the ACANM-SDM model,
including the negotiation environment, strategies, framework,
and reward functions. Section IV details the experimental
setup, results, and evaluations. Finally, Section V concludes
the paper and suggests directions for future research.

II. LITERATURE REVIEW

This section provides a comprehensive review of the
current state of research, focusing on three key aspects:
the theoretical techniques of SDM, agent-based automated
negotiation techniques, and the application of DRL in the
field of automated negotiation.

A. The Conception and Related Theories of SDM

To advance the application of SDM, Charles et al. [13]
define it as a decision-making model where both the doctor
and the patient share information. They identify key features
of SDM: the involvement of both parties (doctor and patient),
mutual exchange of information, articulation of treatment
preferences by both parties, and a final consensus on the
selected treatment. However, communication skills, limited
time, and patients’ lack of medical knowledge significantly
hinder their active participation in the decision-making
process, thereby impacting the effective implementation of
SDM.

To address these limitations, numerous studies propose
approaches to improve the implementation of SDM. These
approaches can be categorized into three types of models:
(1) conceptual models, which define SDM processes and
provide foundational guidance; (2) tools, such as Patient
Decision Aids (PDAs), to facilitate practical implementation
in clinical settings; and (3) measurement models, such as
the Decision Conflict Scale (DCS) and the Shared Decision
Making Questionnaire (SDM-Q), which assess the extent of
patient involvement and uncertainty in decision-making.

Specifically, Elwyn et al. [14] propose a three-step SDM
model in which the physician presents treatment options,
discusses the details, and guides the patient in making a
decision. However, this model does not fully emphasize
the patient’s role or account for post-decision steps. To
address these gaps, Stiggelbout et al. [2] refine it with
a four-step framework that supports patient preferences,
ensures decisions are based on them, and includes
post-decision plans. Both models serve as conceptual
frameworks for SDM. To enhance practical implementation,
tools like PDAs are introduced to improve patient access
to information and communication [15], but current PDAs
face challenges in addressing information asymmetry and
fully meeting patient needs. Measurement tools, such as the
Decision Conflict Scale and OPTION scale, assess SDM
effectiveness but often rely on manual methods, leading to
inefficiencies. Together, these tools aim to enhance patient
involvement and decision-making in SDM.

While clinical analyses show that these tools improve
understanding and communication [16, 17], they do not fully
address the complex, dynamic nature of SDM [18]. Current
research focuses on PDAs, clinical decision support systems,
and physician communication skills training, but challenges
remain in balancing patient preferences [19], ensuring
medical reasonableness, and managing implementation costs
[20].

To address these limitations, our study seeks to integrate
SDM with Agent technology, delivering a comprehensive
solution to enhance the effectiveness and practicality of SDM
in clinical settings.

B. Agent-Based Automated Negotiation

Agent-based automated negotiation technology, which
clarifies agents’ preferences and goals using utility functions,
significantly enhances the negotiation process in various
applications. This methodology encourages structured
communication and collaboration among agents, which in
turn enables efficient conflict resolution and the achievement
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Fig. 1: Automated negotiation model.

of mutually beneficial outcomes. This technology is widely
used in e-commerce [3, 21, 22], power trading [9,
23, 24], resource scheduling[4], control system[25], and
workflow planning[5, 6], where this technology can optimize
decision-making, reduce negotiation time, and improve
efficiency, ultimately leading to more effective and equitable
agreements in complex environments.

Specifically, an automated negotiation framework typically
includes three key components: the negotiation agreement,
negotiation goals, and negotiation agent, as illustrated in
Figure 1. First, the agent identifies the negotiation goals,
which determine what the parties want to achieve. Based
on these objectives, the agent formulates offers and counter
offers, which is presented through the negotiation agreement.
As the negotiation unfolds, the agent continuously evaluates
the responses and adjusts its strategy accordingly, ensuring
that it is aligned with the negotiation objectives while
adhering to the terms of the agreement. This iterative
interaction between the agent and the agreement promotes
a dynamic and efficient negotiation process.

The negotiation goal encompasses the issues that need
resolution, which can be categorized into single-issue or
multi-issue negotiations. Multi-issue negotiations are more
complex because of the increased potential for conflicting
preferences. Solutions, or offers, represent combinations of
choices for each issue. These issues can be quantified (e.g.,
price, color, size). Linear issues involve straight forward
metrics, while non-linear issues include more complex
attributes.

The negotiation protocols outline the rules for agent
interactions, with the Alternating Offers Protocol (AOP)
being a common method [26]. In AOP, agents exchange
offers turn by turn until time runs out or an offer is
accepted, allowing them to make trade-offs and concessions
to approach an optimal solution.

The design of an automated negotiation agent can
be systematically analyzed through the components in
the Bidding-Opponent-Accept (BOA) model proposed by
Baarslag [27]. The BOA model negotiation Agent consists
of three parts: (1) Bidding strategy: this part is used for the
Agent to choose to make a counteroffer when it is dissatisfied
with the opponent’s offer; (2) Opponent model: when
the agent faces an adversary with incomplete preference
information, the adversary model predicts the future actions
or complete preferences of the adversary by its behaviors
and history of offers; and (3) Acceptance strategy: this

component guides the Agent on the circumstances in which
to accept the adversary’s offer. For example, Elghamrawy
[28] develops a multi-intelligence negotiation model for
doctors, which uses an adaptive bidding strategy to improve
diagnosis efficiency and reduce conflict resolution time. Sun
et al. [29] proposes a bilateral price negotiation strategy
based on Bayesian classification (for opponent modeling) and
Q-learning (for generating a counter-offer).

Despite these advancements, existing models often require
predefined strategies and struggle with dynamic preferences.
Our research addresses this by incorporating DRL algorithms
with agent technology, enabling models to autonomously
adapt and learn. This approach transforms traditional SDM
models into automated frameworks, improving efficiency
and decision quality by reducing human intervention and
accounting for dynamic preferences. We are refining these
strategies using AC network DRL to optimize negotiation
outcomes further [10, 11].

C. Deep Reinforcement Learning in Automated Negotiation

Previous automated negotiation models typically utilize
machine learning to develop fixed negotiation strategies[30].
However, these fixed strategies often lack adaptability
to different user types, such as patients and healthcare
providers, along with their distinct concession habits.
This limitation can result in reduced personal utility and
social welfare for both parties involved in the negotiation.
Consequently, recent studies implement DRL to better
understand user behavior and effectively address the conflicts
of preferences between the two parties[7, 8].

Deep reinforcement learning is widely used in many fields
and has achieved good results[31, 32, 33]. DRL enhances
automated negotiation in several ways. It dynamically
learns adaptive strategies through real-time interactions,
optimizes decision-making based on user preferences, and
effectively manages complex multi-party interactions. These
improvements lead to greater overall satisfaction and
increased social welfare. Recent advancements in DRL
have significantly enhanced the performance of automated
negotiation systems. Bagga et al. [7] propose ANEGMA,
a model that allows agents to learn negotiation strategies
during synchronized bilateral negotiation in dynamic
e-markets. Employing an AC network develops negotiation
strategies with model-free reinforcement learning, pre-trained
with synthetic market data to reduce exploration time
in actual negotiations. Chang [8] investigates DRL in
negotiation, focusing on agents’ abilities to exploit, adapt,
and cooperate. Two AC networks are trained for bidding and
acceptance strategies against time-based and behavior-based
agents, and also through self-play. The results demonstrate
the effectiveness of the Cauchy distribution for sampling
offers but highlight limitations in issue scalability and
handling nonlinear problems.

III. METHOD

Negotiation protocols outline the rules and frameworks for
agent interactions, with the Alternating Offers Protocol being
a common method [26]. In the Alternating Offers Protocol,
agents exchange offers turn by turn until either the time limit
is reached or an offer is accepted. This process enables them
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to make trade-offs and concessions, gradually moving toward
an optimal solution.

This section details the design and implementation of the
ACANM-SDM model proposed in this study. First, we set up
the consultation environment and negotiation protocols, and
specify the roles and behaviors of the Doctor Agent (DA)
and the Patient Agent (PA) in the negotiation process. Next,
we set a theoretical time limit for negotiation to simulate
real-world decision pressure, and introduce the concept of
time sensitivity to reflect the effect of time on the utility
of negotiation. On this basis, the negotiation strategies in
the ACANM-SDM model, including time-dependent and
behavior-dependent strategies, and their applicability under
incomplete information are further elaborated. Finally, the
framework of the ACANM-SDM model is described in
detail, including the algorithms and pre-training process
for generating and training data, the architectural design
of the Offer Net and Accept Net, and the construction of
the reward function. Together, these components form a
complete DRL system for optimizing the negotiation process
between doctors and patients.

A. Negotiation Settings
Suppose that the negotiation environment E consists of a

DA and a PA, which negotiate with each other over an issue
domain, which consists of n different independent issues
D(I1, I2, ....In), each issue is taken to consist of a finite set
of k possible discrete or continuous values, and the discrete
values are considered in the experiment.

Before agents start negotiating and exchanging offers, they
must agree on a negotiation protocol P that determines the
effective moves agents can make in any negotiation state.
In this paper, we use an alternating offer protocol in which
the DA starts the negotiation by sending an offer to the
PA, which the PA can either accept or reject; if it accepts,
the negotiation ends with an agreement, otherwise, the PA
makes a counter-offer to the DA. This process of sending
offers continues until one of the agents accepts the offer (i.e.,
successful negotiation) or reaches a deadline (i.e., negotiation
fails).

For theoretical and practical reasons, we impose real-time
deadlines on the negotiation process. The pragmatic reason
is that without deadlines, the negotiation may go on forever,
especially if there is no discount factor. Secondly, in the case
of unconstrained time, the intelligentsia can simply try out
a large number of proposals to understand the preferences
of the opponent. However, considering real-time deadlines
poses many challenges, e.g., agents should be more willing
to concede near the deadline because interruptions have zero
utility (or retained utility, if any) for both agents; real-time
deadlines also make it necessary to employ a strategy for
deciding when to accept an offer; and deciding when to
accept requires some prediction about whether a significantly
better opportunity will arise in the future.

In addition, we assume that negotiations are time-sensitive,
i.e., time affects the utility of both parties to the negotiation.
In more detail, the value of an offer decreases over time.

B. Negotiation Strategy
With perfect information, it is possible to determine the

optimal bidding strategy [34], however perfect information is

unlikely to be available in bargaining as agents are reluctant
to give up their preferences for fear of being exploited. This
promotes the development of negotiation strategies under
imperfect information. These strategies are broadly classified
as either time-dependent or behavior-dependent based on the
decision function that maps offer states to the target utility
[35].

1) Time-Dependent Strategies: Time-dependent strategies
involve decision-making processes that respond dynamically
to temporal changes, such as the timing of actions or
the duration of negotiations. These strategies recognize
that the optimal course of action may vary over time,
often incorporating elements like deadlines or time-based
incentives to influence behavior. In each round, agents
compute their decision utility to decide whether they accept
the offer or not. The utility is computed by Equation (1).

u(t) = Pmin + (Pmax − Pmin) ∗ (1− F (t)), (1)

Pmax and Pmin ∈ [0, 1], thus parameterizing the range of
offers, and typically, F (t) is parameterized as an exponential
function, as shown in Equation (2).

F (t) = k + (1− k) ∗ ( t
T
)

1
c , (2)

where c is the concession factor, and k is typically set to
0 for simplicity. When 0 < c < 1, the agent concedes
gradually towards the end of the negotiation and is referred
to as a Boulware agent. If c > 1, the agent concedes quickly,
offering its reservation value, thus earning the label of a
Conceder. Specifically, when c = 1, the agent’s decision
utility decreases linearly [36].

2) Behavior-Dependent Strategies: Behavior-dependent
strategies, focus on adapting actions based on the observed
behaviors of other agents or participants. The best known
is Tit-For-Tat (TFT), whereby cooperation is generated
through reciprocity. Its three core principles are: never be
the first to defect; retaliate if provoked; and forgive after
retaliating. The relative TFT strategy reciprocates by offering
concessions that are proportional to the concessions made by
the opponent in the previous δ rounds, as described in the
process shown in Equation (3).

x
tn+1

a→b [j] = min(max(
x
tn−2σ

a→b [j]

x
tn−2σ+2

b→a [j]
x
tn−1

a→b [j],mina
j ),maxa

j ),

(3)
here, xtn+1

a→b [j] denotes the action taken by agent a towards
agent b at time step n + 1. The term x

tn−2σ

a→b [j] reflects
the action from agent a to agent b at an earlier time step,
specifically n−2σ. Similarly, xtn−2σ+2

b→a [j] indicates the action
of agent b towards agent a at time n− 2σ+2. The variable
x
tn−1

a→b [j] captures the action from agent a to agent b at time
n− 1. Lastly, mina

j and maxa
j represent the minimum and

maximum bounds for agent a’s actions, ensuring that the
resulting strategy stays within predefined limits. This formula
promotes adaptive behavior by enabling agent a to adjust its
actions based on the historical behaviors of both itself and
agent b.

C. ACANM-SDM Automated Negotiation Modelling

This paper designs an SDM negotiation model based on
fuzzy theory and AC network DRL algorithm, which contains
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Fig. 2: ACANM-SDM model diagram.

Fig. 3: Offer net architecture.

five modules as shown in Fig. 2. Module 1 is the SDM
environment module, which takes one from the optimal
offer set as the current round of bids and sends a state
st to the opponent, which includes the current round of
offer and the current time step. Module 2 is the acceptance
strategy module, which inputs the state st into the module to
determine whether to accept the current bid. If accepted, the
negotiation ends. If not accepted, st is input into the bidding
strategy module. Module 3 is the bidding strategy network
module, which calculates the utility of the counter-offer of
all issues. Module 4 is the anti-fuzzy membership function
module, which inputs the calculated utility (Un) set into the
anti-fuzzy membership function to obtain all issue values
corresponding to the utility. Module 5 Similarity calculation
module, input all issue values offern and the opponent’s
offer in-state st into this module, get the offer with the
highest similarity to the opponent, and send the state to the
opponent. A key point of interest is that the acceptance and
bidding strategies need to be trained, and in the initial state,
the network acts as a stochastic strategy. We pre-train the
two-strategy model using real SDM issue weights combined

with a time-dependent strategy, greatly reducing resource and
time overheads during the exploration period.

D. Pre-training

As deep learning was integrated into the reinforcement
learning algorithm, we were able to pre-train the actor
network module using supervised learning. In this way,
the exploration cost of the training process can be greatly
reduced, and the 1st thing we need to address in order to
pre-train the strategy is to collect suitable actor network
labeled data. We generate 20 sets of training data using
Equation (4) and then pre-train the actor network using
backpropagation. After pre-training the actor network, the
pre-training of the Critic network is continued by fixing the
form of the actor network.

Uissue(u(t), Vissue) =
u(t)

1− Vissue
, (4)

Equation (4) generates 20 training datasets, where Vissue

represents the weights assigned by doctors and patients to
different issues, and u(t) uses the utility in equation (1).
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E. Offer Net Architecture

If the agent rejected the offer, the agent would now take
the same input and decide to counteroffer. Since we have
five issues, the offer network outputs a vector o = [0, 1]5

representing the utility of the five issues in the offer, and
DRL is achieved by continuous control, sampling from
the multivariate Beta distribution. The Beta distribution is
defined on the interval [0, 1] and is defined by two shaping
parameters α and β, the process is shown in Equation (5).

xα−1(1− x)β−1

B(α, β)
withB(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
. (5)

The bidding strategy model of the doctor-patient Agent
is shown in Fig. 3, and the input current state st is still a
six-element vector containing the opponent’s offer (cost, risk,
treatment period, effectiveness, convenience) and the current
time. It is first determined whether the agent accepts the
current offer, acceptance ends the negotiation, and rejection
of the current offer results in a counter-offer. The base layer
outputs to the value network and ten other neural blocks are
used to estimate the distributional parameters, the five means
(µ), and variances (σ). These six variables are then used to
sample the offers with a Beta distribution while this sample
is used to calculate the loss. The loss calculation for the
bidding strategy network is shown in Equations (6)-(9).

TDLoss = Reward − q(st, at, ω⃗t), (6)

Equation (6) is used to calculate the Temporal Difference
loss, representing the difference between the current reward
and the estimated Q-value, denoted as q(st, at, ω⃗t), which
indicates the expected return for state st and action at.
Equation (7) is a square loss function, which is used to
calculate the square of TDLoss.

Closs = (TDLoss)
2, (7)

this helps optimize the network to better align with the value
estimates.

Equation (8) denotes the logarithm of the probability of
taking action under policy π.

LogProbs = lnP (a | π), (8)

here, P (a | π) is the probability of action of a given policy
π.

Equation (9) is used to calculate Actor Loss, this combines
the log probability and an entropy term to optimize the
actor network. The loss is the product of the TD error and
log probability, with a negative sign to maximize expected
returns. The entropy term encourages exploration, preventing
the policy from becoming too deterministic.

Aloss = −(LogProbs + Entropy) · TDLoss. (9)

F. Accept Net Architecture

The acceptance strategy model is shown in Fig. 4. The
input st is a six-element vector containing the adversary’s
offer (cost, effective, side effects, risk, convenience) and
the current time. At each time step, the acceptance strategy
network accepts the adversary’s offer, encoding it into 512
hidden states using two affine Relu 6 pairs. This base layer is
shared between the agent and the value network. The actor

accepts the embedded state and outputs two logit values,
which are used to select the appropriate action (0: reject, 1:
accept), and the value net outputs an estimate of the expected
return. Then, the critic loss is computed by obtaining the
mean square error (MSE) of the time difference observed
reward minus the forward pass of the value net, the loss is
computed as shown in Equations (6)-(8), and Equations (10).

The calculation method of actor loss (Aloss) is as shown
in Equation (10).

Aloss = −LogProbs ∗ TDLoss, (10)

this loss is associated with optimizing action selection and
determining how to adjust the policy to achieve higher
rewards.

G. Reward Function

For the setting of the reward function, the acceptance
strategy network and the bidding strategy network share the
same reward function. With deadline T, issue weight ω, and
issue utility of final offer x, the rewards of doctor and patient
Agents are shown in Equation (11).

Rt =

{
ωt · x if tf < T and tf ̸= 0,

0 if tf = T (conflictdeal).
(11)

In summary, our reward function is designed to encourage
timely and successful negotiations by providing a positive
reward value when the agent concludes a deal.

IV. EXPERIMENT

In this section, we first define evaluation metrics in
Section IV-A, then design the experimental to evaluate
ACANM-SDM in Section IV-B. Finally, we present the
results and analysis in Section IV-C.

A. Evaluation Metrics

In this work, we adopt four evaluation metrics:

• Negotiation Rounds (Round): Round is the number
of rounds required for a successful negotiation, which
measures the speed of convergence of the negotiation
model, with faster convergence indicating less influence
by time constraints.

• Doctor Utility (UDA): UDA is the doctor’s satisfaction
with the negotiation result.

• Patient Utility (UPA): UPA is the patient’s satisfaction
with the negotiation result.

• Social Welfare Utility (Usoc): Usoc is the sum of
physician utility and patient utility, and a larger value
indicates that the negotiation model can obtain more
benefits for the decision-maker.

• Utility difference(Difference): Utility difference is the
difference in utility between the two parties for the
negotiation results, reflecting whether the model can
balance the interests of all decision-makers. The smaller
the difference, the fairer the negotiation model.
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Fig. 4: Accept net architecture.

TABLE I: Doctor and patient preferences

Issue
PA preference DA preference

Evaluation Functions Weights Evaluation Functions Weights

cost (0,1,3.5,4.5) (0.3)W (3.5,4,8,8) (0.15)W

effective (7,9,10,10) (0.25)W (5,7,8,10) (0.3)W

side effects (0,0,5,10) (0.2)W (1,10,15,25) (0.25)W

risk (0,0,5,10) (0.15)W (5,10,15,25) (0.2)W

convenience (7,9,10,10) (0.1)W (6,7,8,10) (0.1)W

TABLE II: Negotiation domain

Issue Domain

cost 0− 8, 000

effective Levels 1-10

side effects 0− 100%

risk 0− 100%

convenience Levels 1-10

B. Experimental Design

We design two experiments to verify the negotiation
efficiency of ACANM-SDM and evaluate the ACANM-SDM
effectiveness in the three different sizes of issue domains.
The experimental design details are as follows:

Experiment 1: To evaluate the performance of the model,
this experiment compares the negotiation performance of
the ACANM-SDM model with other negotiation models
in a negotiation environment with a different number of
round of deadlines. The comparison models include the
Boulware, Linear, and Conceder models with time-dependent
strategies [36], and a fuzzy constraint-based SDM automated
negotiation model, FCAN [9]. To simulate the negotiation
environment under different time constraints, five cut-off
rounds (Deadlines) are set, which are 10, 15, 20, 25, and
30 rounds, and the number of issues is fixed at five.

Experiment 2: To verify the performance of the
ACANM-SDM model in a negotiation environment with a
different number of issues and to compare the negotiation
performance of the ACANM-SDM model with that of other
negotiation models, the number of issues in this experimental

design is set at 3, 5, and 7, and the number of negotiation
deadline rounds is fixed at 20.

Experiment 3: To prove that the model can be effective in
negotiations for different doctors and patients and to obtain
negotiation results with high satisfaction for both parties, the
model uses three different doctor-patient preference data as
input for comparison, the number of negotiation deadline
rounds is fixed to 15.

To ensure the reliability of the negotiation results, each
negotiation will be simulated 50 times in environments with
different time constraints or number of issues, respectively.
All experiments use the same SDM negotiation domain
information collected by Lin et al. [9] in real healthcare
environments, with the PA and DA preference data shown
in Table I and the negotiation domain configurations shown
in Table II. The utility preferences consist of a set of
trapezoidal fuzzy affiliation functions. The set of issue weight
preferences W is composed of decimals from 0 to 1 and the
sum of all issue weights is 1.

To ensure the reliability of the negotiation results, each
negotiation will be simulated 50 times in environments with
different time constraints or number of issues, respectively.
All experiments use the same SDM negotiation domain
information collected by Lin et al. [9] in real healthcare
environments, with the PA and DA preference data shown
in Table I and the negotiation domain configurations shown
in Table II. The utility preferences consist of a set of
trapezoidal fuzzy affiliation functions. The set of issue weight
preferences W is composed of decimals from 0 to 1 and the
sum of all issue weights is 1.
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C. Experimental Results

In this section, we assess the effectiveness of
ACANM-SDM by evaluating the Round, UDA, UPA,
and Usoc through Experiment 1, Experiment 2 and
Experiment 3.

1) Comparative Experiments with Different Number of
Deadline Rounds: Building on the design of Experiment
1, this experiment compares the ACANM-SDM model
with the Boulware, Linear, Conceder, and FCAN models.
The experimental results demonstrate that ACANM-SDM
outperforms other models in Usoc, UDA and Round, UPA

second only to the FCAN model. The specific experimental
results are shown in Fig. 5, Fig. 6, and Fig. 7, as well as
Table III, in which the bold part of the table marks the best
performance in each time-constrained environment. More
specifically, Fig. 5 illustrates the social welfare utility results
for all models in the consultation environment with different
cut-off rounds, and the ACANM-SDM model outperforms
the other comparative models for all cut-off rounds, with
improvement effects ranging from 4% to 25%. In terms of
personal utility, the experimental results are shown in Fig. 6
and Fig. 7, the results of all the models are more variable, the
doctor’s utility of the ACANM-SDM model is higher than
the other models. The patient’s utility of the FCAN model is
higher than the different models. Still, the difference between
the doctor’s and the patient’s utility of the ACANM-SDM
model is smaller than that of the FCAN model, which proves
that the fairness of the ACANM-SDM model is better.

In terms of the number of negotiation rounds, the
experimental results are shown in Fig. 8, the number of
negotiation rounds of Linear, Conceder, and Boulare models
increases with the increase of the number of cut-off rounds,
the negotiation discourse of FCAN can be stable at around 9
rounds in the negotiation environment with different cut-off
rounds, and the ACANM-SDM model controls the number of
negotiation rounds at around 4 and can remain stable across
different deadline rounds.

Combining the experimental results for the Round, UDA,
UPA, and Usoc, the ACANM-SDM model possesses a better
performance in terms of the number of consultation rounds,
physician utility, and social welfare utility, and the obtained
patient utility is lower than that of the FCAN model but
still higher than that of the other comparison models. The
above experimental results show that the proposed model
in this study can achieve higher social welfare utility and
fairness with fewer consultation rounds in a variety of
different cut-off round environments. This implies that the
proposed model in this study is more adaptable in the face
of the complex and changing SDM real-world consultation
environments, especially in environments where the general
consultation time is tight.

2) Comparative Experiments with Different Number
of Issues: The experiment distinguishes the negotiation
environments set up with different numbers of issues into
small negotiation domains (i.e., the number of issues is 3
issues), medium-sized negotiation domains (5 issues), and
large negotiation domains (7 issues), and introduces the
model mentioned in Experiment 1 for comparison. The
specific consultation results are shown in Fig. 9, Fig. 10 and
Table IV.

ACANM-SDM outperforms the other models in both

Fig. 5: Comparison of ACANM-SDM VS other agents in
terms of social welfare utility

Fig. 6: Comparison of ACANM-SDM VS other agents in
terms of patient agent utility

Fig. 7: Comparison of ACANM-SDM VS other agents in
terms of doctor agent utility

Fig. 8: Comparison of ACANM-SDM VS other agents in
terms of average rounds

Fig. 9: Comparison of ACANM-SDM VS other agents in
terms of social welfare utility
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TABLE III: Experimental results for different numbers of deadline rounds

Deadline Evaluation indicators ACANM-SDM FCAN Boulware Linear Conceder

10

Usoc 1.307 1.259 1.006 1.009 1.029

UPA 0.614 0.745 0.488 0.482 0.491

UDA 0.693 0.514 0.518 0.528 0.537

Round 4.000 8.090 5.200 5.360 5.200

15

Usoc 1.306 1.274 1.027 1.044 1.030

UPA 0.582 0.772 0.497 0.498 0.493

UDA 0.724 0.502 0.531 0.547 0.537

Round 3.660 9.210 7.300 7.200 7.360

20

Usoc 1.306 1.299 1.051 1.045 1.045

UPA 0.601 0.789 0.501 0.498 0.497

UDA 0.705 0.511 0.550 0.548 0.548

Round 3.740 9.260 9.440 9.380 9.360

25

Usoc 1.323 1.307 1.052 1.053 1.052

UPA 0.608 0.804 0.503 0.501 0.502

UDA 0.715 0.503 0.548 0.552 0.550

Round 3.220 9.580 11.240 11.300 11.240

30

Usoc 1.308 1.298 1.063 1.056 1.063

UPA 0.587 0.799 0.512 0.509 0.512

UDA 0.721 0.498 0.551 0.548 0.551

Round 3.960 9.770 13.900 13.080 12.980

TABLE IV: Experimental results at different number of issues

Issue Number Evaluation indicators ACANM-SDM FCAN Linear Conceder Boulware

3
Usoc 1.365 1.378 1.190 1.318 1.312

Round 3.720 9.000 8.000 6.000 10.000

5
Usoc 1.306 1.288 1.051 1.045 1.045

Round 3.740 9.160 9.440 9.380 9.360

7
Usoc 1.264 1.169 1.043 1.114 1.026

Round 5.450 9.940 11.440 12.030 10.982

Fig. 10: Comparison of ACANM-SDM VS other agents in
terms of average rounds

medium and large consultation domains, achieving higher
social welfare and fewer consultation rounds. This suggests
that ACANM-SDM possesses a stronger spatial search
capability than ANFGA and is adapted to SDM environments
with a variety of number of issue domains and complex
treatment options. In the small consultation domain,

ACANM-SDM outperforms the time-dependent strategy
family model in terms of social welfare but is second to the
FCAN model by about 1%. This is because ACANM-SDM
takes time urgency into account and aims to achieve optimal
individual utility and social welfare for doctors and patients
with fewer consultation rounds.

3) Comparative experiment under different doctor-patient
preferences: To demonstrate that the model can conduct
effective negotiations for different doctors and patients and
obtain high satisfaction negotiation results for both parties,
the model uses three different doctor-patient preference
data as input for comparison. The data sets are shown
in Fig. 11 to Fig. 15 . This comparative experiment can
prove that the model can achieve good negotiation results
for ordinary doctors and patients, both in cases of large
conflicts and in cases of small conflicts. The specific results
of the experiment are shown in Tables 5 and 6. The
experimental results show that when the conflict between
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Fig. 11: Three different groups of doctor-patient preferences in issue 1

Fig. 12: Three different groups of doctor-patient preferences in issue 2

Fig. 13: Three different groups of doctor-patient preferences in issue 3

Fig. 14: Three different groups of doctor-patient preferences in issue 4
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Fig. 15: Three different groups of doctor-patient preferences in issue 5

TABLE V: Performance Comparison of Different Models with High Doctor-Patient Preference Conflict

Evaluation Metrics ACANM-SDM FCAN Boulware Linear Conceder

Usoc 1.196 1.098 1.159 1.131 1.089

UPA 0.572 0.531 0.550 0.540 0.527

UDA 0.624 0.567 0.609 0.591 0.561

Fairness 0.052 0.036 0.059 0.051 0.034

Round 2.78 8 6.74 8.16 14.14

TABLE VI: Performance Comparison of Different Models with High Doctor-Patient Preference Conflict

Evaluation Metrics ACANM-SDM FCAN Boulware Linear Conceder

Usoc 1.797 1.783 1.729 1.749 1.830

UPA 0.90 0.901 0.825 0.852 0.930

UDA 0.897 0.882 0.903 0.897 0.899

Fairness 0.003 0.019 0.078 0.045 0.031

Round 2.2 4.4 2.62 3.46 8.84

doctor-patient preferences is large, both the social welfare
and the personal utility of both doctors and patients decrease.
However, the ACAN model shows significant advantages
compared to the baseline models. Specifically, the ACAN
model improved the optimal result of the baseline model
by 0.037 in the comparison experiment, and improved by
0.022, 0.032, and 0.045 respectively; the utility of both
doctors and patients was improved by 0.015, 0.033, and
0.063 respectively; the number of negotiation rounds was
reduced by 5.22, 3.96, 5.38, and 11.36. The experimental
results show that even when there is a large conflict between
doctor-patient preferences, the ACAN model can still achieve
an ideal negotiation effect within fewer rounds of negotiation
and generate a quote that can make doctors and patients
more satisfied. The experimental results show that when
the conflict between doctor-patient preferences is small, the
four models all achieve good negotiation results, among
which the Conceder model has the highest effect and the
ACANM-SDM is the second best. However, ACANM-SDM
requires the smallest average number of negotiation rounds,
which can save the time cost of diagnosis and treatment in
a tense doctor-patient environment.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an automated negotiation model
based on deep reinforcement learning (ACANM-SDM) that
simulates doctor-patient communication and optimizes
negotiation strategies through an intelligent agent.
Specifically, ACANM-SDM first incorporates an AC network
and fuzzy theory to reduce exploration costs via pre-training.
Then it uses fuzzy membership functions to realistically
represent doctor-patient preferences. Experimental results
show that ACANM-SDM improves social welfare by 26%
and reduces the average number of negotiation rounds
by 50% compared to traditional negotiation models, thus
validating its effectiveness in complex SDM scenarios.
However, despite ACANM-SDM’s superior performance
in experimental settings, its generalizability to diverse
healthcare contexts and cultural settings requires further
enhancement. Therefore, our future work will focus on
enhancing the model’s adaptability across various clinical
environments and validating its efficacy in real-world
medical practice.
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Kriegmair, and G. W. Alpers, “When attitudes and beliefs get
in the way of shared decision-making: a mediation analysis of
participation preference,” Health Expectations, vol. 26, no. 2,
pp. 740–751, 2023.

[20] M. Khosravi, Z. Zare, S. M. Mojtabaeian, and R. Izadi,
“Artificial intelligence and decision-making in healthcare: a
thematic analysis of a systematic review of reviews,” Health
services research and managerial epidemiology, vol. 11, pp.
94–99, 2024.

[21] R. Barbosa, R. Santos, and P. Novais, “Trust-based
negotiation in multiagent systems: a systematic review,” in
International Conference on Practical Applications of Agents
and Multi-Agent Systems. Springer, 2023, pp. 133–144.

[22] P. Ji and X. Ma, “A fuzzy intelligent group recommender
method in sparse-data environments based on multi-agent
negotiation,” Expert Systems with Applications, vol. 213, p.
119294, 2023.

[23] R. Pereira, T. M. Sousa, T. Pinto, I. Praça, Z. Vale,
and H. Morais, “Strategic bidding for electricity markets
negotiation using support vector machines,” Trends in
Practical Applications of Heterogeneous Multi-agent Systems.
The PAAMS Collection, pp. 9–17, 2014.

[24] F. Fu and H. Zhou, “A combined multi-agent system for
distributed multi-project scheduling problems,” Applied Soft
Computing, vol. 107, p. 107402, 2021.

[25] M. Jiang, C. Gao, Y. Yang, and A. K. Pogodaev, “A
Novel Containment Control Design Scheme for Second-Order
Multi-agent Systems with Adjustable Reference Signals.”
IAENG International Journal of Applied Mathematics,
vol. 54, no. 6, pp. 1048–1052, 2024.
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