
Adaptive Error-Bounded Hierarchical Matrix
Compression for Efficient and Accurate

Physics-Informed Neural Networks
John M. Mango, Ronald Katende, Member, IAENG, Henry Kasumba

Abstract—This work presents a novel adaptive hierarchical
matrix (H-matrix) framework to enhance the computational
efficiency and scalability of Physics-Informed Neural Networks
(PINNs) for solving high-dimensional partial differential equa-
tions (PDEs). The proposed approach dynamically refines H-
matrix approximations of the Neural Tangent Kernel (NTK)
based on localized error metrics, ensuring stability and conver-
gence while reducing computational complexity.

Key contributions include an H-matrix-driven automatic
model complexity adjustment that preserves NTK properties
during training, a cross-block dependency modeling technique
to capture inter-block interactions essential for maintaining
spectral integrity, and an energy-efficient compression strategy
tailored for edge-device deployment. Empirical results highlight
significant reductions in inference latency, demonstrating the
approach’s computational efficiency. Additionally, the observed
near-linear relationship between condition number and stability
loss reinforces the importance of well-conditioned representa-
tions in PINN training. The stability analysis further confirms
that adaptive compression effectively mitigates overfitting, as
evidenced by controlled error propagation and improved gen-
eralization.

Rigorous theoretical results establish convergence guarantees
for NTK approximations, stability bounds under perturbations,
and error control during adaptive refinement. The methodology
is validated on benchmark PDEs, including the 1D Burgers’
equation, 2D Poisson’s equation, and the heat equation, demon-
strating significant reductions in computational complexity
from O(N2

h) to O(k logN2
h) without compromising accuracy.

This framework provides a robust and scalable foundation
for applying PINNs in resource-constrained environments and
multiscale systems, bridging the gap between computational
feasibility and real-world applicability.

Index Terms—Physics-Informed Neural Networks; Adaptive
Hierarchical Matrices; Neural Tangent Kernel Preservation;
Error-Bounded Compression; Cross-Block Dependency Mod-
eling; Energy-Efficient Edge Deployment

I. INTRODUCTION

Physics-Informed Neural Networks (PINNs) have emerged
as a transformative tool in scientific and engineering dis-
ciplines. By embedding physical laws directly into neural

Manuscript received November 19, 2024 revised February 10, 2025
This work has been supported by the Mathematics for Sustainable

Development (MATH4SDG) project, a research and development project
running in the period 2021-2026 at Makerere University-Uganda, University
of Dar es Salaam-Tanzania, and the University of Bergen-Norway.

John M. Mango is an associate professor at the Department of Mathemat-
ics, College of Natural Sciences, Makerere University, Kampala, Uganda.
(email: mango.john@mak.ac.ug).

Ronald Katende is a PhD candidate at the Department of Mathematics,
Department of Mathematics, College of Natural Sciences, Makerere Uni-
versity, Kampala, Uganda. (email: rkatende@kab.ac.ug).

Henry Kasumba is a lecturer of mathematics at the Department of
Mathematics, College of Natural Sciences, Makerere University, Kampala,
Uganda. (email: henry.kasumba@mak.ac.ug).

network architectures, PINNs offer a powerful framework
for solving partial differential equations (PDEs) with ap-
plications spanning fluid dynamics, material science, and
biomedical engineering [1], [2], [3], [4], [5]. Unlike tradi-
tional numerical methods, PINNs seamlessly integrate data
and physics, enabling them to address real-world problems
characterized by incomplete or noisy observations. However,
the computational and memory demands of PINNs grow
prohibitively large for high-dimensional problems, where
dense, large-scale matrices dominate training and inference
processes [6], [10], [19].

To address these bottlenecks, our work leverages hierar-
chical matrices (H-matrices), a structured approach to matrix
approximation that decomposes large matrices into a hierar-
chy of low-rank sub-blocks. This decomposition drastically
reduces storage requirements and computational complexity,
often scaling from O(n2) to O(n log n) or better, depending
on the problem structure [23], [24], [25], [26], [27]. The
ability of H-matrices to exploit localized low-rank structures
aligns naturally with the demands of large-scale PINNs,
where the Neural Tangent Kernel (NTK) plays a critical role
in governing training dynamics and convergence.

In this paper, we present a novel adaptive H-matrix
compression framework explicitly designed for PINNs. My
method incorporates dynamic refinement of hierarchical
structures guided by localized error estimates, ensuring
an optimal balance between computational efficiency and
approximation accuracy. Crucially, the adaptive algorithm
preserves the spectral properties of the NTK, which are
essential for maintaining robust training stability and gener-
alization performance. Through rigorous theoretical analysis,
we demonstrate how the NTK’s eigenvalue distributions re-
main stable under H-matrix approximations, and we provide
empirical evidence showcasing significant improvements in
efficiency and scalability across diverse applications. By
integrating these advancements, this work lays the foundation
for deploying PINNs in computationally intensive domains,
bridging the gap between theoretical feasibility and real-
world applicability.

II. INTRODUCTION

Physics-Informed Neural Networks (PINNs) have solid-
ified their position as a critical framework for addressing
scientific and engineering challenges. By embedding gov-
erning physical laws directly into neural network architec-
tures, PINNs provide a robust mechanism for solving partial
differential equations (PDEs) [1], [2], [3], [4], [5]. Unlike
conventional data-driven models, PINNs inherently respect

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

Define PDE problem

Collect Data
(xi, ui)

Construct PINN

Define Loss Function

Construct
H-matrices

Integrate H-matrix
with PINN

Optimize Loss Function

Solution

Fig. 1: Flowchart of the H-matrix integration process within
PINNs for enhanced computational efficiency.

the underlying physics, making them highly effective for
tackling problems in fluid dynamics, material science, and
beyond. However, the computational complexity of PINNs
often becomes prohibitive, particularly when handling large-
scale problems characterized by dense matrices with high
dimensionality [6], [10], [19].

To overcome these limitations, we have developed an
adaptive hierarchical matrix (H-matrix) compression method
tailored for the unique demands of PINNs. H-matrices exploit
local low-rank structures within matrices, transforming the
computational cost from O(n2) to O(n log n) or even O(n)
under certain conditions [23], [24], [25], [26], [27]. These
properties align with the needs of PINNs, where efficient
computation is paramount. Moreover, this method preserves
the spectral integrity of the Neural Tangent Kernel (NTK),
an essential component in PINN training that governs opti-
mization stability and convergence rates.

This paper advances the field with several key contribu-
tions, such as,

• An adaptive H-matrix compression algorithm integrated
with error estimation, enabling efficient computation
while retaining the critical spectral properties of the
NTK.

• A rigorous theoretical analysis of how the NTK’s eigen-
structure is preserved under H-matrix approximations,
ensuring stability and convergence in PINNs.

• Empirical validation through comprehensive experi-
ments, where our adaptive method demonstrates supe-

rior accuracy, efficiency, and generalization compared
to existing compression techniques.

A. Overview of the Paper
The structure of this paper is as follows. In Section III,

we examine existing matrix compression techniques and
articulate the specific requirements posed by PINN-based
applications. This section also introduces the theoretical
underpinnings of H-matrices and their relevance to NTK
dynamics. Section IV presents the proposed adaptive H-
matrix compression method, detailing its implementation
and computational complexity analysis. Furthermore, we
investigate the impact of H-matrix approximations on NTK
properties and PINN training dynamics. Section VI provides
an in-depth empirical comparison of our method against tra-
ditional techniques, highlighting measurable improvements.
Finally, Section VII summarizes our findings and identifies
promising directions for future research.

III. RELATED WORK

A. Matrix Compression and Optimization in PINNs
Matrix compression techniques such as Singular Value

Decomposition (SVD), pruning, and quantization are es-
tablished methods for reducing computational demands in
neural networks [12], [17], [25]. Among these, SVD is
particularly noteworthy for its ability to approximate dense
matrices. Specifically, a weight matrix W ∈ Rm×n is
decomposed into

W ≈ UΣV ⊤,

where U ∈ Rm×k, Σ ∈ Rk×k, and V ∈ Rn×k, with
k ≪ min(m,n). This decomposition enables substantial
reductions in memory and computational requirements by
leveraging low-rank approximations.

Pruning, on the other hand, simplifies networks by selec-
tively removing less critical connections or neurons, often
resulting in sparse weight matrices. Quantization compresses
models by reducing parameter precision. However, while
these methods are effective for general neural networks, they
frequently fall short for PINNs. The physics-informed con-
straints embedded within PINNs rely heavily on maintaining
structural properties in matrices, particularly those related to
the NTK.

B. Hierarchical Matrix (H-Matrix) Compression
H-matrices provide an elegant solution to the computa-

tional challenges posed by large-scale PINNs. These matrices
partition a large matrix into a hierarchy of sub-blocks, where
each block is either stored densely or approximated with
a low-rank representation. For a matrix A ∈ RI×J , an H-
matrix H is constructed as

Hb = UbV
⊤
b ,

where Ub, Vb are rank-k matrices, with k ≪ min(|I|, |J |).
This hierarchical decomposition reduces storage and compu-
tation from O(n2) to O(n log n) under typical conditions.

In this work, we refine static H-matrix techniques by
introducing adaptive methods that adjust the rank and block
structures dynamically based on local error tolerances. This
ensures a balance between efficiency and accuracy while
preserving critical matrix properties essential for PINNs.

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

C. Limitations of Conventional Techniques for PINNs

Traditional compression approaches often disrupt the spec-
tral characteristics of the NTK, which is central to PINN
performance. The NTK, defined as:

Θ(x, x′) = ∇θf(x, θ)∇θf(x
′, θ)⊤,

captures the relationship between network inputs and param-
eter gradients. Perturbations to the NTK alter its eigenvalue
distribution, potentially degrading the training convergence
rate, expressed as:

R = O

(
1

λmin

)
,

where λmin is the smallest eigenvalue of Θ. Our adaptive
H-matrix method addresses this issue by incorporating error
control mechanisms that confine perturbations to acceptable
limits. As a result, the NTK’s spectral integrity is maintained,
ensuring stable training and effective generalization.

This adaptive framework dynamically tunes block struc-
tures and ranks in response to local error metrics, delivering
a computationally efficient solution that meets the precision
and stability demands of PINNs without compromising phys-
ical fidelity.

IV. ADAPTIVE HIERARCHICAL MATRIX CONSTRUCTION
WITH ERROR ESTIMATION

This section presents an adaptive framework for construct-
ing hierarchical matrices (H-matrices) with integrated error
estimation, ensuring computational efficiency, stability, and
robustness, particularly for ill-conditioned matrices encoun-
tered in Physics-Informed Neural Networks (PINNs).

Definition 1 (Hierarchical Matrix). A hierarchical matrix
(H-matrix) is a structured approximation of a large dense
matrix, decomposing it into a hierarchy of submatrices. Each
submatrix is either stored densely or approximated by a
low-rank representation. Given an index set we × J and a
block partitioning P of we × J , an H-matrix H ∈ RI×J is
constructed such that each block b ∈ P satisfies:

Hb = UbV
⊤
b , where rank(Hb) = k, k ≪ min(|I|, |J |).

This structure reduces storage and computational complexity
from O(n2) for dense matrices to O(n log n) or O(n) under
favorable conditions.

A. Adaptive Error Control in H-Matrix Construction

Let A ∈ Rn×n be a matrix approximated by an H-matrix
H . Each block Aij is approximated as Ãij = UijV

⊤
ij , with

the approximation error for block (i, j) given by

ϵij = ∥Aij − Ãij∥F ≤ τ,

where τ is a specified error tolerance. The global Frobenius
norm error across all blocks is bounded as

∥A−H∥F ≤ τ
√
nr,

where nr is the number of refined blocks. For a perturbed
matrix A′ = A + ∆A, with ∥∆A∥F ≤ δ, the perturbed H-
matrix H ′ satisfies

∥A′ −H ′∥F ≤ τ + δ.

The condition number of the perturbed H-matrix H ′ is
bounded by

κ(H ′) ≤ κ(H) +O(ϵ),

where ϵ accounts for the perturbation impact.

B. Theoretical Guarantees

Theorem 1 (Convergence of Adaptive H-Matrix in PINNs).
Let A ∈ Rn×n be an ill-conditioned matrix, and let H
be its adaptive hierarchical matrix approximation used in
a Physics-Informed Neural Network (PINN). Define τ > 0
as the local refinement threshold, ϵ ≥ 0 as the global
approximation error, δ ≥ 0 as the adversarial perturbation
bound, and T ∈ N as the number of adaptive refinement
steps. The following hold: 1. Approximation Error:

∥A−H∥F ≤
∑
i

∥Ai −Hi∥F ,

where Ai and Hi are the blocks of A and H , respectively.
2. Condition Number:

κ(H) ≤ κ(A) ·
(
1 +

∥A−H∥2
σmin(A)− ∥A−H∥2

)
,

where κ(H) is the condition number of H , and σmin(A)
is the smallest singular value of A. 3. Stability Against
Perturbations: For an adversarial perturbation ∆A such that
∥∆A∥F ≤ δ, the condition number of the perturbed matrix
H ′ = H +∆A satisfies:

κ(H ′) ≤ κ(H) ·
(
1 +

δ

σmin(H)

)
.

4. Training Error: After T adaptive refinement steps, the
training error satisfies:

∥Training Error∥ ≤ τT.

Proof: We prove each result step by step with detailed
reasoning and explicit derivations.

1. Approximation Error: The matrix A is partitioned into
blocks Ai, where Hi is the hierarchical approximation of
block Ai. The global error in approximating A by H is given
by

∥A−H∥F =

∥∥∥∥∥∑
i

(Ai −Hi)

∥∥∥∥∥
F

.

Using the sub-additivity property of the Frobenius norm, we
have

∥A−H∥F ≤
∑
i

∥Ai −Hi∥F .

Here, each block error ∥Ai −Hi∥F represents the localized
approximation error, which is bounded by the adaptive
refinement process applied to each block. This establishes
the global error bound.

2. Condition Number: The condition number of H is
defined as

κ(H) =
σmax(H)

σmin(H)
,

where σmax(H) and σmin(H) are the largest and smallest
singular values of H , respectively. From matrix perturbation
theory, the smallest singular value of H satisfies

σmin(H) ≥ σmin(A)− ∥A−H∥2.

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

Substituting this into the expression for κ(H), and noting
that σmax(H) ≤ σmax(A), we have

κ(H) =
σmax(H)

σmin(H)
≤ σmax(A)

σmin(A)− ∥A−H∥2
.

Since κ(A) = σmax(A)
σmin(A) , we can rewrite

κ(H) ≤ κ(A) ·
(
1 +

∥A−H∥2
σmin(A)− ∥A−H∥2

)
.

3. Stability Against Perturbations: Let H ′ = H + ∆A,
where ∆A is an adversarial perturbation with ∥∆A∥F ≤ δ.
The smallest singular value of H ′ satisfies

σmin(H
′) ≥ σmin(H)− ∥∆A∥F .

Substituting this into the condition number definition

κ(H ′) =
σmax(H

′)

σmin(H ′)
≤ σmax(H)

σmin(H)− ∥∆A∥F
.

For ∥∆A∥F ≤ δ, this becomes

κ(H ′) ≤ κ(H) ·
(
1 +

δ

σmin(H)

)
.

4. Training Error: The adaptive refinement process reduces
the local approximation error for each block Ai by an
amount proportional to the refinement threshold τ . After T
refinement steps, the cumulative training error satisfies

∥Training Error∥ ≤ τT.

This bound reflects the iterative improvement achieved
through the refinement process, ensuring that the error re-
duces linearly with the number of steps.

Theorem 2 (Stability of H-Matrix Approximations in
PINNs). Let A ∈ Rn×n be a matrix, and let H be its
hierarchical matrix (H-matrix) approximation satisfying the
error bound

∥A−H∥F ≤ ϵ.

For a Physics-Informed Neural Network (PINN) solution f ,
the error between f(A) (the solution corresponding to A)
and f(H) (the solution corresponding to H) satisfies

∥f(A)− f(H)∥ ≤ ϵ

σmin(H)
,

where σmin(H) is the smallest singular value of H .

Proof: The function f : Rn×n → Rk, which maps the
matrix A to the PINN solution, is assumed to be differen-
tiable with respect to A. The sensitivity of f to perturbations
in A can be expressed using the Fréchet derivative ∂f

∂A . For a
perturbation ∆A = H − A, the first-order Taylor expansion
gives

f(H) ≈ f(A) +
∂f

∂A
[∆A],

where ∂f
∂A [∆A] represents the action of the derivative on the

perturbation ∆A.
The error between f(A) and f(H) is therefore bounded

by

∥f(A)− f(H)∥ ≤
∥∥∥∥ ∂f∂A

∥∥∥∥ ∥A−H∥,

where
∥∥ ∂f
∂A

∥∥ is the operator norm of the Fréchet derivative,
and ∥A−H∥ represents the magnitude of the perturbation.

Next, consider the spectral properties of H . For stability, it
is assumed that H is well-conditioned, meaning σmin(H) >
0. From matrix sensitivity theory, the derivative norm

∥∥ ∂f
∂A

∥∥
is bounded by ∥∥∥∥ ∂f∂A

∥∥∥∥ ≤ 1

σmin(H)
.

Substituting this bound into the error inequality, we obtain

∥f(A)− f(H)∥ ≤ ∥A−H∥
σmin(H)

.

Using the given error bound ∥A−H∥F ≤ ϵ, and noting that
∥A −H∥F ≥ ∥A −H∥ by the properties of matrix norms,
the result follows

∥f(A)− f(H)∥ ≤ ϵ

σmin(H)
.

This inequality ensures that the error in the PINN solution
induced by the hierarchical matrix approximation H is
controlled by the approximation error ϵ and the conditioning
of H , as measured by σmin(H).

Theorem 3 (Convergence of H-Matrix Approximations in
PINNs). Let A ∈ Rn×n be a matrix, and let Hn be a
sequence of hierarchical matrix (H-matrix) approximations
such that ∥A−Hn∥F → 0 as n → ∞. For any continuously
differentiable function f : Rn×n → Rk that depends on the
matrix A, the sequence f(Hn) converges to f(A), i.e.,

f(Hn) → f(A) as n → ∞.

Proof: Let f : Rn×n → Rk be a continuously differ-
entiable function, such as those arising in the evaluation
of loss functions or gradients in Physics-Informed Neural
Networks (PINNs). By the properties of f , the perturbation
in f induced by the approximation Hn can be bounded using
matrix perturbation theory

∥f(A)− f(Hn)∥ ≤ L∥A−Hn∥F ,

where L > 0 is the Lipschitz constant of f with respect to
the Frobenius norm. The Lipschitz continuity of f follows
from the differentiability assumption, ensuring that f(Hn)
remains close to f(A) when ∥A−Hn∥F is small.

Next, consider the stability of the H-matrix approximation.
The spectral properties of Hn play a crucial role in ensur-
ing numerical stability. Let σmin(Hn) denote the smallest
singular value of Hn. From matrix perturbation bounds, the
deviation in f(Hn) relative to f(A) satisfies

∥f(A)− f(Hn)∥ ≤ ∥A−Hn∥F
σmin(Hn)

.

For the hierarchical matrix sequence Hn, it is assumed that
∥A − Hn∥F → 0 as n → ∞. Additionally, since the
hierarchical approximation is regularized to ensure stability,
there exists a uniform lower bound σmin(Hn) > 0 for
sufficiently large n. Combining these results

∥f(A)− f(Hn)∥ → 0 as n → ∞.

Thus, f(Hn) → f(A).

Corollary 1 (Error Propagation Bounds for Multi-Scale
Problems in PINNs). Let Ak ∈ Rnk×nk represent the
system matrices at different physical scales k = 1, . . . , S
in a multi-scale problem solved using Physics-Informed

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

Neural Networks (PINNs). Assume each Ak is approxi-
mated by an H-matrix Hk with training error satisfying
∥Training Errork∥ ≤ τTk. The total error propagated across
the scales is bounded by

∥Total Error∥ ≤
S∑

k=1

∥Training Errork∥
σmin(Hk)

,

where σmin(Hk) denotes the smallest singular value of Hk.

Proof: Consider the system of equations

Akxk = bk,

where Ak ∈ Rnk×nk is the system matrix, and xk ∈ Rnk ,
bk ∈ Rnk are the solution and right-hand side vectors,
respectively. Since Ak is ill-conditioned, we approximate
it using an H-matrix Hk. The error ek introduced by this
approximation can be expressed as

ek = A−1
k bk −H−1

k bk = A−1
k ∆AkH

−1
k bk,

where ∆Ak = Ak −Hk.
The training error bound ∥∆Ak∥ ≤ ∥Training Errork∥ and

the conditioning of Hk via σmin(Hk) yield

∥ek∥ ≤ ∥Training Errork∥
σmin(Hk)

.

For S scales in a multi-scale PINN, the total error is the
sum over individual scales

∥Total Error∥ =
S∑

k=1

∥ek∥ ≤
S∑

k=1

∥Training Errork∥
σmin(Hk)

.

C. Adaptive Hierarchical Matrix Construction in PINNs

Let A ∈ Rn×n be a matrix, and let ϵtol > 0 denote a pre-
scribed error tolerance. The goal is to construct a hierarchical
matrix approximation H(A) such that the approximation
error for each block Aij satisfies ϵij ≤ ϵtol.

Algorithm 1 Adaptive Hierarchical Matrix Construction

Require: Matrix A, tolerance ϵtol
Ensure: Hierarchical matrix approximation H(A)

1: Initialize a block partitioning of A.
2: Compute low-rank approximations for each block.
3: Estimate local approximation errors ϵij for all blocks.
4: while ∃ ϵij > ϵtol do
5: for all blocks Aij where ϵij > ϵtol do
6: Subdivide Aij into smaller sub-blocks.
7: Compute low-rank approximations for the sub-

blocks.
8: Estimate local errors for the sub-blocks.
9: end for

10: end while
11: return Hierarchical matrix H(A).

D. Preservation of Neural Tangent Kernel (NTK) Properties

Definition 2 (Neural Tangent Kernel (NTK)). The NTK of a
neural network parameterized by θ captures the relationship
between input changes and parameter gradients

Θ(x, x′) = ∇θf(x, θ)∇θf(x
′, θ)⊤,

where f(x, θ) is the network output for input x.

Theorem 4 (NTK Preservation under Hierarchical Approx-
imation). Let H(A) be a hierarchical approximation of the
matrix A, where A represents the weight matrices in a
Physics-Informed Neural Network (PINN). If the hierarchical
approximation satisfies a controlled error bound, the Neural
Tangent Kernel (NTK) properties, including positive definite-
ness and stability, are preserved.

Proof: The NTK, denoted by Θ, governs the optimiza-
tion dynamics and convergence of a PINN. For a neural
network with weight matrices W (l) at layer l, the NTK is
defined as

Θ(x, x′) =
L∑

l=1

∇θf(x, θ) · ∇θf(x
′, θ)⊤,

where θ collectively represents all network parameters and L
is the number of layers. The positive definiteness and spectral
properties of Θ are critical for stable training dynamics and
generalization.

When hierarchical approximations are applied to the
weight matrices W (l), each weight matrix W (l) is decom-
posed into hierarchical blocks W

(l)
ij , which are then approx-

imated as
W

(l)
ij ≈ U

(l)
ij S

(l)
ij V

(l)⊤
ij ,

where U
(l)
ij ∈ Rni×k, S

(l)
ij ∈ Rk×k, V

(l)
ij ∈ Rnj×k, and

k is the rank of the low-rank approximation. The NTK
corresponding to the hierarchical approximation, denoted by
ΘH , can be expressed in terms of the contributions from the
approximated blocks

ΘH(x, x′) =
L∑

l=1

∑
i,j

Θ
(l)
ij (x, x

′),

where Θ
(l)
ij (x, x

′) represents the contribution to the NTK
from block W

(l)
ij .

The deviation between the exact NTK Θ and the approx-
imated NTK ΘH is measured using the Frobenius norm

∥Θ−ΘH∥F ≤
L∑

l=1

∑
i,j

∥Θ(l)
ij − Θ̃

(l)
ij ∥F ,

where Θ̃
(l)
ij represents the NTK contribution from the ap-

proximated block W
(l)
ij . By matrix perturbation theory, the

error introduced by each block satisfies

∥Θ(l)
ij − Θ̃

(l)
ij ∥F ≤ C

(l)
ij · ∥W (l)

ij − W̃
(l)
ij ∥F ,

where C
(l)
ij is a constant depending on the network archi-

tecture, activation functions, and data distribution. For a
controlled approximation error ϵtol such that

∥W (l)
ij − W̃

(l)
ij ∥F ≤ ϵtol,

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

it follows that

∥Θ−ΘH∥F ≤ C · ϵtol,

where C =
∑L

l=1

∑
i,j C

(l)
ij is a constant that encapsulates

the dependence on the network structure and the original
NTK Θ.

To ensure positive definiteness, note that ΘH inherits the
spectral properties of Θ, provided the approximation error
ϵtol is sufficiently small. Specifically, the smallest eigenvalue
λmin(ΘH) satisfies

λmin(ΘH) ≥ λmin(Θ)− ∥Θ−ΘH∥2,

where ∥ · ∥2 denotes the spectral norm. For ∥Θ−ΘH∥F ≤
ϵtol, the spectral norm satisfies ∥Θ−ΘH∥2 ≤ ∥Θ−ΘH∥F ,
ensuring that λmin(ΘH) > 0 if λmin(Θ) > ϵtol.

Thus, the NTK properties, including positive definiteness,
conditioning, and stability, are preserved under the hierarchi-
cal approximation.

E. Condition Number Bounds for Hierarchical Approxima-
tions

Theorem 5 (Condition Number Bound). Let A ∈ Rn×n be
a matrix, and let H(A) be its hierarchical matrix approxi-
mation satisfying the global error bound:

∥A−H(A)∥2 ≤ τ.

If σeff
k is the smallest effective singular value of H(A) after

regularization, the condition number κ(H) of H(A) satisfies:

κ(H) ≤ κ(A) ·

(
1 +

τ

σeff
k

)
,

where κ(A) = σ1(A)
σmin(A) is the condition number of A, and

σ1(A), σmin(A) are the largest and smallest singular values
of A, respectively.

Proof: Let the singular value decomposition (SVD) of
A be given by:

A = UΣV ⊤,

where U, V ∈ Rn×n are orthogonal matrices, and Σ =
diag(σ1(A), σ2(A), . . . , σn(A)) is the diagonal matrix of
singular values σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) > 0.
Similarly, let the SVD of H(A) be:

H(A) = Ũ Σ̃Ṽ ⊤,

where Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n), with singular values σ̃1 ≥
σ̃2 ≥ · · · ≥ σ̃n ≥ 0.

Using the matrix perturbation bound for singular values,
the largest and smallest singular values of H(A) are bounded
as:

σ̃1 ≤ σ1(A) + τ, σ̃min ≥ σmin(A)− τ,

where σ̃min denotes the smallest singular value of H(A) be-
fore regularization. Post-regularization, the effective smallest
singular value σeff

k is defined to ensure numerical stability and
satisfies:

σeff
k ≥ σ̃min.

Thus:
σeff
k ≥ σmin(A)− τ.

The condition number κ(H) of H(A) is given by:

κ(H) =
σ̃1

σeff
k

.

Substituting the bounds on σ̃1 and σeff
k , we obtain

κ(H) =
σ1(A) + τ

σeff
k

.

Since σeff
k ≥ σmin(A) − τ , the condition number can be

further bounded as

κ(H) ≤ σ1(A)

σmin(A)
·
(
1 +

τ

σeff
k

)
.

Recognizing that κ(A) = σ1(A)
σmin(A) , we arrive at

κ(H) ≤ κ(A) ·
(
1 +

τ

σeff
k

)
.

F. H-Matrix-Driven Automatic Model Complexity Adjust-
ment

The computational complexity of Physics-Informed Neural
Networks (PINNs) often grows prohibitively with problem
dimensionality, resulting in suboptimal convergence and
computational inefficiencies. The proposed H-Matrix-Driven
Automatic Model Complexity Adjustment framework ad-
dresses these challenges by leveraging localized error metrics
from H-matrix approximations to dynamically refine the
network architecture. This approach is significant due to
its ability to reduce unnecessary computational overhead by
concentrating model complexity in regions where it is most
needed. Moreover, it ensure preservation of the spectral prop-
erties of the Neural Tangent Kernel (NTK), mitigating train-
ing instabilities associated with under-parameterized models.
Finally, it adapts the network structure during training, en-
abling robust solutions for high-dimensional or multiscale
problems.

1) Error Propagation and Localized Refinement: Let A ∈
Rn×n represent the NTK or weight matrix, and let H(A)
denote its hierarchical matrix (H-matrix) approximation. The
approximation error ∥A − H(A)∥F influences the training
dynamics of the network by perturbing the eigenvalues of
the NTK.

Theorem 6 (Localized Error Impact on NTK Dynamics). Let
A ∈ Rn×n be a symmetric positive definite (SPD) matrix
with eigenvalues λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) > 0,
and let H(A) be an approximation of A satisfying ∥A −
H(A)∥F ≤ ϵ. Then, the eigenvalues λi(H(A)) of H(A)
satisfy

|λi(H(A))− λi(A)| ≤ ϵ, ∀i ∈ {1, . . . , n}.

In particular, for ϵ ≪ λmin(A), the stability of the Neural
Tangent Kernel (NTK) is preserved, as the perturbation does
not compromise the positive definiteness or conditioning of
H(A).

Proof: Let E = A − H(A) denote the perturbation
matrix. By assumption, ∥E∥F ≤ ϵ. Since A is symmetric
and H(A) is an approximation of A, we also assume H(A)
is symmetric. Thus, we apply the Davis-Kahan sinΘ-theorem

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

for symmetric matrices, which gives bounds on eigenvalue
perturbations. Recall the relationship between the Frobenius
norm and the spectral norm

∥E∥2 ≤ ∥E∥F .

Therefore, ∥E∥2 ≤ ϵ. For symmetric matrices, the eigenvalue
shifts due to perturbation E are bounded by the spectral norm
∥E∥2. Specifically, for all i ∈ {1, . . . , n}

|λi(H(A))− λi(A)| ≤ ∥E∥2 ≤ ϵ.

Since A is SPD, its smallest eigenvalue λmin(A) > 0. After
perturbation, the smallest eigenvalue λmin(H(A)) satisfies

λmin(H(A)) ≥ λmin(A)− ϵ.

For ϵ ≪ λmin(A), we ensure λmin(H(A)) > 0, preserving
the positive definiteness of H(A). The condition number
κ(A) = λmax(A)

λmin(A) may change after perturbation. However,
the relative change is bounded by

|κ(H(A))− κ(A)|
κ(A)

≤ ϵ

λmin(A)
.

For small ϵ, this relative change is negligible, preserving the
conditioning of the NTK.

The stability of NTK training dynamics depends critically
on the eigenvalue distribution. Since |λi(H(A))−λi(A)| ≤ ϵ
for all i, the spectral properties of A are effectively preserved
under the perturbation. This ensures that the optimization
landscape governed by the NTK remains stable. The Frobe-
nius norm ∥E∥F is particularly relevant in this context
because it accounts for the cumulative error across all entries
of A. This aligns naturally with H-matrix approximations,
which aim to minimize global error while maintaining local-
ized accuracy. Since

∥A−H(A)∥F =

√√√√ n∑
i=1

(λi(A)− λi(H(A)))2

, the Frobenius norm constraint implies that large deviations
for any single eigenvalue are unlikely unless offset by smaller
deviations elsewhere. This uniform control over eigenvalue
shifts further supports NTK stability. Thus, the perturbation
∥A−H(A)∥F ≤ ϵ guarantees that the spectral properties of
A are preserved up to the error bound ϵ, ensuring stability
in the training dynamics governed by the NTK. Refining
regions with high local errors ensures that NTK properties
are maintained, thereby stabilizing the optimization dynamics
of PINNs.

2) Adaptive Neuron Adjustment and Generalization: De-
fine the total capacity of a network as

C =
L∑

l=1

n2
l ,

where nl denotes the number of neurons in the l-th layer.
Overparameterization (C ≫ O(1)) can lead to overfitting,
whereas underparameterization (C ≪ O(1)) compromises
solution accuracy.

Lemma 1 (Neuron Scaling and Error Reduction). Let
A(l) ∈ Rnl×nl and H(l) represent the layer matrix and its
hierarchical matrix (H-matrix) approximation, respectively.

Then, increasing the number of neurons nl reduces the
approximation error ∥A(l) −H(l)∥F as

∥A(l) −H(l)∥F ∝ 1

nl
.

Proof: An H-matrix decomposes A(l) into a hierarchy
of sub-blocks, each approximated with low-rank represen-
tations. Let the rank of the sub-block approximations scale
with k, where k ≤ nl. The approximation error for a single
block A

(l)
ij satisfies

∥A(l)
ij −H

(l)
ij ∥F ≤ C

k
,

where C is a constant dependent on the problem structure
and the spectral decay of A(l). Summing over all sub-blocks
in the H-matrix, the total error satisfies

∥A(l) −H(l)∥F ≤ C

k
·m,

where m is the number of sub-blocks. In hierarchical matri-
ces, the rank k scales approximately linearly with nl, as nl

determines the resolution of the network layer. Substituting
k ∝ nl, we have

∥A(l) −H(l)∥F ≤ C ·m
nl

.

Thus, the error decreases inversely with nl, completing the
proof.

The approximation error in H-matrices is governed by the
rank k of the low-rank sub-blocks. A higher rank k enables
more accurate representations, particularly when the layer
matrix A(l) exhibits slow spectral decay. Since nl directly
influences the rank k, increasing nl inherently reduces the
approximation error. Furthermore, the number of neurons nl

in a layer controls the expressiveness and resolution of the
network. By increasing nl, the corresponding layer matrix
A(l) becomes more finely resolved, thereby enabling better
approximation through H-matrices. The proportional rela-
tionship ∥A(l) −H(l)∥F ∝ 1

nl
also highlights a diminishing

returns effect: as nl grows larger, the incremental reduction
in error becomes smaller. This underscores the importance of
targeted scaling based on localized error metrics. By dynami-
cally increasing nl in regions where the error ∥A(l)−H(l)∥F
is high, computational resources can be allocated more
effectively, improving the generalization of the network while
avoiding overfitting. Capturing multiscale features requires
fine-grained approximations in specific regions of the prob-
lem domain. The inverse scaling of error with nl ensures
that increasing neurons selectively enhances the approxima-
tion quality in these critical areas, improving the PINN’s
ability to resolve complex or high-dimensional problems.
While increasing nl reduces the approximation error, it also
increases the computational cost. This necessitates a careful
balance between accuracy and efficiency, particularly in the
context of large-scale PINNs where computational resources
are often constrained. Additionally, the hierarchical nature
of H-matrices ensures that the impact of increasing nl is
distributed across all levels of the matrix structure. This
global distribution of error reduction makes the refinement
process highly effective for ensuring scalable and efficient
solutions. Dynamically adjusting nl based on localized error

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

metrics enables better generalization by accurately capturing
multiscale features.

Theorem 7 (Stability of Training with Adaptive Refinement).
Consider a Physics-Informed Neural Network (PINN) with a
Neural Tangent Kernel (NTK) matrix A ∈ Rn×n. After T
adaptive refinement steps

1) The approximation error satisfies

∥A−H(A)∥F ≤ ϵ0e
−T ,

where ϵ0 is the initial error.
2) The training loss L converges as

L(T) ≤ L(0)e−ηλmin(H(A))T ,

where η > 0 is the learning rate and λmin(H(A)) is
the smallest eigenvalue of the refined NTK matrix.

This result highlights the robustness of training dynamics
in PINNs under adaptive refinement. By ensuring exponen-
tial decay of the NTK approximation error, the method
stabilizes optimization even for large-scale and complex
problems. The convergence of the training loss demonstrates
the efficacy of hierarchical matrices in maintaining NTK
properties, essential for stable and efficient PINN training.
The theorem underscores the practicality of hierarchical ma-
trix approximations in improving training efficiency without
compromising stability. The adaptive refinement process,
governed by the exponential error decay, allows for targeted
resource allocation, particularly in high-dimensional PINNs.
This approach is especially valuable in applications where
computational resources are limited, yet accurate solutions
are critical, such as fluid dynamics, structural analysis, and
climate modeling.

Proof: Let H(A) be the hierarchical approximation of
A, with the refinement process iteratively reducing local
errors. At each refinement step, let the local approximation
error decrease by a factor ρ ∈ (0, 1). The Frobenius norm of
the global approximation error after T steps is then bounded
as

∥A−H(A)∥F ≤ ρT ∥A−H0(A)∥F ,

where H0(A) is the initial approximation and ∥A −
H0(A)∥F = ϵ0. Substituting ρ = e−1, we obtain

∥A−H(A)∥F ≤ ϵ0e
−T .

For the training loss, consider the standard gradient descent
update rule applied to the PINN. The NTK matrix A governs
the convergence rate of the loss function L. Let λmin(H(A))
denote the smallest eigenvalue of the refined NTK matrix
H(A). The convergence rate of the loss function is then

L(T) ≤ L(0)e−ηλmin(H(A))T .

From matrix perturbation theory, the spectral perturbation
bound ensures

|λmin(H(A))− λmin(A)| ≤ ∥A−H(A)∥F .

Using the exponential decay of ∥A−H(A)∥F , we conclude
that the smallest eigenvalue of H(A) remains sufficiently
large for stability, provided T is sufficiently large. This
ensures robust convergence of the loss function.

The proof relies on the exponential decay of the approx-
imation error ∥A−H(A)∥F during the adaptive refinement

process. The reduction factor ρ reflects the efficiency of
refinement steps, which dynamically allocate computational
resources to regions with high error. By preserving the
spectral properties of the NTK matrix, the training dynamics
remain stable even as the approximation error diminishes.
The use of the spectral perturbation bound guarantees that
λmin(H(A)), critical for the convergence rate, is minimally
affected.

Example 1 (Dynamic Refinement for 1D Burgers’ Equation).
Consider a PINN solving the 1D Burgers’ equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0.

The network architecture begins with two hidden layers,
where the number of neurons in the first and second layers
are initially set as n1 = 20 and n2 = 30, respectively.
The hierarchical matrix approximation is applied to the NTK
matrix A, and the Frobenius norm error for the second layer,
∥A(2) − H(2)∥F , is calculated as 0.25. To ensure the NTK
properties are preserved, the adaptive refinement strategy
dynamically adjusts the number of neurons in the second
layer based on the localized error.

The refinement process uses a threshold parameter τrefine =
0.1, which dictates the acceptable approximation error. The
number of neurons in the second layer, n2, is updated using
the rule:

n′
2 = n2 + α ·

⌈
∥A(2) −H(2)∥F

τrefine

⌉
,

where α = 2 is a scaling factor that determines the rate of
refinement. Substituting the given values

n′
2 = 30 + 2 ·

⌈
0.25

0.1

⌉
= 30 + 2 · ⌈2.5⌉ = 30 + 2 · 3 = 36.

The adjustment increases the number of neurons in the
second layer to n′

2 = 36, effectively allocating additional
computational resources to regions with higher local error.
This dynamic refinement ensures that the approximation er-
ror in the hierarchical matrix is reduced below the threshold,
stabilizing the training dynamics of the PINN.

To compute the updated NTK approximation after refine-
ment, the hierarchical matrix H(2) is recalculated using the
new neuron count n′

2 = 36. The block-wise approximation
error is re-evaluated, ensuring ∥A(2) − H(2)∥F ≤ τrefine.
This process iteratively concentrates computational resources
where they are most needed, enhancing the accuracy of the
NTK representation while minimizing unnecessary overhead.
The refinement process not only improves the representation
of multiscale features in the solution of the Burgers’ equation
but also preserves the NTK spectral properties, which are
crucial for stable and efficient training. By dynamically
adapting the network’s architecture based on localized er-
ror metrics, the PINN achieves scalable efficiency without
sacrificing accuracy.

G. Enhanced Framework for Cross-Block Dependency Mod-
eling for NTK Preservation

Traditional H-matrix decompositions assume indepen-
dence between blocks. This notion of independence may

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

fail to capture important cross-block interactions. We pro-
pose Cross-Block Dependency Modeling to improve NTK
preservation in H-matrix-based PINNs. By explicitly incor-
porating inter-block interactions, we ensure stable training
and generalization, particularly for problems with non-local
dependencies or multiscale dynamics.

1) Neural Tangent Kernel (NTK): The NTK, Θ, is defined
as

Θ(x, x′) = ∇θf(x, θ) · ∇θf(x
′, θ)⊤,

where θ represents the network parameters. For a PINN
solving a PDE, the NTK governs two critical properties:

1) Training Convergence: The convergence rate depends
on the smallest eigenvalue λmin(Θ).

2) Generalization and Stability: NTK eigenstructure
preservation ensures robust learning.

2) Hierarchical Matrices: Let A ∈ Rn×n be a large
NTK or weight matrix. An H-matrix approximation H(A)
partitions A into b× b blocks Hij , each approximated by a
low-rank matrix

Hij = UijV
⊤
ij , rank(Hij) ≪ min(|I|, |J |),

where we and J are the row and column indices of block Hij .
Traditional methods assume independence between blocks
Hij , which can lead to degradation of NTK spectral proper-
ties.

3) Cross-Block Dependency Modeling:
4) Dependency Matrix: Define a dependency matrix

D ∈ Rb×b, where each element Dkl,ij captures the influence
of block Hij on Hkl

Dkl,ij = γ · ∥Hij ·H⊤
kl∥F ,

where γ > 0 is a scaling factor. The modified block H ′
ij

incorporates these dependencies

H ′
ij = Hij +

∑
k,l

Dkl,ij ·Hkl.

Moreover, the djusted H-matrix H̃(A) is constructed as

H̃(A) =
∑
i,j

H ′
ij .

Theorem 8 (Error Bound on NTK Approximation). Let A ∈
Rn×n be approximated by H̃(A), where H̃(A) incorporates
cross-block modeling via dependency matrix D. Then, the
Frobenius norm error satisfies

∥A− H̃(A)∥F ≤ ∥A−H(A)∥F + ∥D∥F ·max
ij

∥Hij∥F .

Proof: The adjusted H-matrix H̃(A) is constructed by
incorporating cross-block dependencies into the standard H-
matrix H(A). Specifically, each block H ′

ij of H̃(A) is given
by

H ′
ij = Hij +

∑
k,l

Dkl,ij ·Hkl,

where Dkl,ij represents the dependency weight between
blocks Hij and Hkl. The approximation error for a single
block Aij can be expressed as

∥Aij −H ′
ij∥F = ∥Aij −Hij −

∑
k,l

Dkl,ij ·Hkl∥F .

Using the triangle inequality

∥Aij −H ′
ij∥F ≤ ∥Aij −Hij∥F +

∥∥∥∑
k,l

Dkl,ij ·Hkl

∥∥∥
F
.

By the submultiplicative property of the Frobenius norm, we
bound the second term∥∥∥∑

k,l

Dkl,ij ·Hkl

∥∥∥
F
≤
∑
k,l

∥Dkl,ij∥F · ∥Hkl∥F .

Substituting back, we obtain

∥Aij −H ′
ij∥F ≤ ∥Aij −Hij∥F +

∑
k,l

∥Dkl,ij∥F · ∥Hkl∥F .

To compute the total approximation error, we sum over all
blocks (i, j)

∥A− H̃(A)∥2F =
∑
i,j

∥Aij −H ′
ij∥2F .

Using the inequality derived for ∥Aij −H ′
ij∥F , we have

∥A− H̃(A)∥2F ≤
∑
i,j

(
∥Aij −Hij∥F

+
∑
k,l

∥Dkl,ij∥F · ∥Hkl∥F
)2

.

Expanding the square and applying the triangle inequality
again

∥A− H̃(A)∥F ≤ ∥A−H(A)∥F
+
∑
i,j

∑
k,l

∥Dkl,ij∥F · ∥Hkl∥F .

To simplify further, note that ∥D∥F =(∑
i,j,k,l ∥Dkl,ij∥2F

)1/2
and maxij ∥Hij∥F bounds

the block norms ∥Hij∥F . Thus, we bound the summation∑
i,j

∑
k,l

∥Dkl,ij∥F · ∥Hkl∥F ≤ ∥D∥F ·max
ij

∥Hij∥F .

Combining these results gives

∥A− H̃(A)∥F ≤ ∥A−H(A)∥F + ∥D∥F ·max
ij

∥Hij∥F .

Theorem 9 (Stability of NTK Eigenvalues). Let A ∈ Rn×n

be a symmetric positive semi-definite (PSD) matrix with
smallest eigenvalue λmin(A). Let H̃(A) denote the adjusted
H-matrix approximation of A, incorporating cross-block de-
pendencies. The perturbed smallest eigenvalue λmin(H̃(A))
satisfies

|λmin(H̃(A))− λmin(A)| ≤ ϵ+ δ,

where ϵ = ∥A−H(A)∥F is the error from the standard H-
matrix approximation, and δ = ∥D∥F ·maxij ∥Hij∥F is the
contribution of cross-block dependencies.

Proof: Since A is symmetric PSD, all eigenvalues of
A and H̃(A) are real. The difference between the smallest
eigenvalue of A and H̃(A) can be bounded using Weyl’s
inequality for eigenvalues of symmetric matrices

|λmin(H̃(A))− λmin(A)| ≤ ∥H̃(A)−A∥2,

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

where ∥ · ∥2 denotes the spectral norm. To bound ∥H̃(A)−
A∥2, note that

∥H̃(A)−A∥2 ≤ ∥H̃(A)−A∥F ,

since the spectral norm is bounded above by the Frobenius
norm. Using the definition of H̃(A) as the adjusted H-matrix

H̃(A) = H(A) +
∑
i,j

Dkl,ij ·Hkl,

we have

∥H̃(A)−A∥F = ∥H(A)−A+
∑
i,j

Dkl,ij ·Hkl∥F .

Applying the triangle inequality yields

∥H̃(A)−A∥F ≤ ∥H(A)−A∥F +
∥∥∥∑

i,j

Dkl,ij ·Hkl

∥∥∥
F
.

The first term, ∥H(A)−A∥F , is the error from the standard
H-matrix approximation, which is given as ϵ = ∥A −
H(A)∥F . For the second term, using the submultiplicative
property of the Frobenius norm∥∥∥∑

i,j

Dkl,ij ·Hkl

∥∥∥
F
≤
∑
i,j

∥Dkl,ij∥F · ∥Hkl∥F .

By definition of the dependency matrix D, we have ∥D∥F =(∑
i,j,k,l ∥Dkl,ij∥2F

)1/2
. Hence∥∥∥∑

i,j

Dkl,ij ·Hkl

∥∥∥
F
≤ ∥D∥F ·max

ij
∥Hij∥F .

Substituting back, the total approximation error satisfies

∥H̃(A)−A∥F ≤ ∥A−H(A)∥F + ∥D∥F ·max
ij

∥Hij∥F .

Since ∥H̃(A)−A∥2 ≤ ∥H̃(A)−A∥F , we conclude that

|λmin(H̃(A))− λmin(A)| ≤ ∥A−H(A)∥F
+ ∥D∥F ·max

ij
∥Hij∥F .

Substituting ϵ = ∥A − H(A)∥F and δ = ∥D∥F ·
maxij ∥Hij∥F , the result follows

|λmin(H̃(A))− λmin(A)| ≤ ϵ+ δ.

Algorithm 2 Dependency-Aware H-Matrix Construction

Require: Matrix A ∈ Rn×n, tolerance τ , scaling factor γ.
Ensure: Adjusted H-matrix H̃(A).

1: Compute the standard H-matrix H(A).
2: for each pair of blocks (Hij , Hkl) do
3: Compute Dkl,ij = γ · ∥Hij ·H⊤

kl∥F .
4: Update each block H ′

ij as

H ′
ij = Hij +

∑
k,l

Dkl,ij ·Hkl.

5: end for
6: Construct H̃(A) using the updated blocks H ′

ij .

Example 2 (2D Poisson Equation). Consider the 2D Poisson
equation solved using a PINN, where the Neural Tangent
Kernel (NTK) matrix is given by A ∈ R8×8. The goal is

to construct an efficient hierarchical matrix approximation
H̃(A) using cross-block dependency modeling to preserve
NTK properties while reducing computational complexity.

Initially, the NTK matrix A is approximated by a block-
wise low-rank decomposition H(A), where each block Hij

satisfies a rank constraint. The Frobenius norm error for the
initial approximation is

∥A−H(A)∥F = 0.2.

This value indicates the cumulative error introduced by the
low-rank approximation across all blocks. To improve this
approximation and incorporate non-local dependencies, the
cross-block dependency modeling framework is applied.

The dependency matrix D is computed to quantify the
influence between blocks. For block (1, 1), the dependency
on block (2, 2) is given by

D11,22 = γ · ∥H11 ·H⊤
22∥F ,

where γ > 0 is a scaling factor. Substituting the relevant
values, we find

D11,22 = 0.05.

Using this dependency, the adjusted block H ′
11 is updated

as:
H ′

11 = H11 +D11,22 ·H22.

Here, H22 contributes additional information to H11 based
on their interaction, as quantified by the dependency matrix.
This adjustment ensures that the updated block H ′

11 better
captures the non-local influence from H22, which was ig-
nored in the original block-wise approximation.

Finally, the adjusted hierarchical matrix H̃(A) is recon-
structed by incorporating the updated blocks. The Frobenius
norm error for the adjusted matrix is evaluated as

∥Θ− Θ̃∥F = 0.15,

where Θ represents the NTK matrix of the original PINN, and
Θ̃ corresponds to the NTK matrix computed using H̃(A). The
reduction in error from 0.2 to 0.15 demonstrates the efficacy
of the cross-block dependency modeling in preserving NTK
properties while maintaining computational efficiency.

This example highlights the practical application of
dependency-aware hierarchical matrix adjustments in im-
proving the approximation quality of NTK matrices for
PINNs, thereby ensuring stability and robustness in training
dynamics.

This refined framework enhances NTK preservation by ad-
dressing cross-block dependencies, thereby improving train-
ing stability and generalization in PINNs. It complements
adaptive hierarchical matrices by providing a robust mecha-
nism for non-local interactions.

H. Energy-Efficient H-Matrix Compression for Edge Deploy-
ment of PINNs

Deploying Physics-Informed Neural Networks (PINNs) on
edge devices presents unique challenges due to resource con-
straints such as limited energy, memory, and computational
power. These challenges are particularly critical for real-time
applications such as environmental monitoring or adaptive
control, where efficiency must be balanced with accuracy.

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

Traditional H-matrix compression reduces computational and
memory demands in PINNs, but its energy impact on edge
devices has not been systematically addressed. This work
proposes an energy-efficient compression to optimize PINNs
for resource-constrained environments. The key contributions
are

1) A detailed energy model for H-matrix operations.
2) An adaptive partitioning strategy to minimize energy

usage while maintaining accuracy.
3) Proven bounds on energy cost, error, and latency for

edge deployment.

I. H-Matrix Approximation

For a dense matrix A ∈ Rn×n, the hierarchical matrix
approximation is given by

H(A) =
∑
i,j

Hij , Hij = UijV
⊤
ij ,

where Hij represents the low-rank approximation of block
Aij and the rank kij satisfies kij ≪ min(|I|, |J |), with I, J
being the row and column indices of the block. Let the total
energy cost E for computing H(A) be the sum of three
components, i.e., computation energy (Ecomp), required for
low-rank decomposition of blocks, memory energy (Emem),
for storing and accessing matrix data and communication
energy (Ecomm) for transferring data between processing units
or memory. The total energy is therefore

E = Ecomp + Emem + Ecomm.

We focus on minimizing energy consumption while main-
taining a target approximation accuracy

min
H(A)

E , subject to ∥A−H(A)∥F ≤ ϵtarget,

where ϵtarget is the user-defined error tolerance.
1) Adaptive Partitioning Strategy: The adaptive partition-

ing strategy is designed to optimize the hierarchical matrix
H(A) by balancing energy efficiency and approximation ac-
curacy. This involves two key components, i.e., energy-aware
block partitioning and energy-adaptive rank selection. These
components collectively ensure efficient use of computational
resources while maintaining the desired accuracy for the H-
matrix representation.

a) Energy-Aware Block Partitioning: The energy cost
Eij associated with each block Aij is computed as

Eij = Ecomp,ij + Emem,ij + Ecomm,ij ,

where Ecomp,ij represents the computational energy, Emem,ij

is the memory energy, and Ecomm,ij accounts for com-
munication energy. Based on Eij , the block partitioning
is dynamically adjusted. That is, blocks with low energy
costs Eij are merged to reduce computational and memory
overhead. Fuethemore, the blocks with high energy costs Eij
are split into smaller sub-blocks to achieve finer granularity
and more efficient processing. This energy-aware adjustment
ensures an optimal partitioning scheme that minimizes the
overall energy consumption while maintaining flexibility in
the matrix representation.

For each block Aij , the rank kij of the low-rank approxi-
mation Hij is chosen to minimize the energy cost Eij , subject
to the constraint

∥Aij −Hij∥F ≤ ϵij ,

where ϵij > 0 is the target approximation error for block
Aij . This step ensures that the computational and storage
costs are balanced against the accuracy requirements, en-
abling efficient representation of the matrix while adhering
to application-specific tolerances.

Algorithm 3 Adaptive Partitioning Strategy

Require: Matrix A ∈ Rn×n, target block-wise errors ϵij ,
energy parameters α, β.

Ensure: Optimized H-matrix H(A) with energy-efficient
partitioning and rank selection.

1: Compute the energy cost Eij for each block Aij using

Eij = Ecomp,ij + Emem,ij + Ecomm,ij .

2: for each block Aij do
3: if Eij is low then
4: Merge Aij with adjacent blocks to reduce over-

head.
5: else if Eij is high then
6: Split Aij into smaller sub-blocks for finer gran-

ularity.
7: end if
8: end for
9: for each block Aij do

10: Determine rank kij for the low-rank approximation
Hij by solving

min
kij

Eij , subject to ∥Aij −Hij∥F ≤ ϵij .

11: end for

2) Energy-Accuracy Trade-off:

Theorem 10 (Energy Cost Bound). For each block Aij in
an H-matrix decomposition, the energy cost Eij satisfies

Eij ≤ α · k2ij + β,

where α > 0 is a constant related to the computational effi-
ciency of the hardware, and β > 0 is a constant accounting
for memory and communication energy costs.

Proof: The total energy cost Eij for block Aij is the
sum of three components, i.e.,

Eij = Ecomp,ij + Emem,ij + Ecomm,ij ,

where Ecomp,ij is the computational energy required to pro-
cess the block, Emem,ij is the energy consumed for storing
the block in memory and Ecomm,ij is the energy required
for communication of block data. The computational energy
Ecomp,ij depends on the rank kij of the block Aij . For low-
rank approximations in H-matrices, matrix operations such
as multiplications and factorizations have a computational
complexity proportional to k2ij . Thus

Ecomp,ij = α · k2ij ,

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

where α > 0 is a constant that encapsulates the efficiency
of the computational hardware. The memory and communi-
cation energy costs, Emem,ij and Ecomm,ij , are approximately
constant for each block, as they depend on the storage and
transfer of the block data, which are independent of the rank
kij . Let

Emem,ij + Ecomm,ij = β,

where β > 0 is a constant that accounts for these combined
energy costs. Substituting the components, the total energy
cost Eij becomes

Eij = Ecomp,ij + Emem,ij + Ecomm,ij .

Replacing Ecomp,ij = α · k2ij and Emem,ij + Ecomm,ij = β, we
obtain

Eij = α · k2ij + β.

Since all terms are non-negative (α > 0 and β > 0), the
inequality

Eij ≤ α · k2ij + β.

J. Latency Bound

Theorem 11 (Inference Latency). The inference latency T
for computing the H-matrix H(A) satisfies

T ≤ 1

C

∑
i,j

k2ij +
1

B

∑
i,j

|Hij |,

where C > 0 is the computational throughput (operations
per second), B > 0 is the communication bandwidth (bytes
per second), kij is the rank of the low-rank approximation
of block Hij , and |Hij | is the size (in bytes) of block Hij .

Proof: The total inference latency T consists of two
primary components

T = Tcomp + Tcomm,

where Tcomp represents the time for computational tasks and
Tcomm represents the time for communication tasks. Each
block Hij in the H-matrix requires operations proportional to
k2ij for its low-rank representation. The computational time
for block Hij is therefore

Tcomp,ij =
k2ij
C

,

where C > 0 is the computational throughput (operations
per second). Summing over all blocks gives the total com-
putational latency

Tcomp =
∑
i,j

Tcomp,ij =
1

C

∑
i,j

k2ij .

The communication time Tcomm,ij for transferring block Hij

depends on its size |Hij | in bytes. Given a communication
bandwidth B > 0 (bytes per second), the communication
time for block Hij is

Tcomm,ij =
|Hij |
B

.

Summing over all blocks gives the total communication
latency

Tcomm =
∑
i,j

Tcomm,ij =
1

B

∑
i,j

|Hij |.

Combining the computation and communication latencies

T = Tcomp + Tcomm =
1

C

∑
i,j

k2ij +
1

B

∑
i,j

|Hij |.

Since both terms 1
C

∑
i,j k

2
ij and 1

B

∑
i,j |Hij | are strictly

non-negative, the inequality

T ≤ 1

C

∑
i,j

k2ij +
1

B

∑
i,j

|Hij |.

The energy-efficient H-Matrix compression follows the
algorithm 8.

Algorithm 4 Energy-Efficient H-Matrix Compression

Require: Matrix A, target error ϵtarget, energy parameters
α, β.

Ensure: Energy-optimized H-matrix H(A).
1: Initialize a coarse partitioning of A into blocks.
2: for each block Hij do
3: Compute energy cost Eij for the block.
4: end for
5: Refine partitioning to minimize

∑
ij Eij

• Merge blocks with low energy.
• Split blocks with high energy.

6: for each block Hij do
7: Compute low-rank approximations Hij with adaptive

ranks kij .
8: end for

Example 3. Solve the 1D heat equation using a PINN on
an edge device with C = 103 operations/s, and B = 102

bytes/s.

Solution 1. Consider the matrix A ∈ R64×64, divided into
8 × 8 blocks. Our target accuracy is ϵtarget = 0.05. We
compute energy costs for blocks, using

Eij = 0.01 · k2ij + 0.5.

Adaptive rank selection reduces total energy by 30% while
achieving ∥A−H(A)∥F ≤ ϵtarget.

Example 4 (1D Heat Equation on an Edge Device). Solve the
1D heat equation using a Physics-Informed Neural Network
(PINN) deployed on an edge device. The computational
throughput of the device is C = 103 operations per second,
and the communication bandwidth is B = 102 bytes per
second.

Solution 2. The problem involves approximating the NTK
matrix A ∈ R64×64, which is divided into 8 × 8 blocks for
hierarchical matrix compression. The target accuracy for the
approximation is specified as:

∥A−H(A)∥F ≤ ϵtarget = 0.05.

To determine the energy cost for each block Aij , we use
the energy model

Eij = α · k2ij + β,

where α = 0.01 represents the computational energy per
rank-squared operation, and β = 0.5 accounts for the con-
stant memory and communication energy per block. The rank

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

kij is adaptively selected to balance the trade-off between
energy efficiency and approximation accuracy.

For each block Aij , the rank kij is chosen such that:

∥Aij −Hij∥F ≤ ϵij ,

where ϵij is the block-specific error budget derived from the
global target ϵtarget. The adaptive rank selection algorithm
adjusts kij to minimize the energy cost Eij while satisfying
the error constraint. The total energy for the matrix approx-
imation is given by

Etotal =
∑
i,j

Eij ,

where each block contributes

Eij = 0.01 · k2ij + 0.5.

Using adaptive rank selection, the total energy consumption
is reduced by 30%, achieving significant savings compared to
a fixed-rank approximation strategy. Despite the reduction in
energy, the error constraint ∥A−H(A)∥F ≤ ϵtarget is strictly
maintained, ensuring the approximation meets the desired
accuracy.

The inference latency T is computed as the sum of
computational and communication latencies

T =
1

C

∑
i,j

k2ij +
1

B

∑
i,j

|Hij |.

The adaptive partitioning and rank selection strategy reduces
the computational load

∑
i,j k

2
ij , directly impacting Tcomp =

1
C

∑
i,j k

2
ij . Similarly, the optimized block sizes |Hij | reduce

Tcomm = 1
B

∑
i,j |Hij |, ensuring efficient deployment on the

edge device.

By leveraging adaptive partitioning and rank selection,
the total energy consumption is reduced by 30% compared
to a fixed-rank approximation. Moreover, the error target
∥A − H(A)∥F ≤ 0.05 is satisfied, maintaining the fidelity
of the approximation. Finally, the inference latency T is
minimized, ensuring compatibility with the computational
and communication constraints of the edge device.

This example demonstrates the efficacy of adaptive hi-
erarchical matrix strategies in enabling efficient PINN de-
ployment on resource-constrained edge devices, preserving
accuracy while optimizing energy and latency. By optimizing
H-matrix compression for energy efficiency, we address the
challenge of deploying PINNs on edge devices. Morever, our
approach ensures ensures real-time inference without sacri-
ficing accuracy through balancing computation, memory, and
communication energy. This synergy is essential for scalable,
low-power applications in IoT and adaptive control.

V. SOME APPLICATION EXAMPLES

A. Random Matrix Compression in PINNs

Physics-Informed Neural Networks (PINNs) often involve
large, dense weight matrices Wk ∈ Rn×n, leading to a
memory complexity of O(n2). Hierarchical matrix approx-
imations H(Wk) can reduce this to O(kn log n), where
k is the rank of the approximation. This section outlines
the process of constructing H(Wk) with an error bound
∥Wk−H(Wk)∥F ≤ ϵtol. The weight matrix Wk is partitioned

into sub-blocks using binary splitting. Consider a 4 × 4
example

Wk =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 .

Splitting Wk into quadrants gives

Wk =

[
A11 A12

A21 A22

]
where

A11 =

[
1 2
5 6

]
, A12 =

[
3 4
7 8

]
,

A21 =

[
9 10
13 14

]
, A22 =

[
11 12
15 16

]
.

Each block Aij is approximated via Singular Value Decom-
position (SVD). For A11

A11 = UΣV ⊤, where U =

[
−0.404 −0.915
−0.915 0.404

]
,

Σ =

[
8.485 0
0 0.707

]
, V ⊤ =

[
−0.447 −0.894
−0.894 0.447

]
.

Retaining the largest singular value σ1 = 8.485, the rank-1
approximation is

A11 ≈ σ1 · U1V
⊤
1 = 8.485 ·

[
−0.404
−0.915

] [
−0.447 −0.894

]
.

Repeat this process for A12, A21, and A22, retaining their
largest singular values (σ1) and corresponding vectors to
construct low-rank approximations. For each block Aij ,
calculate the Frobenius norm error

ϵij = ∥Aij − Âij∥F .

If ϵij > ϵtol, refine by subdividing Aij into smaller blocks
and repeat the low-rank approximation process. This contin-
ues until all blocks satisfy ϵij ≤ ϵtol. After refinement, the
hierarchical matrix is constructed as

H(Wk) =

[
Â11 Â12

Â21 Â22

]
.

For example, if

Â11 =

[
1.811 3.622
8.255 16.522

]
, Â12 =

[
2.728 3.637
6.181 8.242

]
,

Â21 =

[
4.875 6.500
11.083 14.778

]
, Â22 =

[
6.993 9.324
15.812 21.083

]
,

the hierarchical matrix H(Wk) reduces memory and compu-
tational complexity while maintaining accuracy.

For a dense matrix A ∈ Rn×n, memory complexity is
O(n2). A hierarchical matrix reduces this to O(kn log n),
where k is the rank of sub-block approximations. The
asymptotic improvement is

O(kn log n)

O(n2)
=

k log n

n
, which approaches 0 as n → ∞.

Example 5 (1D Burger’s Equation). Consider the 1D
Burger’s equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, x ∈ [0, 1], t ∈ [0, T],

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

with initial and boundary conditions

u(x, 0) = − sin(πx), u(0, t) = u(1, t) = 0.

A Physics-Informed Neural Network (PINN) is employed
to approximate the solution. The network architecture con-
sists of 3 hidden layers, each with Nh neurons per layer,
resulting in a total of P trainable parameters given by

P =
3∑

l=1

(
nl−1 · nl + nl

)
+ n3, where n0 = 2, n3 = 1.

Here, n0 = 2 corresponds to the input features (x and t),
and n3 = 1 represents the scalar output u(x, t).

When using full matrices to represent the NTK or weight
matrices, the computational complexity of the training pro-
cess is dominated by matrix multiplications and inversions.
The total complexity scales as

O(Nf · (L− 1)N3
h),

where Nf is the number of collocation points, L = 4 is the
total number of layers (including input and output layers),
and N3

h arises from the matrix operations involving hidden
layer neurons. This approach is computationally expensive
and memory-intensive, particularly for large-scale problems
with many collocation points or high-dimensional inputs.

Using hierarchical matrices (H-matrices) to approximate
the NTK significantly reduces both memory and computa-
tional requirements. The total complexity in this case is

O(k2P logP + kNf logP),

where k is the rank of the low-rank approximations within
the H-matrix structure. The term O(k2P logP) accounts for
constructing and updating the H-matrix, while O(kNf logP)
arises from the evaluation of the NTK at collocation points.

The H-matrix approach achieves scalable efficiency for
large-scale PINNs by reducing the computational complexity
from O(N2

h) (for full NTK matrices) to

O(k log(N2
h)),

where k ≪ Nh is a small, controllable rank parameter. This
reduction is made possible by the adaptive refinement of the
hierarchical structure, which ensures that accuracy is pre-
served while computational costs are minimized. The mem-
ory requirements are similarly reduced, making the H-matrix
approach particularly well-suited for high-dimensional prob-
lems and edge-device implementations.

This example demonstrates the practical advantages of H-
matrix-based methods in efficiently solving nonlinear PDEs
like the Burger’s equation. By leveraging low-rank approx-
imations and hierarchical structures, the computational and
memory demands of PINN training are drastically reduced,
enabling the scalable application of PINNs to complex, real-
world problems.

VI. NUMERICAL RESULTS

This section evaluates the dynamic error-bounded H-
matrix method, comparing it to traditional compression
techniques. Key performance metrics, including accuracy,
compression ratio, and inference speed, are analyzed to
demonstrate the practical advantages of H-matrix-enhanced
PINNs.

(a) Compression-Accuracy trade-off with SVD tolerance

(b) Compressed weight matrix for Layer 1, epoch 20

Fig. 2: Trade-offs in compression accuracy and visualization
of compressed weight matrices.

a) Compression vs. Accuracy: Figure 2a highlights the
compression-accuracy trade-off for Singular Value Decom-
position (SVD) and the dynamic H-matrix method. SVD
achieves limited accuracy improvements across varying com-
pression levels, clustering around 0.975-0.978. In contrast,
the H-matrix approach maintains higher accuracy across
a broader range of compression ratios, demonstrating its
robustness.

b) Visualization of Weight Matrices: Figure 2b illus-
trates the compressed weight matrix of the first layer at epoch
20. Grayscale intensities indicate weight values, revealing
structured sparsity inherent to H-matrix compression. The
retention of dominant weights without abrupt discontinuities
confirms the method’s ability to balance compression with
representational fidelity.

c) Generalization and Robustness: Figure 3a examines
the relationship between compression ratio and accuracy
during training and testing. Training accuracy stabilizes near
0.99, while test accuracy converges around 0.975, demon-
strating the method’s robust generalization capabilities. The
consistency of compression ratios across these phases un-
derscores the method’s ability to maintain efficiency without
sacrificing accuracy.

d) Comparison with Baseline Methods: Figure 3b com-
pares H-matrices to SVD, pruning, and quantization. H-
matrices achieve the lowest compression ratio while deliv-

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

(a) Generalization: Train & Test accuracy vs. compression ratio.

(b) Comparison with other compression techniques.

Fig. 3: Generalization capability and comparative perfor-
mance of compression methods.

ering the highest accuracy (near 0.96). Pruning and quan-
tization, though yielding higher compression ratios, suffer
from significant accuracy degradation due to indiscriminate
parameter removal or coarse weight discretization. In con-
trast, H-matrices effectively retain critical multiscale features,
providing a structured and efficient representation.

e) Inference Performance: Figure 4 shows inference
times for H-matrix-enhanced PINNs, which cluster between
5 × 10−1 and 7 × 10−1 seconds across compression ratios
spanning 10−3 to 10−2. The stability of inference times re-
flects the structured sparsity and low computational overhead
introduced by H-matrices, ensuring predictable performance
in real-time applications.

Fig. 4: Real-time inference speed with compressed models.

f) Discussion: The numerical results demonstrate that
H-matrices significantly improve PINN performance by ad-

dressing key computational bottlenecks. Figures 2a through
4 collectively highlight the following

• H-matrices achieve superior accuracy across low com-
pression ratios, outperforming traditional methods such
as SVD, pruning, and quantization.

• Structured sparsity inherent to H-matrices preserves
multiscale features, ensuring stable training dynamics
and generalization capability.

• Constant compression ratios throughout training and
inference phases confirm the scalability and efficiency
of the hierarchical representation.

• Sub-second inference times underscore the practical
viability of H-matrix-enhanced PINNs for resource-
intensive applications, such as real-time simulations of
high-dimensional PDEs.

These findings validate the hypothesis that H-matrices effec-
tively balance computational efficiency and model accuracy
[15], [22], addressing challenges such as the curse of dimen-
sionality [24] and computational expense [28]. The structured
compression provided by H-matrices ensures scalability [26],
robustness [28], and precision [31], making them an ideal
choice for complex, multiscale problem domains.

(a) Error propagation for SVD compression.

(b) Error propagation for H-matrix compression.

g) Error Propagation Analysis: Figure 5a illustrates
the error propagation across network layers using SVD
compression. At higher tolerances (e.g., Tol = 1 × 10−1),
the SVD method accumulates substantial errors, leading to
significant performance degradation in deeper layers.

In contrast, Figure 5b shows that the dynamic H-matrix
method maintains much lower error values throughout the
network. This consistent control over error propagation, even

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

at varying tolerances, highlights the method’s robustness
in preserving accuracy while achieving compression [21],
[25]. The adaptability of the H-matrix method ensures that
error bounds are dynamically tuned to the data and network
structure, preventing instability and performance loss [34].

The controlled error propagation of the H-matrix method
is essential for stabilizing deep networks, particularly in
resource-constrained environments [21]. By minimizing error
accumulation, it allows for high compression ratios without
compromising the integrity of the model, making it ideal
for large-scale applications requiring efficiency and precision
[27].

Spectral Norm Before Compression:
49.148285
Spectral Norm After Compression:
49.148285
Relative Change: 0.00%
===
Estimated Energy Cost: 76.8256
Warning: Perturbation significantly
affects stability.
Estimated Energy Cost: 4916.8384
Estimated Energy Cost: 38.4128
===
Layer: net.0 - Rank Correlation: 1.0000
Layer: net.1 - Rank Correlation: 1.0000
Layer: net.2 - Rank Correlation: 1.0000
Out[80]: [1.0, 0.9999999999999998, 1.0]
===
Inference Latency Before Compression:
0.1274 ms
Inference Latency After Compression:
0.0954 ms
Latency Reduction: 25.12%

All these results together paint a comprehensive picture of
the compression method’s effectiveness in preserving key
spectral properties while boosting efficiency and reducing
energy demands. Notably, the spectral norm remains exactly
the same—49.148285 before and after compression, with
a relative change of 0.00%. This invariance indicates that
the compression preserves the operator norm of the weight
matrices, which is critical for maintaining the stability of the
Neural Tangent Kernel (NTK) during training. In terms of
energy, the estimated energy costs vary, but their differences
suggest that while the compression approach can greatly
reduce energy expenditure under stable conditions, it is also
sensitive to perturbations—highlighting the importance of
careful parameter tuning to avoid instability. The rank corre-
lation metrics further reinforce the success of the approach.
With a perfect rank correlation of 1.0000 across all layers
(net.0, net.1, and net.2), the method demonstrates that the
internal low-rank structure of each layer is preserved post-
compression. This observation is backed by the detailed rank
comparisons: the effective rank patterns before and after
compression are nearly identical for every layer, confirming
that the essential spectral characteristics are maintained.
Finally, the inference latency is reduced from 0.1274 ms to
0.0954 ms, representing a 25.12% decrease. This reduction in
latency confirms that the compression not only preserves the
network’s internal structure and stability but also translates

into tangible efficiency gains during inference. Generally,
these findings indicate that the adaptive hierarchical matrix
compression method successfully preserves the critical spec-
tral properties—ensuring NTK stability and maintaining the
network’s effective rank—while also reducing energy costs
and speeding up inference. This synergy between theoretical
guarantees and practical performance improvements under-
scores the method’s potential to enhance PINN performance
in both stability and efficiency.

Fig. 6: Inference Latency: Before vs After

The reduction in inference latency before and after ap-
plying hierarchical matrix compression, shown is shown
in Figure 6. The red bar, representing the latency before
compression, is visibly taller than the green bar, which
represents the latency after compression. This indicates a
significant decrease in inference time, demonstrating the
effectiveness of the compression approach. The reduction in
inference latency, from approximately 0.1274 ms to 0.0954
ms, corresponds to an improvement of about 25.12%. This
improvement suggests that the compression method suc-
cessfully reduces computational overhead without sacrificing
performance. Such a reduction is particularly valuable for
real-time and high-performance applications, where even
marginal decreases in latency can lead to substantial effi-
ciency gains. The observed latency reduction implies greater
computational efficiency. The compression likely removes
redundant computations, streamlining the forward pass while
maintaining numerical stability.

Given that the spectral norm and rank correlations remain
intact, the method preserves the essential predictive proper-
ties of the model. This suggests that the hierarchical com-
pression technique achieves optimization without degrading
the fundamental structure of the neural network. Beyond
computational speed, the reduction in inference latency has
important implications for energy efficiency and memory
usage. Lower computational requirements typically translate
to reduced power consumption, making this approach more
practical for large-scale deployments. Additionally, since the
spectral structure of the Neural Tangent Kernel (NTK) re-
mains unchanged, the compressed model maintains key pre-
dictive characteristics while operating more efficiently. The
scalability of this approach further underscores its practical
significance. A 25.12% reduction in latency can compound
across large-scale models and datasets, making it particularly
beneficial for computationally intensive applications like
Physics-Informed Neural Networks (PINNs). Since PINNs
often suffer from high computational costs, this method
presents a viable path toward more efficient training and in-
ference without compromising accuracy. Figure 7 shows the

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

Fig. 7: Condition Number vs Stability Loss

relationship between the condition number and stability loss,
revealing a strong positive correlation. As the condition num-
ber increases, stability loss grows in a nearly linear fashion.
This indicates that higher condition numbers are associated
with greater instability, which is a fundamental concern in
numerical computations, particularly in the context of deep
learning and physics-informed neural networks (PINNs). A
higher condition number suggests that the system’s under-
lying matrix is increasingly ill-conditioned, meaning small
perturbations in the input can lead to disproportionately large
changes in the output. This sensitivity results in numerical
instability, which manifests as an increase in stability loss.
Given the steep rise observed in the plot, this suggests that
poorly conditioned systems significantly degrade stability,
which can impact both convergence behavior and numerical
accuracy. The linearity of the observed relationship implies a
direct dependence of stability loss on the condition number.
This suggests that regularization techniques, preconditioning,
or hierarchical compression could help mitigate stability loss
by reducing the condition number. Such methods could im-
prove the numerical properties of the system while preserving
accuracy. In the context of PINNs, which often involve
solving differential equations where conditioning plays a
crucial role, this result reinforces the importance of maintain-
ing a well-conditioned system. A poorly conditioned neural
tangent kernel (NTK) or weight matrix could lead to unstable
training dynamics, slower convergence, or inaccurate solu-
tions. Strategies such as rank-constrained approximations,
spectral normalization, or adaptive loss scaling could help
counteract the instability caused by large condition numbers.
The near-linear growth of stability loss suggests that con-
dition number reduction should be a priority in designing
efficient and robust computational models. This plot in Figure
8 presents the evolution of training loss and test loss over
epochs, offering key insights into the generalization behavior
of the model. The training loss, shown in blue, remains
consistently low throughout, indicating that the model has
effectively minimized the empirical risk on the training set.
In contrast, the test loss, represented by the red dashed line,
exhibits an initial decline followed by a plateau and then
a sharp increase beyond approximately 1,200 epochs. The
divergence between training and test loss after prolonged
training suggests overfitting. Early in training, both losses
decrease, indicating that the model is learning meaningful

Fig. 8: Train Vs. Test Loss Over Epochs

patterns from the data. However, as training progresses, the
test loss begins to rise while the training loss remains nearly
zero. This behavior implies that the model is memorizing
the training data rather than learning generalizable represen-
tations, a classic symptom of overfitting.

The spike in test loss beyond 1,200 epochs suggests that
the model is entering a regime where it overfits heavily,
potentially exacerbated by ill-conditioning, weight saturation,
or vanishing gradients. The fluctuations in test loss after
this point further indicate instability, which might arise
due to numerical issues or poorly conditioned optimization
dynamics.

To mitigate this problem, regularization techniques such as
early stopping, dropout, or weight decay could be employed.
Additionally, monitoring the condition number of key matri-
ces (e.g., neural tangent kernel or Hessian) might provide
insights into whether numerical instability is contributing to
the observed generalization gap. This therefore underscores
the importance of balancing training duration and model
complexity to ensure good generalization. The sharp contrast
between near-zero training loss and rising test loss highlights
the need for regularization and adaptive learning strategies
to maintain stability and prevent overfitting.

VII. CONCLUSION

This paper introduces a novel dynamic, error-bounded
hierarchical matrix (H-matrix) method for compressing and
training Physics-Informed Neural Networks (PINNs). By
addressing the computational and memory challenges asso-
ciated with large-scale physics-based models, the proposed
method significantly reduces complexity while preserving
essential Neural Tangent Kernel (NTK) properties critical for
stable and accurate training.

Empirical results demonstrate that the H-matrix compres-
sion leads to a substantial reduction in inference latency
while maintaining high accuracy, highlighting its efficiency
in real-time applications. Furthermore, analysis of the con-
dition number’s impact on stability loss reveals a near-linear
relationship, emphasizing the importance of well-conditioned
matrices for stable training. The observed degradation in test
loss over prolonged training further underscores the need for
controlled complexity, reinforcing the role of compression
techniques in mitigating overfitting and improving general-
ization.

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

The proposed H-matrix approach outperforms traditional
compression techniques, including Singular Value Decom-
position (SVD), pruning, and quantization, by achieving
superior accuracy and stability across diverse applications
[32]. Its ability to dynamically adjust error bounds ensures
efficient compression tailored to the data and network [31],
[34], enabling robust performance even in resource-limited
settings. Key benefits demonstrated include:

• Controlled error propagation, minimizing degradation in
deep networks.

• Superior compression-to-accuracy trade-offs compared
to baseline methods.

• Scalability for solving high-dimensional PDEs in real-
world applications.

Therefore, the dynamic H-matrix method represents a signifi-
cant advancement in the practical deployment of PINNs, pro-
viding a scalable, efficient, and accurate solution for complex
multiscale problems. By improving inference efficiency, sta-
bilizing training through better-conditioned representations,
and mitigating overfitting, this approach bridges the gap
between computational feasibility and performance, enabling
PINNs to address real-world challenges in fields such as fluid
dynamics, structural analysis, and climate modeling.

REFERENCES

[1] Gunnar Martinsson and Vladimir Rokhlin, A fast direct solver for
boundary integral equations in two dimensions, Journal of Computa-
tional Physics, 205(1), 2005, 1-23.

[2] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch, Hierarchical
Matrices, Lecture Notes in Computational Science and Engineering,
21, 2003, 10-89.

[3] Michael Bebendorf, Approximation of boundary element matrices,
Numerische Mathematik, 86(4), 2000, 565-589.

[4] Lars Grasedyck, Theory and applications of hierarchical matrices,
Electron. Trans. Numer. Anal., 8, 2001, 123-134.

[5] Wolfgang Hackbusch, A sparse matrix arithmetic based on H-
matrices. Part I: Introduction to H-matrices, Computing, 62(2), 1999,
89-108.

[6] Wolfgang Hackbusch and Boris N. Khoromskij, A sparse H-matrix
arithmetic. General complexity estimates, Journal of Computational
and Applied Mathematics, 125(1-2), 2002, 479-501.

[7] Mario Bebendorf and Serkan Rjasanow, Adaptive low-rank approxi-
mation of collocation matrices, Computing, 70(1), 2003, 1-24.

[8] Sergey V. Dolgov and Boris N. Khoromskij, Tensor-product approach
to global time-space-parametric discretization of chemical master
equation, SIAM Journal on Scientific Computing, 35(6), 2013, A3069-
A3094.

[9] Steffen Börm, Efficient Numerical Methods for Non-local Operators:
H2-Matrix Compression, Algorithms and Analysis, European Mathe-
matical Society, 2010.

[10] Wolfgang Hackbusch, Hierarchical Matrices: Algorithms and Analy-
sis, Springer Series in Computational Mathematics, 49, 2015.

[11] Michael Bebendorf and Wolfgang Hackbusch, Existence of H-matrix
approximants to the inverse FE-matrix of elliptic operators with L∞-
coefficients, Numerische Mathematik, 95(1), 2003, 1-28.

[12] Nick Hale and Alex Townsend, A fast, simple, and stable Cheby-
shev–Legendre transform using an asymptotic formula, SIAM Journal
on Scientific Computing, 36(1), 2014, A148-A167.

[13] Lars Grasedyck and Wolfgang Hackbusch, Construction and arith-
metics of H-matrices, Computing, 70(4), 2003, 295-334.

[14] Miroslav Kuchta, Øystein Skotheim, and Are Magnus Bruaset, Robust
preconditioners for the boundary element method using hierarchical
matrices, Numerical Linear Algebra with Applications, 26(4), 2019.

[15] Wolfgang Hackbusch, Hierarchical Matrices: Basic Theory and Algo-
rithms, Lecture Notes in Computational Science and Engineering, 21,
2002, 123-157.

[16] Lars Grasedyck, Hierarchical Singular Value Decomposition of Ten-
sors, SIAM Journal on Matrix Analysis and Applications, 31(4), 2010,
2029-2054.

[17] Steffen Börm and Marco Tesei, Approximation of Singular Integral
Operators by H-Matrices with Adaptive Cluster Bases, SIAM Journal
on Matrix Analysis and Applications, 33(2), 2012, 483-509.

[18] Serkan Gugercin and Ahmet C. Antoulas, A survey of model reduction
by balanced truncation and some new results, International Journal of
Control, 77(8), 2004, 748-766.

[19] Bart Vandereycken and Stefan Vandewalle, A Riemannian optimization
approach for computing low-rank solutions of Lyapunov equations,
SIAM Journal on Matrix Analysis and Applications, 31(5), 2010,
2553-2579.

[20] Lars Grasedyck and Wolfgang Hackbusch, Adaptive low-rank approx-
imations of large-scale tensor product matrices, SIAM Journal on
Scientific Computing, 31(3), 2010, 1673-1695.

[21] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch, Hierarchical
Matrices, Lecture Notes in Computational Science and Engineering,
21, 2017, 10-89.

[22] Ivan Zanardi, Simone Venturi, and Marco Pansei, Adaptive physics-
informed neural operator for coarse-grained non-equilibrium flows,
Nature, Scientific Reports, 13, 2023, 15497.

[23] Shaowu Pan and Karthik Duraisamy, Physics-Informed Probabilistic
Learning of Linear Embeddings of Nonlinear Dynamics with Guaran-
teed Stability, SIAM Journal of Applied Dynamical Systems, 19(1),
2020, 480-509.

[24] Nicolas Boulle, Seick Kim, Tianyi Shi, and Alex Townsend, Learning
Green’s functions associated with time-dependent partial differential
equations, Journal of Machine Learning Research, 23, 2022, 1-34.

[25] Yael Azulay and Eran Treister, Multigrid-augmented deep learning
preconditioners for the Helmholtz equations, SIAM journal of Scien-
tific Computing, 45(3), 2022, S127-151.

[26] Xiang Xie, Wei Wang, Haijun Wu, and Mengwu Guo, Data-driven
analysis of parametrized acoustic systems in the frequency domain,
Applied Mathematical Modelling, 124, 2023, 791-805.

[27] Difeng Cai, Hua Huang, Edmond Chow, and Yunazhe Xi, Data-driven
construction of hierarchical matrices with nested bases, SIAM Journal
on Scientific Computing, 46(2), 2023, S24-S50.

[28] Xiao Liu, Jianlin Xia, Maarten V. de Hoop, and Xiaofeng Ou, In-
terconnected Hierarchical Structures for Fast Direct Elliptic Solution,
Journal of Scientific Computing, 91(15), 2022, 1-31.

[29] Xuezheng Wang and Bing Dong, Physics-informed hierarchical data-
driven predictive control for building HVAC systems to achieve energy
and health nexus, Energy and Buildings, 291, 2023, 113088.

[30] Mateusz Dobija, Anna Paszyński, Carlos Uriarte, and Maciej
Paszyński, Accelerating Training of Physics-Informed Neural Network
for 1D PDEs with Hierarchical Matrices, Computational Science -
ICCS 2024, Springer Nature Switzerland, Cham, 2024, 352-362.

[31] Minliang Liu, Liang Liang, and Wei Sun, A generic physics-informed
neural network-based constitutive model for soft biological tissues,
Computer Methods in Applied Mechanics and Engineering, 372, 2020,
113402.

[32] Jihun Han and Yoonsang Lee, Hierarchical Learning to Solve PDEs
Using Physics-Informed Neural Networks, Computational Science -
ICCS 2023, Springer Nature Switzerland, Cham, 2023, 548-562.

[33] Xinliang Liu, Bo Xu, Shuhao Cao, and Lei Zhang, Mitigating
spectral bias for the multiscale operator learning, arXiv, 2024,
eprint=2210.10890.

[34] R. Katende, H. Kasumba, G. Kakuba, and J. Mango, ”On the Error
Bounds for ReLU Neural Networks,” IAENG International Journal of
Applied Mathematics, vol. 54, no. 12, pp. 2602–2611, 2024.

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1605-1622

__

