
 

  

Abstract—This paper addresses the re-entrant hybrid flow 

shop joint scheduling problem with dual-gripper (RHFSJSPD). 

In RHFSJSPD, multiple machines and dual-gripper robots are 

capable of simultaneously handling different workpieces, which 

gives rise to a complex problem involving job sequencing, task 

allocation and speed control across multiple workstations. It is 

characterized by a higher state space dimension and finer 

action division, thus requiring an efficient integrated scheduling 

approach. Traditional intelligent algorithms often struggle with 

the dynamic, combined discrete, and continuous challenges of 

RHFSJSPD. First, an integrated production and transportation 

mathematical model aimed at minimizing the maximum 

completion time and total delay is established to describe 

RHFSJSPD. Then, a Q-learning-based Deep Deterministic 

Policy Gradient (DDPG) algorithm(Q-DDPG) is developed to 

handle RHFSJSPD. The algorithm employs Q-learning for 

macroscopic job scheduling and DDPG for microscopic 

dual-gripper control.  Greedy strategies are combined with 

heuristic rules to enhance the search efficiency of Q-learning. 

The convergence rate of DDPG in the microscopic continuous 

action space is improved by means of target networks and 

experience replay. Finally, to evaluate the efficiency of Q-DDPG, 

two comparative numerical experiments are conducted on a 

benchmark of 30 instances of RHFSJSPD with different scales. 

The statistical results reveal that Q-DDPG surpasses the other 

three Q-learning-based variant algorithms and achieves the 

highest utilization rates of machines and dual-gripper robots in 
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the actual scheduling process. Furthermore, the integrated 

scheduling approach leads to an average reduction of 9.41% in 

makespan and 16.14% in total delay time. 

 
Index Terms—re-entrant flow shop, Q-learning algorithm, 

dual-gripper, multi-agent system. 

I. INTRODUCTION 

N recent years, the flow shop scheduling problem (FSSP) 

has been fundamental in operations research and industrial 

engineering, with a primary goal of optimizing job 

sequencing to enhance efficiency and minimize costs [1]. 

However, as manufacturing technology advances, the 

processes and standards in semiconductor fabrication and 

automotive production are becoming increasingly intricate. 

Sometimes, workpieces must enter the production system 

several times for processing or inspection to fulfill 

requirements [2], giving rise to the Re-entrant Flow Shop 

Scheduling Problem (RFSSP) [3]. Consequently, there is a 

growing demand for robust RFSSP solutions that can 

seamlessly integrate with these advanced manufacturing 

processes and improve overall operational performance [4]. 

This is crucial for boosting production rates and shortening 

delivery times across various industries. The complexity of 

RFSSP lies in the dual challenges of coordinating job 

sequencing and re-entrant timing within the inherent 

variability and unpredictability of contemporary 

manufacturing. The inherent complexity of RFSSP positions 

it as a critical area of research, highlighting the need for 

advanced scheduling algorithms that can effectively manage 

the intricacies of re-entrant processes. 

RFSSP presents a variety of intricate challenges that set it 

apart from the conventional FSSP. A major challenge is 

developing effective scheduling strategies to determine the 

sequence of job processing across machines, especially when 

jobs may re-enter the same machine multiple times. Such 

strategies demand a comprehensive understanding of job 

dependencies and machine availability [5]. Another 

significant challenge is resource allocation. Due to limited 

resources, RFSSP requires intelligent scheduling to optimize 

production capacity utilization. This task entails distributing 

the workload evenly across machines and ensuring timely 

resource allocation to jobs to avoid bottlenecks and 

downtime [6]. Additionally, process control poses research 

challenges, as its complexity escalates with the system’s 
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reentrant nature. Managing the re-entrant flow of jobs 

involves optimizing to prevent deadlocks, reduce wait times, 

and enhance throughput, all while keeping the production 

system dynamic and responsive [7]. As RFSSP becomes 

increasingly complex, particularly regarding job re-entry and 

resource allocation, there is a growing demand for advanced 

scheduling systems that can effectively manage both 

production processes and the use of automation resources. 

To address these issues, the use of automation tools, such 

as dual-gripper robots, has become essential in contemporary 

manufacturing systems. These systems are recognized for 

their ability to significantly improve production efficiency by 

providing enhanced operational flexibility [8]. The effective 

deployment of automated workpiece transportation systems 

has increased the need for coordinated scheduling methods 

that optimize both production and transportation resources. 

These methods not only simplify job sequencing but also 

strategically manage the use of these resources. They ensure 

the smooth coordination of processing and transportation 

activities, which is crucial for maximizing efficiency in 

production systems [9]-[10]. In re-entrant hybrid flow shops 

utilizing dual-gripper robots, production sequencing and 

workpiece transportation are vital elements, and their 

efficiency directly influences the overall operational 

efficiency of the workshop. Conventional scheduling 

approaches usually tackle these two components in stages [11] 

or separately [12]-[13], neglecting the transportation time of 

workpieces. This results in a lack of information sharing 

between the two components, which impedes the 

achievement of integrated scheduling optimization. 

Research on production scheduling problems has been 

conducted for more than half a century. The emergence and 

growth of new disciplines and optimization methods in 

applied mathematics, computer science, operations research, 

artificial intelligence, and engineering have led to significant 

advancements in production scheduling research for various 

manufacturing systems [14]. However, the majority of 

studies on scheduling issues focus on conventional job shop 

or flow shop, with current research findings on optimization 

for RFSP as follows. 

Chamnanlor et al. proposed the GACO algorithm to solve 

the reentrant hybrid flow shop scheduling problem with time 

window constraints [15]. Johanna and Richard 

conceptualized a dual-resource-constrained re-entrant 

flexible flow shop problem, drawing inspiration from the 

screenprinting sector. They employed a constraint 

programming model to effectively assess the proposed 

heuristic approaches and also introduced a hybrid genetic 

algorithm to expedite the search for better solutions [16]. Jun 

D et al.  developed an enhanced hybrid Salp Swarm algorithm 

(SSA) and NSGA-III algorithm aimed at addressing the triple 

objective reentrant shop scheduling problem [17]. Mousavi et 

al. addressed the re-entrant hybrid flow shop scheduling 

problem, which incorporates setup times and 

position-dependent learning effects, by proposing a 

bi-objective optimization algorithm based on genetic 

algorithms [18]. Topaloglu et al. developed a modified 

shifting bottleneck heuristic (MSBH) for the reentrant job 

shop scheduling problem (RJSSP) with makespan 

minimization objective [19]. Rong H et al. employed a 

differential evolutionary algorithm to solve the RFSP 

problem, aiming to minimizing total drag time as the 

objective to solve the RFSP problem [20]. Furthermore, 

numerous researchers have investigated the integrated 

scheduling problem of RFSP. For instance, Eghonghon et al. 

conducted research on sequence and time dependent 

maintenance Scheduling, based on the application of 

two-stage re-entrant flow shop in industry. They formulated a 

mixed-integer programming model to more accurately 

describe the problem and applied heuristic methods for the 

integrated scheduling of both operational and maintenance 

tasks [21]. Ying et al. introduced an iterative Pareto greedy 

algorithm to solve the RFSP problem, targeting minimization 

of completion time and total delay [22]. 

The studies mentioned primarily focus on using 

single-gripper systems for job transportation, but in practice, 

companies are likely to adopt dual-gripper systems to 

transport jobs. Hurink and Knust analyzed the complexity of 

a specific flow shop scheduling problem involving a single 

robot and unlimited buffer space [23]. Carlier et al. solved a 

robotic flow shop scheduling problem with various part types 

and a single robot by developing a branch-and-bound 

algorithm alongside a genetic algorithm [24]. Paul et al. 

designed an effective heuristic algorithm to address a hoist 

scheduling problem dealing with time windows, aiming to 

minimize maximize the completion time [25]. Che et al. 

solved a robust optimization problem related to a cyclic hoist 

scheduling problem, accounting for variations in hoist 

transport time, and established a mixed-integer programming 

model to optimize cycle time and robustness, ultimately 

identifying the Pareto optimal solution [26].  Drobouchevitch 

et al. considered the scheduling problem of cyclic production 

in dual-gripper robot cell without buffers, focusing on 

identical parts, and provided a framework for modeling this 

type of production system [27]. Sriskandarajah and Shetty 

investigated the complexity and solvability of the part 

ordering problem in a dual-machine dual-gripper robot cell, 

identifying all potentially optimal robot motion sequences [8]. 

Geismar et al. analyzed a dual-gripper robot cell that 

processes identical parts with parallel machines at each 

processing stage, deriving a lower bound on the throughput 

and an optimal solution under specific practical conditions 

[28]. Gultekin et al. considered cyclic scheduling for multiple 

parts on a robot cell, proposing both a mathematical planning 

model and a metaheuristic model [29]. Dawande et al. 

addressed the issue of spaced robot cells with dual-gripper 

robots handling identical parts, ensuring that completed parts 

exit the machine within a designated time frame, and 

achieved an asymptotically optimal solution in polynomial 

time for two extreme scenarios: the no-wait cell and the 

free-picking cell [30].  

Previous studies have demonstrated that dual-gripper 

systems can lead to greater productivity than single-gripper 

systems. Moreover, integrated scheduling methodologies 

provide solutions that are more proximate to the optimal ones 

when compared with stage-wise or factor-specific scheduling 

methodology. Therefore, this research aims to address the 

re-entrant hybrid flow shop scheduling problem with 

dual-gripper systems through an integrated scheduling 

method that encompasses both production and transportation 

aspects. The complexity of re-entrant flow shops is 

heightened by the addition of dual-gripper robots, which 
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Fig. 1. The illustration of the re-entrant hybrid flow shop with dual-gripper 

 

introduce further dynamic constraints, further complicating 

the problem. To tackle this more complex integrated problem, 

an integrated scheduling strategy based on an improved 

Q-Learning algorithm is proposed. This strategy effectively 

navigates the intricate interactions between job processing 

and dual-gripper system scheduling, optimizing the job 

processing workflow, maximizing resource use, and 

enhancing overall production efficiency.  

 

II. DESCRIPTION AND DEFINITION OF THE RE-ENTRANT 

HYBRID FLOW SHOP JOINT SCHEDULING PROBLEM WITH 

DUAL-GRIPPER  

The joint scheduling problem discussed in this research is 

derived from studies on scheduling in re-entrant hybrid flow 

shops, taking into account the transportation resource 

constraints represented by dual-gripper robots. It examines 

how the routing and movement features of these dual-gripper 

robots, which handle workpiece transfers, affect the 

production process. 

The dynamic joint scheduling can be decomposed into 

three distinct static scheduling components: 

(1) Sorting multiple pending jobs for processing. 

(2) Selecting processing machines within a specific 

workstation for each job. 

(3) Determining suitable dual-gripper robots for job 

transfers. 

(4) Planning the moving paths of the dual-gripper robots. 

The re-entrant hybrid flow shop joint scheduling problem 

with dual-gripper (RHFSJSPD) is described as follows: In a 

production line, there are S work centers, each corresponding 

to a process. Each process is equipped with ms (ms>0) 

unrelated parallel machines for processing, and the 

processing time of any job in any work center is fixed. The 

processing sequence among jobs is not fixed. Although there 

is no absolute restriction on the job sequence, the 

process-flow sequence of each job along the process path is 

subject to specific constraints. Some special workpieces may 

need to re-enter a certain process for repeated processing due 

to their specific processing requirements. Additionally, if 

problems are detected in the quality inspection stage, the 

workpieces will also be sent back to a previous process for 

re-processing. This re-entry phenomenon indicates that a job 

may undergo multiple repeated processing iterations within a 

single process. Different jobs are processed in different 

sequences at different levels. In each workstation and 

between different workstations, there could exist more than 

one dual-gripper robot Di responsible for workpiece transfer. 

When the workpiece ji requires transfer, the central control 

system designates the dual-gripper robot Di that has either 

both grippers idle or one gripper idle to execute the transfer 

task. Subsequently, Di conducts the workpiece transfer in 

accordance with the task priority. As illustrated in Fig. 1, the 

workpieces are introduced via the input terminal and may 

re-enter a prior process for subsequent processing upon 

completion of a certain operation. Each process is equipped 

with a buffer. In the event that a workpiece enters a process 

while the equipment is still occupied, it is placed into the 

buffer and waits for its turn to be processed. The dual-gripper 

robot is responsible for transferring workpieces between 

different workstations and the machines at each workstation. 

Based on the above analysis of workshop layout and 

operation mechanism, this paper proposes the following 

hypotheses for RHFSJSPD: 

(1) At any given time, each job can be processed on only 

one machine, and each machine can process only one job at a 

time to prevent resource contention. 

(2) During the production process, it is assumed that all 

workpieces, processing machines, and dual-gripper robots 

are available, and the buffer capacity between adjacent 

workstations is considered to be unlimited. 

(3) The production process for all workpieces to 

manufacture a specific product is fixed. However, quality 

inspection steps exist between certain processes. Defective 

workpieces will return to designated processes for 

reprocessing. 

(4) The dual-gripper robot can carry a maximum of two 

workpieces at the same time, with each gripper capable of 

holding only one workpiece. The loading and unloading 

durations of the dual-gripper robots, as well as the reaction 

and processing times of all machines and robots, are not 

taken into account. 

(5) The start-up and shut-down times of the machines 

have no impact on the overall production scheduling, and are 

regarded as negligible factors in the scheduling model. That 

is, once the machine is ready for processing, it can 

immediately start working, and when the processing is 

completed, it has no subsequent impact on the production 

process in terms of time. 

(6) The transfer paths between workstations for the 

dual-gripper robots are pre-determined and fixed. There are 
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no unexpected obstacles or changes in the transfer routes 

during the transfer process, ensuring the smooth transfer of 

workpieces between different workstations and machines. 

Based on the above problem description and assumptions, 

the symbols and variables are defined in Table I. 

 

TABLE I 
SYMBOLS AND MEANINGS 

Symbol Meaning 

N Total number of jobs 

S 
Number of sequences, not including 
inputs and outputs 

MN Total number of machines 

Ms Number of equipment in the s th process 

Ps 
The time the job is processed in process 

s 

Cj,s,t End time of job j in process s in level t 

Fj,s,t Entry time of job j in process s in level t 
Cmax Time for all jobs to enter the output 

Ls,m,s’ m’ 

The time required to move the job from 

equipment m of process s to equipment 

m’ of process s’ 

φ 
Grippe and release time of job by robot 

grippers 

θ Robot gripper reset time 

Xj,s,m,t 

1 Table equation at level t where job j is 

processed on equipment m in process s, 

otherwise 0 

Ej,t 

1 means that the job does not meet the 

machining requirements after the t th 

level of machining, otherwise, it is 0 

Rs,j 

1 means that the j th gripper of the robot 

gripper holds the job at process s, 

otherwise it is 0 

BM A large enough positive number 

 

III. MATHEMATICAL MODEL 

In the joint scheduling problem research, the objective is to 

sort jobs according to their processing sequence and select 

appropriate processing machines and dual-gripper robots. 

This approach aims to reduce bottlenecks resulting from 

issues like the congestion of re-entering workpieces and 

delays in transfers, ultimately minimizing both the 

completion time Cmax and the total delay time TD. 

The objective function represented by Equation (1) aims to 

minimize the weighted sum of the total delay time and the 

maximum makespan, where μ denotes the weight coefficient 

of the completion time, and dj represents the delay time of job 

j. 

 
max

, 1,1

( ) (1 )

max(0, )
N

j S T jj

F max C

C d

 

+=

=  + − 

−
 (1) 

Process priority constraints: 

In practical production scenarios, the processing of job is 

subject to the sequential constraints as represented in 

Equation (2). At the same level, a job may proceed to the 

subsequent process only upon the completion of the 

preceding process. 
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To prevent the waste of production resources, the 

processing time of job is constrained as Equation (3). The job 

is processed at most once in one process at the same level. 

 
, , , , ,

1 1

*X
s

MS

s j s m t j S t
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P C
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   (3) 

To ensure the integrity of workpiece processing, it is 

essential for each workpiece to go through all processes 

corresponding to the specified levels, as shown in Equation 

(4). 

 
, , ,1

1

S

j s m
s

X S

=

=  (4) 

Quality inspection and other reasons may result in a 

situation where a job is not required to undergo processing at 

a certain level and needs to be transferred to the subsequent 

process. Equation (5) is employed to determine the turning 

conditions in different situations, and Equation (6) is used to 

determine the process to which the job is transferred. 

 ( ), , 1 ,1 0j s t j tF BM E+ − −   (5) 

( ), , , , , , , , 1 , , 1

, , ,

2

2( )

j s t j s m t j S m t j s t

S m s m

F BM X X C

L  

 − −



 + − +  +
 

+ +

 (6) 

The re-entrant caused by problems in the quality 

inspection is assigned a different priority compared to the 

initially scheduled processing operations, and Equation (7) 

ensures that the jobs in the higher-level operations of the 

same process are preferentially processed. 

 
, , 1 , , 1 , , , ,( )j s t j s t j s t j s tC BM X X C−  −  − −   (7) 

Job to dual-gripper assignment constraints: 

In the process of transferring workpieces, Equation (8) is 

required to limit the number of workpieces grasped by the 

dual-gripper at any time to be no more than 2, so as to ensure 

the normal operation of the dual-gripper. Furthermore, to 

ensure the efficiency of output, Equation (9) stipulates that 

the number of jobs grasped by the dual-grippers at the output 

terminal must consistently be greater than 0. 

 
,

1

2
S

s j
s

R S

=

  (8) 

 
2

,

1

0S j

j

R

=

  (9) 

To prevent ambiguity and conflict in the job handling 

process, Equation (10) specifies that each job can only be 

transported by one dual-gripper robot at any given time. This 

regulation guarantees that there is a designated entity 

responsible for the handling of each job. 

 
, ,

1

x 1, {1,2,... }i d
d

D

t i J

=

=    (10) 

Job to processing machine assignment constraints: 

To prevent conflicts in machine resource allocation, 

Equation (11) restricts that a workpiece can only be 

processed by one machine at the same time. Equation (12) 

specifies that a machine can process at most one workpiece 

concurrently. 
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1
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M

j s m t
m

X

=
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J
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j

X

=

=  (12) 

Dual-gripper dynamics constraints: 

In the process of conveying workpieces with a 

dual-gripper robot, the kinetic energy is affected by the 

movement speed and load. To ensure the safe operation of the 

dual-gripper robot and avoid damage to components, such as 

the motor, which could arise from excessive kinetic energy, it 

is necessary to limit its kinetic energy. Equation (13) 

demonstrates that the kinetic energy of the dual-gripper robot 
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is constrained to remain below a specified maximum 

threshold in order to prevent potential damage to the motors. 

Where Gd is the gravity of the dual-gripper robot itself, Gj is 

the gravity of the job, v is the movement speed of the 

dual-gripper robot, and the speed is obtained by arbitrarily 

taking a linear value within the interval. 
Additionally, Emax refers to the maximum allowable kinetic 

energy. 

 
2

, ,
max

( )

2

d j i d tG G x v
E

+  


  (13) 

 

IV. ALGORITHM DESIGN 

Prioritizing different types of operations is essential in 

addressing the re-entrant hybrid flow shop scheduling 

problem with dual-gripper. This initial phase should be 

followed by the determination of an optimal processing 

sequence and the selection of appropriate machines for each 

task. The decision-making for production plans also 

necessitates an integration with the scheduling decisions of 

the dual-gripper robot to ascertain the optimal transportation 

route and speed control strategy. The dynamic nature of this 

scheduling system, influenced by stochastic elements such as 

quality inspection rework and dual-gripper conflicts, 

complicates the identification of effective scheduling rules 

that can adapt to the fluctuating conditions within the 

workshop. Therefore, this study proposes an improved 

Q-learning algorithm combined with Deep Deterministic 

Policy Gradients (DDPG) to determine the most appropriate 

scheduling rules, thereby optimizing scheduling decisions 
within the workshop. 

In the improved Q-learning algorithm, a weighted 

approach is employed to mitigate the complexity of the state 

space, which includes multiple agents and stochastic 

elements, thereby streamlining the action space. 

Gradient-based optimization algorithms are applied to 

continuously update the weights, thereby iteratively refining 

the Q-function. To enhance the convergence speed of the 

algorithm, heuristic rules and greedy strategies are combined 

to dynamically search for scheduling policies. To effectively 

address the continuous action space associated with 

dual-gripper control, which includes both path and speed, the 

DDPG algorithm is integrated with the improved Q-learning 

algorithm. The DDPG enhances learning effectiveness in the 

micro-level control tasks of this scheduling problem through 

target networks and experience replay mechanisms. In the 

scheduling system established in this study, jobs and 

dual-grippers, as two types of agents, interact with the 

dynamically changing workshop environment to obtain the 

optimal state-action pairs, thereby selecting the most suitable 

scheduling scheme. 

A. Detailed description of Q-DDPG 

The proposed integration of an improved Q-learning 
algorithm with the Deep Deterministic Policy Gradient 

(DDPG) method, referred to as Q-DDPG, encompasses four 

steps: initialization, global search, local search, and 

interactive update. The framework of the algorithm is 

illustrated in Fig. 2 In the first step, Q-learning and DDPG 

jointly perform the overall configuration, parameter 

initialization, and Q-table initialization to obtain the initial 

solution, including job sequence, machine assignment, 

dual-gripper robot assignment, and transport speed. In the 

subsequent iterations, the algorithm executes the scheduling 

strategy based on the hybrid Q-learning and DDPG approach, 

with global search driven by Q-learning and local search 

performed by DDPG. During the initialization process, not 

only are the basic parameters and tables initialized, but also a 

comprehensive analysis of historical production data is 

conducted.  This analysis of historical data is helpful in 

setting more reasonable initial values for parameters such as 

the job processing times, machine efficiency, and average 

speed of the dual-gripper robots.  When the historical data 

indicates that a specific type of job typically takes longer to 

process on certain machines, this information can be utilized 

to adjust the initial job-machine assignment probabilities in 

the Q-table. 

In the second step, a global search is conducted by 

observing the shop floor state, including job progress, 

machine availability, and dual-gripper robot status. Based on 

a combination of ε-greedy strategy and heuristic rules, 

actions are selected to determine job sequencing, machine 

assignment, and task allocation for dual-gripper robots. 

During this phase, Q-learning performs the macroscopic 

scheduling by reducing the state space complexity through 

weighted feature representation and applying heuristic rules 

to conduct an efficient global search. The global search first 

divides the job agents into two subgroups based on task types: 

normal process jobs and urgent rework jobs, then Q-learning 

is applied to search for the optimal scheduling solution for 

each subgroup. The ε-greedy strategy is further refined 

during the global search process. Instead of having a fixed ε 

value throughout the entire search process, it is dynamically 

adjusted according to the number of iterations and the current 

performance of the scheduling scheme. During the early 

stages of the search, a relatively large ε value is set to 

encourage exploration. This implies a higher probability of 

randomly selecting actions rather than always choosing the 

known optimal action based on the Q-table. As the number of 

iterations increases and the solution starts to converge, ε 

gradually decreases, with more focus placed on exploiting the 

learned optimal actions. Furthermore, the heuristic rules 

utilized in the global search are tailored to be specific to both 

jobs and machines.  Jobs with stringent delivery time 

requirements are prioritized during the scheduling process.  

Additionally, machines that demonstrate greater efficiency in 

processing particular types of tasks are more likely to be 

assigned jobs corresponding to those task types. 

The third step involves a local search performed by DDPG 

after global action selection. The dual-gripper robot agents 

are classified into three subgroups according to load 

conditions: idle, single-gripper full load, and dual-gripper full 

load, to avoid inefficiency and path conflicts in the transfer 

process. Then, deep policy gradient methods are applied to 

adjust the paths and transport speeds of the dual-grippers 

selected by Q-learning, generating continuous control actions 

at the microscopic level. The Critic network is used to 

evaluate the effectiveness of the control actions, while 

experience replay and target networks are employed to 

stabilize the training process. The Critic network evaluates 

the effectiveness of control actions not only based on the task 

completion time but also takes into account the energy 
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Fig. 2. The flowchart of Q-DDPG for RHFSJSP 

 

consumption and wear of the dual-gripper robots. Such 

multi-criteria evaluation helps to generate more sustainable 

and cost-effective control actions. 

In the final step, an interactive update occurs, where the 

macroscopic and microscopic subgroups are recombined to 

form a new population for the next iteration. The process is 

repeated until the termination condition is satisfied, and the 

optimal job sequencing and dual-gripper control strategy are 

outputted. During the interactive update process, a fitness 

function is also introduced to measure the quality of the new 

population formed after the recombination of macroscopic 

and microscopic subgroups. The fitness function takes into 

account factors such as the overall makespan of the 

production process, the utilization rate of machines, and the 

idle time of dual-gripper robots. Based on the fitness values, a 

tournament selection method is employed to select the next 

generation population. This ensures that the most promising 

solutions have a higher chance of being passed on to the next 

iteration, accelerating the convergence of the algorithm 

towards the optimal scheduling solution. 

This problem not only requires the evaluation of discrete 

decisions but also involves the optimization of continuous 

work, hence the Q-value calculation has been optimized. By 

using a combination of greedy strategies and heuristic rules to  

calculate the target value, when the optimal action value 

function is found, the policy will become the optimal policy. 

Although it is impossible to solve the global problem directly 

in the continuous action space alone using DDPG, we can 

compromise by combining DDPG with Q-learning to obtain 

the Q-values while avoiding falling into local optima. 

1

1 1 1

' ( ) 1

(s , ) ( , ) [ ( ( , ( ; ))

max ( , ')) ( , )]
t

t t t t t t t

a A s t t t

Q a Q s a r Q s s

Q s a Q s a

   

+

+ + +

 +

 + + +

−
 (14) 

In Equation (14), α denotes the learning rate. A higher 

learning rate results in a greater impact of immediate return 

value and future reward value on the current Q value, and the 

more the agent can see the future results. However, the 

convergence speed will be slower. Additionally,  represents 

the discount factor. The closer  is to 0, the greater the 

decision-maker’s preference for the immediate return value. 

Conversely, the closer is it to 1, the stronger the 

decision-maker’s preference for the future reward value. 

 

B. Definition of details 

The primary focus of employing reinforcement learning to 

solve the re-entrant flow shop scheduling problem lies in 

effectively translating the problem into a reinforcement 

learning framework and use the corresponding algorithms to 

obtain optimized policy outcomes. This study constructs and 

refines the set of states, actions and feedback functions in the 

environment through the application of the Q-learning 

algorithm. In this algorithm, an agent employs a behavioral 

policy to select an action and updates the Q table to learn the 

target policy. A greedy strategy is implemented, wherein an 

action is chosen with a probability of 1 based on its action 

value, while an alternative action is selected randomly 

according to the behavioral policy. The target strategy 

employed in this problem adheres to the greedy strategy, 

which prioritizes the selection of the action with the highest 

value. The agent chooses the action and receives the reward rt 

as Equation(14) shows, where α is a learning rate and α∈

(0,1). When α is close to 1, the Q table is updated rapidly, 

while when α is close to 0, the Q table is not updated. When 

the discount factor γ is close to 1, this means that the value of 

future rewards is as high as the value of immediate rewards, 

while the value of immediate rewards is significantly higher 

when γ is close to 0. We will now define the characteristics of 

the re-entrant agents, including their states, actions and 

rewards in the flow shop.  

Definition 1. State set 

In the proposed scheduling method, each job and 

dual-gripper is treated as an agent, with their respective 

locations and statuses serving as the environmental states. 

Each job can be in one of the following three states: (1) The 

job has arrived at the assigned processing machine and is 

waiting to be released. (2) The job is currently being 
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processed on the machine, during which the dual-gripper are 

unable to perform grasping and releasing operations. (3) The 

job has been processed and is waiting to be picked up by the 

dual-gripper. When considering transportation speed, 

although the dual-gripper robots are in continuous states, 

there are four relatively discrete states that can be identified: 

(1) Both grippers are empty. (2) Both grippers are fully 

loaded. (3) The left gripper is fully loaded. (4) The right 

gripper is fully loaded. The four states are represented in 

matrix form as [0, 0], [1, 0], [0, 1], [1, 1]. Therefore, the 

workshop has a total of 12NMMachine
2DDouble-gripper discrete 

environmental states without considering speed. Here N is the 

total number of jobs, MMachine is the number of machines, and 

DDouble-gripper is the number of dual-gripper robots.  

Definition 2. Action set 

After observing the environmental states of the jobs and 

dual-gripper robots, the corresponding actions are executed: 

selecting the job and its corresponding machine, and 

selecting a dual-gripper robot and its corresponding machine. 

In s state, the set of available actions is denoted as A. Based 

on the predefined value of ε, the next action of the agent is 

determined. Generally, there are two types of actions: 

exploitation and exploration [31]. 

Exploitation is a strategy where the agent selects the 

optimal action among all known state-action pairs. This 

selection is guided by the principle of maximizing the action 

value. In a production scheduling context, this means that the 

agent will choose the action that, based on its current 

knowledge and experience, is expected to yield the best 

outcome. For instance, if the agent has learned that assigning 

a particular job to a specific machine at a given time, along 

with a certain dual - gripper robot for transportation, leads to 

shorter processing times and higher overall efficiency, it will 

choose this combination. In other words, when an agent 

chooses an action from the set of known actions, this 

decision-making behavior is termed exploitation. However, 

relying solely on exploitation may cause the agent to get 

stuck in local optima, missing out on potentially better 

solutions that could be discovered through exploration. 

In balancing exploitation and exploration, the ε-greed 

strategy is a common approach. It introduces a small positive 

parameter ε (where 0< ε <1), which represents the probability 

of the agent selecting a random action to explore unknown 

possibilities. Conversely, with a probability of 1 - ε, the agent 

opts for the action with the highest estimated value, thereby 

prioritizing exploitation [32]. 

The motion form of agents is defined as a set of optional 

actions, which in this study consists of the following seven 

typical heuristic rules: 

(1) SPT (Shortest Processing Time): The process with 

the shortest processing time is preferred. 

(2) LPT (Longest Processing Time): The process with 

the longest processing time is selected first. 

(3) FCFS (First Come First Serve): The process that 

arrives at the job earliest is selected first. 

(4) EFT (Early Finish Time): Priority is given to the 

process with the shortest finish time. 

(5) LFT (Late Finish Time): The process with the 

longest finish time is selected first. 

(6) MWKR (Most Work Remaining): The process that 

gives priority to the job with the longest remaining 

machining time. 

(7) RP (Re-entry priority): The original re-entry 

process takes precedence over the re-entry workpiece that 

fails quality inspection and is reworked. 

Based on these rules, the set of selectable actions in this 

study is defined as A= {a1, a2, a3, a4, a5, a6, a7}.  

Definition 3. Reward function 

By utilizing the objective function as the reward signal, it 

is established that the smaller the value of the objective 

function, the larger the corresponding reward value This 

indicates that a smaller objective function value implies a 

better-selected action. The objective function is expressed as 

follows: 
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r
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Where H (0 ≤ H ≤ 2) represents the number of jobs 

gripped by the dual-gripper, and when H = 2, the job does not 

select any action. 

Based on the above definitions, the re-entrant flow shop 

scheduling problem is mapped onto the Q-Learning 

algorithm, as described in Algorithm 1.  

 
Algorithm 1: Q-DDPG algorithm for solving RHFSJSPD 

Input: data set and parameters. 
Output: Optimal job sequence and dual-gripper control strategy. 

Initialize Q (s, a) for all states s and actions a 
Initialize the DDPG critic network and actor network 

Initialize best solution Best 

For each episode: 
     Initialize the state s 

    Determine the objective function F 

     While not finished (all artifacts): 
         Initialize all action values 

         Select a heuristic rule based on s state using a greedy strategy 

        Execute this heuristic rule to obtain the sequence of remaining artifacts 
        Get the next state st+1 and the reward value r(1/F) 

        Update Q (s, a) using Q-learning 

        Q (s, a) ← Q (s, a) + α [rt + γ (max Q (st+1, at+1)) – Q (s, a)] 

        If the action space is continuous: 

            Use DDPG to update the policy for continuous actions 
            Update the critic network using the sampled experiences 

            Update the actor network to maximize the critic’s output 

        s ← st+1 

    End while 

    If F(s) < F(Best): 

       Best ← s 

End for 

Return Best 

 

The simulation results include the maximum completion 

time (Makespan) and total delay (TD). TD serves as a metric 

for comparing the job delay rate of the three algorithms. It 

can be employed to determine whether jobs are delayed 

during actual production, thereby helping to avoid 

unnecessary waste. Specifically, a higher value of TD 

indicates a higher job delay rate, signifying that the algorithm 

causes the jobs to remain on the production line for a longer 

period of time than necessary. The job delay rate is calculated 

by Equation (16) as follows:  
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Where n is the total number of jobs. pi is the sum of 

processing time that job i requires on each piece of equipment, 

and pi is the actual time when job i reaches the output end. 

The evaluation criterion for the algorithm is obtained by 
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combining the maximum completion time and the job delay 

rate, with appropriate weights assigned to each.  The 

calculation is carried out according to Equation (17) as 

follows: 

 
i

2* 2*
P 80* 20*iM M TD TD

M TD

− −
= +  (17) 

 

V. CASE STUDIES 

A. Test Instances Set 

Given the absence of a standard test case for the 

RHFSJSPD problem, this study builds upon the Taillard 

benchmark example by incorporating the dual-gripper and 

reentrant characteristics. This study establishes three test 

cases, each comprising 10 instances, as detailed in Table II. 

All numerical values are integers within a specified range. 

The number of machines is the number of processing 

machines included in each process. The number of 

dual-gripper robots is the total number in the entire workshop. 

The processing time for each process operation is represented 

as an integer within the defined interval. Additionally, the 

distances between each adjacent machines and the distances 

between workstations associated with different adjacent 

processes, are also expressed as integers within the specified 

range. The number of all re-entrant situations caused by the 

fixed re-entrant processes and quality inspection rework 

following the initiation of production for each job, is likewise 

an integer within the defined interval. Since the loading and 

unloading time of dual-gripper robots constitutes less than 

0.01% of the overall production cycle and is therefore 

considered negligible. 

 

TABLE II 
SUMMARY OF RHFSJSPD BENCHMARK INSTANCES 

Scale Small Medium Large 

Stage number 5 10 15 

Machine number 3 5 8 
Processing time 6 13 20 

Transition Distance [10,15] [10,15] [10,15] 

Reentry times [2,4] [3,7] [4,12] 

 

B. Parameters Set 

In accordance with the findings presented in literature [33] 

and [34], the parameters for the Q-DDPG algorithm are set as: 

learning rate α=0.6, discount factor γ=0.6, and an exploration 

rate ε for the ε-greedy strategy ranging from 0.2 to 0.35. 

Additionally, the target network is configured to update every 

100 steps, the experience replay buffer size is set to 512, and 

the batch size is determined to be 64. 

To the best of our knowledge, no existing studies have been 

addressed the RHFSJSPD yet. Therefore, three algorithms 

developed based on the Q-learning algorithm were selected 

for comparative analysis (1) the Hyper-heuristic with 

Q-learning algorithm (HHQL) [35], (2) the improved 

artificial bee colony (ABC) algorithm with Q-learning 

(QABC) [36], (3) the multi-population memetic algorithm 

with Q-learning (MPMA-QL) [37]. HHQL demonstrates its 

ability to handle complex constraints and perform multi- 

objective optimization in complex problems such as multi- 

objective distributed blocked flow-shop scheduling. By 

combining the hyper-heuristic framework with Q-learning, it 

can explore superior scheduling solutions in various 

scenarios. QABC leverages the excellent global search 

ability of the ABC algorithm. When combined with 

Q-learning, it can better balance the exploration and 

exploitation processes, and shows certain advantages in 

dealing with permutation flow-shop scheduling problems 

involving large-scale data and complex task assignments. 

MPMA-QL stands out in solving combinatorial optimization 

problems of complex production systems, like distributed 

three-stage assembly hybrid flow-shop scheduling. Relying 

on the characteristics of multi-population and memetic 

algorithms, it can find high-quality solutions through 

information exchange among populations and local search 

capabilities. In order to ensure the fairness of the comparison 

experiment, the relevant general parameter Settings of all 

algorithms are the same as Q-DDPG, and their unique 

parameter setting schemes are derived from relevant 

literature.  The termination criterion for each algorithm is 

defined as the completion of 250*n evaluations of the reward 

function.  The implementation of these algorithms is 

conducted using PyCharm on a Windows 11 system, utilizing 

a PC equipped with a GPU, an 11th Generation Intel(R) Core 

processor, and 16.0 GB of RAM. 

 

C. Comparative Analysis with Other Algorithms 

In this study, the performance of all algorithms is 

meticulously evaluated based on solution quality and 

cumulative rewards. Given the multi-objective nature of the 

problem, Inverted Generational Distance (IGD) and 

Hypervolume (HV) are utilized as the primary metrics to 

measure solution quality. IGD gauges the average minimum 

distance from each point on the true Pareto front to the 

approximate set of non-dominated solutions identified by the 

algorithm. A smaller IGD value indicates that the algorithm’s 

solutions are closer to the true Pareto front, signifying 

better-quality and more uniformly distributed solutions. The 

HV metric assesses the diversity of solutions by calculating 

the volume in the objective space enclosed by a set of 

non-dominated solutions and a reference point. A larger HV 

value implies that the algorithm can cover a broader range of 

the Pareto front, demonstrating stronger search capabilities 

and greater solution diversity. 

To ensure the reliability and generality of the experimental 

results, the Q-DDPG algorithm and three comparable 

algorithms are executed 20 times on 30 test instances across 

three scales. The IGD and HV indicator results of all 

algorithms are presented in Table Ⅲ and IV. To facilitate a 

more intuitive analysis of solution quality, the data in these 

tables are visualized as radar charts in Fig. 3. In Fig. 3 (a), 

each point represents the IGD value of the solution obtained 

by running an algorithm on an instance. Although a few small 

and medium-sized instances fail to attain the minimum IGD 

value, Q-DDPG still performs satisfactorily in most cases. 

Through a detailed analysis of each instance, it is discovered 

that in instances where Q-DDPG does not achieve the 

optimal IGD, there usually exist more intricate job sequences 

and machine configurations. For instance, in certain instances 

with a large number of jobs re-entering the same machine and 

uneven processing time distributions among jobs, Q-DDPG 

may require a longer time to converge to the optimal solution. 

However, as the problem scale expands, the superiority of 
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Q-DDPG becomes more evident. This is attributed to the 

hierarchical search architecture of the algorithm, which 

enables it to handle large-scale problems more effectively. It 

can efficiently decompose the problem and evade being 

trapped in local optima. 

 

TABLE III 
RESULTS OF IGD  

No. Q-DDPG HHQL QABC MPMA-QL 

1 0.1752 0.1688 0.2742 0.2752 
2 0.1945 0.1846 0.2621 0.2951 

3 0.1862 0.2245 0.2985 0.3365 

4 0.1562 0.2654 0.3254 0.3950 

5 0.1236 0.3025 0.3369 0.4420 

6 0.1502 0.2245 0.3456 0.3589 

7 0.1026 0.1985 0.3145 0.2987 

8 0.1998 0.1946 0.2955 0.3549 
9 0.1753 0.2412 0.2741 0.3654 

10 0.2174 0.2125 0.3654 0.2298 

11 0.1562 0.1984 0.3184 0.3485 

12 0.1526 0.2541 0.3516 0.2564 

13 0.1456 0.2954 0.4125 0.3258 

14 0.2466 0.2459 0.4415 0.3184 

15 0.1523 0.2874 0.3654 0.3654 

16 0.2056 0.2218 0.2987 0.2597 
17 0.2254 0.2218 0.3341 0.3122 

18 0.1812 0.3025 0.2489 0.3511 

19 0.1845 0.2977 0.2798 0.4599 

20 0.1842 0.2705 0.4151 0.4181 

21 0.2874 0.2814 0.4026 0.3952 

22 0.1741 0.1951 0.3218 0.2476 

23 0.1954 0.2814 0.3240 0.3618 
24 0.1523 0.2577 0.3540 0.3659 

25 0.1982 0.2241 0.2952 0.3059 

26 0.2001 0.2256 0.2745 0.3482 

27 0.1743 0.1874 0.3251 0.3654 

28 0.1985 0.2652 0.2984 0.2892 

29 0.1455 0.2147 0.3554 0.3358 

30 0.1301 0.3254 0.3450 0.3628 

Average 0.1622 0.2530 0.6358 0.3382 

 

TABLE IV 
RESULTS OF HV  

No. Q-DDPG HHQL QABC MPMA-QL 

1 0.7184 0.8102 0.6114 0.5514 

2 0.7752 0.6122 0.6012 0.3398 

3 0.6810 0.5023 0.4152 0.4418 

4 0.6418 0.7145 0.4418 0.4178 

5 0.6541 0.6711 0.3988 0.6052 

6 0.6184 0.5820 0.4178 0.6147 

7 0.7103 0.5541 0.5458 0.3681 
8 0.7410 0.7751 0.6651 0.5141 

9 0.6641 0.5514 0.4984 0.4419 

10 0.6684 0.6101 0.4598 0.4788 

11 0.6661 0.4451 0.3398 0.4366 

12 0.6411 0.4985 0.5418 0.4452 

13 0.7155 0.5029 0.6698 0.5417 

14 0.7014 0.6647 0.7005 0.5457 
15 0.6441 0.5995 0.5551 0.3395 

16 0.6815 0.5841 0.5488 0.4321 

17 0.6355 0.6514 0.5417 0.4417 

18 0.6471 0.6112 0.5541 0.5514 

19 0.6772 0.6174 0.6041 0.4158 

20 0.6458 0.6011 0.5123 0.4418 

21 0.6698 0.5980 0.5417 0.4552 

22 0.6148 0.5471 0.5143 0.4711 
23 0.6543 0.4988 0.4117 0.5419 

24 0.6871 0.5941 0.4771 0.4552 

25 0.7105 0.6126 0.5141 0.4516 

26 0.6443 0.6025 0.5412 0.5144 

27 0.6543 0.5654 0.4125 0.4871 

28 0.6652 0.6201 0.4511 0.5118 

29 0.6228 0.4551 0.6144 0.4185 

30 0.6780 0.5881 0.6514 0.5147 
Average 0.6710 0.6090 0.5318 0.4729 

 

In Fig.3 (b), Q-DDPG attains the maximum HV value in 

25 instances, encompassing all large-scale instances. By 

visualizing the distribution of solutions in the objective space, 

it can be observed that the solutions obtained by Q-DDPG 

cover a wider area than those of other algorithms and are 

more evenly distributed across multiple objective dimensions. 

This means that the set of non-dominated solutions found by 

Q-DDPG covers a wider area in the target space and is more 

evenly distributed. The solution obtained will not be 

excessively biased to a certain goal, but has a good 

performance in multiple goal dimensions. 

 

 
(a)IGD 

 
(b)HV 

Fig. 3. Comparison of the quality of solutions obtained by the algorithms 

 

In production scheduling research, evaluating solution 

quality is crucial as it affects both algorithm performance 

theoretically and actual production efficiency and 

profitability. Traditional indicators like IGD and HV are not 

direct enough for measuring scheduling schemes from a 

practical standpoint. Dual-gripper robots, key resources in 

automated production, directly impact material transportation 

efficiency and production line smoothness. Different 

scheduling algorithms lead to various load states of 

dual-gripper, significantly affecting production progress. 

High idle or single-gripper operation times result in resource 

waste and extended production cycles, while fully loaded 

dual-gripper enhance transportation efficiency and accelerate 

production. Conversely, a reasonable extension of the time 

when both grippers are fully loaded can enhance 

transportation efficiency and accelerate the production 

rhythm. This experiment compares the impacts of four 
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algorithms on the utilization rate of dual-gripper robots in 

problems of different scales. The aim is to verify whether the 

solutions obtained by these algorithms can achieve efficient 

resource allocation and smooth production processes in 

actual production from the perspective of key resource 

utilization. This approach enables a more comprehensive and 

in-depth evaluation of solution quality, providing a reference 

that is more closely aligned with the practical needs for 

algorithm selection in actual production scheduling. 

During production, dual-gripper robots are crucial for 

material transportation, and their utilization rate affects the 

smoothness and efficiency of the production system. In terms 

of solution quality, an excellent scheduling scheme should 

ensure that dual-gripper robots are fully utilized in 

transportation tasks, reducing resource waste caused by idle 

time and increasing the proportion of fully loaded operations, 

thus accelerating material flow. Table Ⅴ presents the duration 

proportion of three states: empty-loaded, single-gripper 

loaded, and full-loaded for dual-gripper under different 

algorithm across all scale instances. The minimum values of 

the empty-loaded proportion re and single-gripper loaded 

proportion rs for all dual-gripper robots, as well as the 

maximum value of fully loaded proportion rf, are highlighted 

in bold. To accurately assess the effectiveness of algorithms 

in dual-gripper scheduling, we calculated the proportion of 

the duration that all dual-gripper robots are in these states. 

The production process is discretized into time steps with a 

length of 1, and the total number of time steps is N.  

𝑠𝑒
𝑑(𝑛)represents the state of the d-th dual-gripper at the n-th 

time step. When 𝑠𝑒
𝑑(𝑛) takes the value of 0, the dual-gripper 

is in an unloaded state. When 𝑠𝑒
𝑑(𝑛) takes the value of 1, it is 

in a single-gripper loaded state. When 𝑠𝑒
𝑑(𝑛) takes the value 

of 2, the dual gripper is in a fully loaded state. The calculation 

of the idle time for each dual-gripper is shown in Equation 

(18). The calculation method for re, is shown in Equation (19). 

The calculation of the rf and the rs follows a similar approach. 
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Additionally, to intuitively display the data distribution 

characteristics, three 3D scatter plots in Fig. 4 have been 

created. For each point, the smaller the mapped values on the 

re and rs axes, and the larger the mapped value on the rf axis, 

the higher the utilization rate corresponding to that point in 

the instance. For ease of comparison, the lower right half of 

the three-dimensional space is referred to as the advantage 

zone, and the points distributed in the advantage zone are 

called advantage points. Fig.4 (a) shows that when solving 

small-scale problems, the distribution of points for four 

algorithms concentrated in the advantage zone is relatively 

uniform. Among them, Q-DDPG and HHQL each have about 

6 advantage points, and the distance between the advantage 

points of the two algorithms is also relatively close. By 

comparing the specific values in Table Ⅴ, although Q-DDPG 

performs reasonably well in some indicators, considering the 

number of advantage points and the values, Q-DDPG does 

not show a significant advantage in dual gripper utilization 

compared to other algorithms in small-scale problems. This 

may be due to the low complexity of small-scale problems, 

making it difficult for the characteristics of Q-DDPG to stand 

out. Fig.4 (b) shows that when solving medium-scale 

problems, although some points of Q-DDPG are outside the 

advantage zone, the number of points in the advantage zone is 

significantly more than that of other algorithms, and the gap 

in rf of the advantage points compared with other algorithms 

has widened. In Fig.4 (c), Q-DDPG achieved relatively 

optimal results for large-scale problems, significantly 

outperforming other algorithms in both quantity and quality. 

 

 
(a)Small scale 

 
(b)Medium scale 

 
(c) Large scale 

Fig. 4. Loading state time ratio of dual-gripper robots 
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The average processing time  𝑝
𝑚

 and standard deviation 

σm of jobs on machines are closely related to machine 

utilization and solution quality in production scheduling. A 

shorter 𝑝
𝑚

 means that machines can handle more jobs per 

unit of time, resulting in higher utilization rates. It also 

reflects efficient resource allocation in the scheduling and 

indicates a higher quality of the solution. A smaller σm 

suggests a more balanced workload for machines and more 

stable operation, ensuring the stability and continuity of 

production, which is a manifestation of high-quality solutions. 

Introducing 𝑝
𝑚

 and σm can further demonstrate the 

superiority of the solution quality from the perspective of 

production resource utilization. The calculation method for 

𝑝
𝑚

 of each job on a machine is shown in Equation (20). Here,  

𝑡𝑗,𝑚
𝑠𝑡𝑎𝑟𝑡 and  tj,m

end represent the start and end processing times 

of job j on machine m, respectively. The  𝑝
𝑚

 is calculated as 

shown in Equation (21). 
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The σm calculated based on Equation (22) represents the 

dispersion of job processing times on machines. It reflects the 

stability of the algorithm. A smaller σm implies that the 

algorithm can stably control the processing time of jobs, 

reducing the potential for production plan chaos and delays 

caused by fluctuations in processing times. 
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Table Ⅵ presents the average processing time and standard 

deviation of job processing times on some machines for the 

three different-scale instances of 3, 12, and 27.  Some 

machines were randomly selected from each process.  For 

example, instance 3 has 5 processes, so one machine was 

chosen from each process, and data for a total of 5 machines 

were recorded.  During the solution of these three instances, 

the Q-DDPG algorithm achieved the smallest average 

processing time and standard deviation on all machines.  This 

indicates that it has a clear advantage in improving machine 

utilization and ensuring production stability, thereby further 

corroborating that the scheduling plan obtained by this 

algorithm is superior in terms of solution quality. 

In the RHFSJSPD, each decision made by the algorithm will 

have an impact on the subsequent production process.  The 

cumulative reward reflects the total benefits obtained by the 

algorithm throughout the entire scheduling process.  A higher 

cumulative reward indicates that the algorithm can make better 

decisions when scheduling jobs and allocating resources, thus 

achieving better overall performance in long-term operation.  

It comprehensively takes into account multiple factors such as 

production efficiency, resource utilization, and job delay, and 

serves as a comprehensive evaluation of the algorithm’s 

performance. To further analyze the performance of Q-DDPG, 

Fig.5 presents the cumulative reward training curves of each 

algorithm on three different scale instances of 3, 12, and 27. In 

this curve, the horizontal axis represents the search process, 

that is, the proportion of the running time of the current 

algorithm in the total running time, while the vertical axis 

reflects the cumulative reward value at the corresponding 

search stage. It can be seen from Fig.5 (a) that the initial rising 

rate of Q-DDPG is relatively slower compared with HHQL 

and QABC. Delving into the underlying reasons, at the 

beginning of the training, HHQL and QABC tend to adopt 

more aggressive exploration strategies. They can quickly 

capture jobs with shorter processing times by virtue of their 

heuristic rules, thus enabling the cumulative reward to increase 

rapidly in a short time. For example, HHQL may preferentially 

select jobs with significantly shorter processing times for 

scheduling, and then obtain higher reward feedback in the 

initial stage. In contrast, Q-DDPG focuses on constructing a 

global search framework based on weighted feature 

representation and heuristic rules. At this stage, it lays more 

emphasis on the layout and planning of the overall search 

space rather than simply pursuing immediate reward growth. 

However, when the search process advances to around 35%, a 

significant change occurs. Q-DDPG successfully overtakes 

and finally obtains the highest cumulative reward. This crucial 

turning point strongly demonstrates that the combination of 

global and local search strategies adopted by Q-DDPG has 

significant advantages. It can efficiently integrate resources 

and optimize task allocation at a more macroscopic level, thus 

exhibiting a global search efficiency that surpasses other 

algorithms. 

Further analysis of Fig.5 (b) and Fig.5 (c) shows that as the 

problem scale increases, the search efficiency advantage of 

Q-DDPG becomes more evident. The time point at which it 

surpasses the other three algorithms is significantly earlier, the 

overtaking process is faster, and the convergence speed is 

remarkably accelerated. The core reason for this is that in 

large-scale instances, the sharp increase in the number of jobs 

and machines places extremely high demands on the 

algorithm’s task allocation and resource coordination 

capabilities. Thanks to its unique hierarchical design, 

Q-DDPG can accurately divide agents into multiple subgroups 

based on the different characteristics of jobs and machines, and 

customize appropriate search strategies for each subgroup. 

This refined hierarchical processing method enables Q-DDPG 

to handle complex task allocation and resource coordination 

tasks in an orderly manner. Thus, compared with other 

algorithms, it demonstrates higher efficiency and stability, can 

converge to a better solution space more quickly, and 

effectively guarantees the efficiency in large-scale problem. In 

conclusion, the performance of Q-DDPG in different instances 

fully demonstrates its advantages in search strategies and 

architecture design, providing a powerful support for solving 

complex scheduling problems in actual production. 
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(b) Medium scale 

 
(c) Large scale 

Fig. 5. Cumulative reward training curve 

 

D. Comparative Analysis with Two-stage Separated 

Scheduling Approach 

This section evaluates the efficacy of the integrated 

scheduling approach (ISA) through a comparison with the 

two-stage separated scheduling approach (TSSA). The TSSA 

is derived from the problem addressed by ISA. The actual 

production scheduling process is divided into two stages: job 

sequencing and dual-gripper control. In the first stage, when 

an order arrives, the scheduling system initially employs 

Q-DDPG to optimize the two objectives of minimizing the 

maximum completion time and total delay. Subsequently, the 

optimized job production sequence, job machine sequence, 

and other results are used as inputs for the next stage. Based 

on these inputs, Q-DDPG optimizes the loading scheme and 

speed control of dual-gripper robots to minimize the transfer 

time of dual-gripper robots, thereby minimizing the two 

objectives. The scheduling of TSSA concludes at this point. 

In contrast, the ISA adopts a more integrated scheduling 

method. When dealing with actual production scheduling, it 

does not separate the two stages of job sequencing and 

dual-gripper control. The ISA directly uses the Q-DDPG 

algorithm to simultaneously consider multiple objectives, 

such as the makespan, total tardiness, and the transfer time of 

the dual-gripper robot, and makes scheduling decisions 

within a unified framework. After jobs arrive, the ISA 

comprehensively analyzes factors such as the job production 

sequence, job-machine sequence, and the loading and speed 

control of the dual-gripper robot through the Q-DDPG 

algorithm, and optimizes the entire production scheduling 

process at once. This integrated scheduling method can better 

capture the interactions and influences among various factors 

and is expected to achieve better overall scheduling results, 

enabling better balance and optimization of multiple 

objectives in the same scheduling process. 

Table Ⅶ presents a detailed comparison of multiple 

crucial indicators, including IGD, HV, makespan, total delay 

time, and transition time. These indicators are obtained by 

running the two scheduling strategies on 30 test instances of 

three scales. Each instance involves 500 workpieces. The 

optimal values for each indicator are emphasized in bold. 

Without exception, the ISA consistently outperforms the 

TSSA in terms of IGD and HV across all instances. The ISA 

demonstrates an average reduction of 9.41% in makespan 

compared to the TSSA when addressing all instances. 

Furthermore, upon completion of the scheduling process, the 

ISA exhibits an average decrease of 16.14% in total tardiness 

and 10.2% in total transportation time relative to the TSSA.  

Fig.6 (a), (b), and (c) visually illustrate the comparative 

performance of these two scheduling strategies in terms of 

makespan, total delay time, and transition time. Notably, ISA 

consistently yields lower values than the TSSA across all 

evaluated indicators. As the scale of the problem increases, 

the disparity between the two strategies becomes 

increasingly pronounced. 
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(b)Total delay time 
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(c)Transition time 

Fig. 6. Comparison of the results of various indicators of ISA and TSSA 

 

This outcome can be attributed to the fundamental 

differences in their design. ISA inherently integrates job 

processing and dual-gripper scheduling in a unified 

framework. This integration allows for a more 

comprehensive consideration of the interactions between 

different aspects of the production process. For example, 

during the optimization process, ISA can simultaneously 

adjust job sequences and dual gripper operations based on the 

real time status of the production line. In contrast, TSSA’s 

two-stage separation may lead to suboptimal decisions. In the 

job sequencing stage, decisions might be made without fully 

considering the subsequent impact on dual gripper control. 

Similarly, in the dual gripper control stage, the optimization 

might be limited by the fixed job sequences determined in the 

previous stage. 

Overall, the superiority of ISA in solving the RHFSJSPD 

problem is clearly demonstrated, and this advantage becomes 

more pronounced as the problem scale enlarges. This finding 

provides valuable insights for the selection and improvement 

of scheduling strategies in practical manufacturing scenarios.  

VI. CONCLUSIONS 

This study focuses on the multi-objective scheduling 

problem in a re-entrant hybrid flow shop with dual-gripper 

robots, emphasizing integrated production and transportation 

management.  The problem, complex with dynamic, discrete, 

and continuous features, is modeled using a mixed-integer 

linear programming model (RHFSJSPD) aiming to minimize 

makespan and total delay. To solve this problem, the 

innovative Q-DDPG algorithm is proposed.  It combines the 

advantages of Q-learning and DDPG, constructing a 

hierarchical search architecture for RHFSJSPD.  This enables 

coordinated macroscopic and microscopic scheduling, 

effectively handling high-dimensional state spaces and 

complex decision-making, marking a pioneering approach in 

similar research. 

To comprehensively evaluate the Q-DDPG algorithm’s 

performance, we conducted extensive numerical experiments.  

The results demonstrate its superiority over other 

Q-learning-based algorithms in key metrics like IGD and HV, 

which measure solution quality.  Specifically, Q-DDPG 

achieved an average IGD of 0.1622 and HV of 0.6710, 

outperforming HHQL, QABC, and MPMA-QL. The 

utilization rates of machines and dual-gripper robots further 

demonstrate the superiority of the solution quality in practical 

production. For the dual-gripper robots, the average 

empty-loaded and single-gripper loaded ratios are lower than 

those of the other three algorithms, while the average 

full-loaded ratio reaches 37%, significantly higher than the 

others. Across all three scales, the algorithm achieves the 

smallest average processing time and standard deviation on 

machines. These results demonstrate its practical 

effectiveness beyond theoretical metrics. The algorithm also 

shows faster convergence and stability in large-scale 

scenarios, avoiding local optima.  Compared to the TSSA, the 

ISA reduced makespan by 9.41%, total delay by 16.14%, and 

transportation time by 10.20% across 30 instances with 500 

workpieces.  This proves ISA’s ability to better coordinate 

job processing and dual-gripper scheduling, improving 

production efficiency and overall system performance. 

The scheduling strategy’s superiority in this paper is 

mainly due to: (1) A hierarchical search mechanism that 

combines Q-learning for macro scheduling and DDPG for 

micro control, with jobs divided into subgroups for global 

search and target networks/experience replay used for local 

search to enhance convergence and dual-gripper control 

accuracy. (2) Integration of greedy strategies and heuristic 

rules in Q-learning, which improves search efficiency and 

provides diverse decision-making bases to avoid local optima. 

(3) A well-designed state space composed of continuous and 

discrete variables representing jobs and dual-gripper robots 

positions and states, with reduced complexity through 

weighted feature representation. (4) A comprehensive action 

space covering key scheduling operations, enabling the 

algorithm to make decisions in different production 

environments. (5) Adoption of the ISA framework for 

collaborative job and dual gripper processing, optimizing 

workflow and resource utilization to improve overall 

production efficiency. 

This study has several limitations, which can be 

highlighted in three main aspects. First, in terms of the 

problem scope, the current research focuses on RHFSJSPD 

under ideal production conditions. It neglects uncertainties 

like workpiece size variations, and dynamic disruptions. This 

simplification restricts the model’s ability to align with the 

complexities of actual manufacturing. Second, regarding 

algorithmic adaptability, although the proposed Q-DDPG 

framework shows efficiency in controlled environments, its 

computational requirements and convergence stability might 

deteriorate in scenarios with frequent disturbances or in 

large-scale instances that demand real-time responsiveness. 

Third, considering sustainability, the model does not include 

energy consumption metrics, which are crucial for green 

manufacturing initiatives. 

To address these limitations, future research will explore 

the following directions:(1) Expanding the problem scope to 

incorporate disruptions, such as machine failures, dynamic 

order cancellations, and preventive maintenance events. (2) 

Developing hybrid frameworks that combine deep 

reinforcement learning with meta-heuristics. This aims to 

balance the exploration-exploitation trade-offs and enhance 

the robustness of solutions. (3) Integrating energy-aware 
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objectives into the scheduling model, like minimizing idle 

machine power consumption or optimizing dual-gripper 

motion trajectories to reduce kinetic energy waste. 

By filling these gaps, future work will move RHFSJSPD 

solutions towards greater robustness, computational 

efficiency, and sustainability, ultimately supporting 

intelligent and eco-friendly manufacturing systems. 

Table Ⅴ 

THE DURATION RATIO OF THREE LOADING STATES OF DUAL-GRIPPER ROBOTS 

N0. 
Q-DDPG HHQL QABC MPMA-QL 

re rf rs re rf rs re rf rs re rf rs 

1 0.2118 0.3740 0.4142 0.2057 0.3925 0.4018 0.3185 0.2693 0.4122 0.2718 0.3154 0.4128 

2 0.2098 0.3961 0.3941 0.1949 0.3975 0.4076 0.3218 0.2674 0.4108 0.3017 0.2798 0.4185 

3 0.2218 0.4417 0.3365 0.2936 0.3676 0.3388 0.2771 0.3246 0.3983 0.2918 0.3599 0.3483 

4 0.1937 0.4095 0.3968 0.2017 0.4066 0.3917 0.2048 0.3935 0.4017 0.3011 0.2886 0.4103 

5 0.2287 0.4597 0.3116 0.2381 0.4561 0.3058 0.2389 0.3683 0.3928 0.2971 0.3601 0.3428 

6 0.1382 0.4826 0.3792 0.1394 0.4315 0.4291 0.2018 0.4054 0.3928 0.1958 0.4059 0.3983 

7 0.1049 0.4829 0.4122 0.1059 0.4413 0.4528 0.2041 0.3327 0.4632 0.2104 0.3369 0.4527 

8 0.1137 0.4935 0.3928 0.1201 0.4915 0.3884 0.1382 0.4677 0.3941 0.1253 0.4665 0.4082 

9 0.0953 0.4920 0.4127 0.1248 0.4764 0.3988 0.2028 0.3961 0.4011 0.1573 0.4376 0.4051 

10 0.1124 0.5849 0.3027 0.1305 0.5611 0.3084 0.1451 0.5192 0.3357 0.1629 0.5007 0.3364 

11 0.3827 0.2251 0.3922 0.3931 0.2057 0.4012 0.4011 0.2013 0.3976 0.3865 0.1846 0.4289 

12 0.3027 0.3252 0.3721 0.3457 0.2345 0.4198 0.4028 0.1771 0.4201 0.3947 0.1762 0.4291 

13 0.3874 0.2122 0.4004 0.3937 0.1876 0.4187 0.4017 0.1896 0.4087 0.3912 0.1966 0.4122 

14 0.3628 0.2209 0.4163 0.3789 0.2146 0.4065 0.4027 0.1865 0.4108 0.3987 0.1905 0.4108 

15 0.3891 0.2125 0.3984 0.4038 0.1989 0.3973 0.4198 0.1984 0.3818 0.3956 0.1935 0.4109 

16 0.3397 0.2281 0.4322 0.4065 0.2088 0.3847 0.3865 0.2021 0.4114 0.3898 0.1876 0.4226 

17 0.3346 0.2675 0.3979 0.3851 0.2331 0.3818 0.3964 0.1807 0.4229 0.3987 0.2071 0.3942 

18 0.3588 0.2473 0.3939 0.3597 0.2281 0.4122 0.4097 0.1721 0.4182 0.3884 0.2098 0.4018 

19 0.3448 0.2734 0.3818 0.3693 0.2323 0.3984 0.3927 0.1966 0.4107 0.4011 0.2002 0.3987 

20 0.2752 0.3627 0.3621 0.3818 0.2495 0.3687 0.3618 0.2354 0.4028 0.3621 0.2391 0.3988 

21 0.3062 0.3977 0.2961 0.3221 0.3767 0.3012 0.3293 0.3656 0.3051 0.3327 0.3566 0.3107 

22 0.2924 0.3545 0.3531 0.3957 0.2147 0.3896 0.3517 0.2367 0.4116 0.3772 0.2507 0.3721 

23 0.2787 0.4157 0.3056 0.3133 0.3731 0.3136 0.3536 0.2478 0.3986 0.3427 0.2589 0.3984 

24 0.2924 0.4073 0.3003 0.3128 0.3621 0.3251 0.3536 0.2451 0.4013 0.3387 0.2579 0.4034 

25 0.2843 0.3912 0.3245 0.3078 0.3501 0.3421 0.3432 0.2586 0.3982 0.3217 0.2795 0.3988 

26 0.2718 0.3861 0.3421 0.3017 0.3102 0.3881 0.3187 0.2826 0.3987 0.3176 0.2861 0.3963 

27 0.3017 0.3485 0.3498 0.3981 0.232 0.3699 0.3497 0.2515 0.3988 0.3985 0.1728 0.4287 

28 0.2937 0.4036 0.3027 0.3158 0.3714 0.3128 0.3988 0.2828 0.3184 0.3189 0.2824 0.3987 

29 0.2812 0.4165 0.3023 0.3098 0.3181 0.3721 0.3977 0.1895 0.4128 0.3108 0.2907 0.3985 

30 0.2138 0.4434 0.3428 0.2531 0.3594 0.3875 0.2656 0.3315 0.4029 0.2929 0.2968 0.4103 

Average 0.2641 0.3719 0.3640 0.2934 0.3294 0.3772 0.3230 0.2792 0.3978 0.3191 0.2823 0.3986 

 

Table Ⅵ  

AVERAGE PROCESSING TIME AND STANDARD DEVIATION OF MACHINES 

Scale No. 
�̅�𝑚 𝜎𝑚 

Q-DDPG HHQL QABC MPMA-QL Q-DDPG HHQL QABC MPMA-QL 

Small 

1 12.2314 12.3425 12.7093 12.7223 1.2231 1.2626 1.4247 1.4427 

2 13.2842 12.3374 12.3029 13.4434 1.3284 1.2621 1.3792 1.5245 

3 10.0502 10.0884 10.2241 10.2094 1.0050 1.0320 1.1461 1.1577 

4 11.5186 11.5568 11.6926 11.6778 1.1519 1.1707 1.3119 1.3359 

5 12.6170 12.6552 12.7910 12.7762 1.2617 1.2921 1.4339 1.4488 

Medium 

1 12.2893 12.3994 12.4633 12.4485 1.2289 1.2933 1.3971 1.4142 

2 12.7012 12.8113 12.8752 12.8604 1.2701 1.3106 1.4472 1.4584 

3 12.6819 12.7820 12.8559 12.8411 1.2682 1.3204 1.4411 1.4626 

4 11.8864 11.9865 12.0604 12.0456 1.1886 1.2262 1.3520 1.3660 

5 10.6970 10.7971 10.8710 10.8562 1.0697 1.1045 1.2186 1.2311 

6 13.0392 13.1393 13.2132 13.1984 1.3039 1.3441 1.4812 1.6287 

7 15.0905 15.2006 15.2645 15.2497 1.5090 1.5550 1.7111 1.7293 

8 15.4095 15.4194 15.6035 15.5887 1.5430 1.5774 1.7492 1.7678 

9 12.3847 12.4948 12.5587 12.5439 1.2385 1.2782 1.4078 1.4225 

10 11.9003 11.9192 12.1243 12.1095 1.1950 1.2193 1.3591 1.3974 

Large 

1 10.6634 10.7155 10.7762 10.8226 1.0663 1.0748 1.2080 1.2273 

2 10.1564 10.2085 10.2692 10.3156 1.0156 1.0647 1.1512 1.1698 

3 10.1256 10.1777 10.2384 10.2848 1.0126 1.0412 1.1477 1.1663 

4 11.3253 11.3370 11.4581 11.5045 1.1345 1.2731 1.2844 1.3046 

5 12.8643 12.8860 13.0071 13.0535 1.2894 1.3182 1.4581 1.4803 

6 12.2708 12.2825 12.4036 12.4500 1.2291 1.2688 1.3904 1.4118 

7 12.8227 12.9159 12.9355 12.9819 1.2823 1.3213 1.4501 1.4722 

8 15.5091 15.6023 15.6219 15.6683 1.5509 1.6008 1.7512 1.7768 

9 12.5381 12.6313 12.6702 12.6973 1.2538 1.2922 1.4203 1.4399 

10 15.2149 15.3081 15.3470 15.3741 1.5215 1.6273 1.7204 1.7434 

11 12.8101 12.8330 12.9722 12.9993 1.2840 1.3000 1.4542 1.4741 

12 12.7275 12.7404 12.8796 12.9067 1.2748 1.3033 1.4451 1.4636 

13 14.2151 14.3078 14.3472 14.3743 1.4215 1.5066 1.6083 1.6300 

14 12.0745 12.1672 12.0798 12.2337 1.2074 1.2447 1.3541 1.3873 

15 13.6069 13.6996 13.6122 13.7661 1.3607 1.4083 1.5286 1.6161 
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TABLE Ⅶ 

COMPARISON RESULTS BETWEEN THE ISA AND TSSA 

No. 
IGD HV Improve 

ISA TSSA ISA TSSA Makespan Total delay rate Transition time 

1 0.1721 0.4112 0.7745 0.2284 6.84% 4.72% 7.60% 

2 0.1029 0.4956 0.8345 0.2154 3.63% 6.57% 4.01% 

3 0.0913 0.3958 0.7719 0.3019 2.30% 5.09% 2.03% 

4 0.1128 0.4821 0.8016 0.2788 4.54% 0.81% 2.34% 

5 0.1354 0.5146 0.8802 0.1981 0.81% 2.13% 1.76% 

6 0.0852 0.6108 0.8451 0.2098 1.76% 3.65% 2.49% 

7 0.1225 0.5417 0.8474 0.2446 1.35% 4.02% 3.24% 

8 0.1305 0.5477 0.8023 0.2706 2.93% 5.64% 5.34% 

9 0.1547 0.4981 0.7981 0.3981 2.60% 3.73% 4.66% 

10 0.1641 0.4881 0.7759 0.2981 2.68% 2.19% 6.11% 

11 0.1145 0.5433 0.8854 0.1981 7.62% 5.76% 9.04% 

12 0.1551 0.5812 0.8941 0.1058 8.27% 5.51% 13.07% 

13 0.1108 0.5788 0.8556 0.1455 7.50% 7.67% 10.15% 

14 0.1406 0.5624 0.8664 0.1654 7.94% 6.09% 12.91% 

15 0.1351 0.5981 0.8154 0.1681 5.80% 6.59% 9.83% 

16 0.1084 0.6009 0.8446 0.1456 11.14% 10.30% 8.77% 

17 0.1413 0.5881 0.8561 0.1145 8.83% 7.79% 10.80% 

18 0.1144 0.5618 0.7998 0.2844 10.12% 10.93% 11.84% 

19 0.1325 0.4987 0.7184 0.2954 11.66% 7.87% 12.36% 

20 0.1288 0.4788 0.8825 0.1684 12.99% 8.40% 10.29% 

21 0.1415 0.5124 0.8449 0.1554 17.63% 9.52% 10.17% 

22 0.0981 0.6156 0.8585 0.1478 13.54% 12.93% 13.76% 

23 0.0788 0.6458 0.8458 0.1624 18.66% 10.12% 19.60% 

24 0.1535 0.4255 0.8908 0.1097 16.82% 13.30% 12.64% 

25 0.1544 0.5144 0.7988 0.2981 17.88% 17.18% 15.54% 

26 0.1576 0.5122 0.7708 0.3025 11.54% 15.39% 14.69% 

27 0.1473 0.5246 0.8544 0.2145 14.71% 10.28% 18.47% 

28 0.1228 0.5711 0.8546 0.2113 13.72% 15.90% 21.44% 

29 0.0998 0.6811 0.8045 0.2450 19.11% 13.27% 11.37% 

30 0.1151 0.5014 0.8245 0.1985 17.34% 16.87% 19.77% 

Average 0.1274 0.5361 0.8299 0.2160 9.41% 16.14% 10.20% 

 

REFERENCES 

[1] H. H. Miyata and M. S. Nagano, “The blocking flow shop scheduling 
problem: A comprehensive and conceptual review,” Expert Systems 

with Applications, vol. 137, pp130-156, 2019  

[2] J. S. Neufeld, S. Schulz and U. Buscher, “A systematic review of 
multi-objective hybrid flow shop scheduling,” European Journal of 

Operational Research, vol. 309, no. 1, pp1-23, 2023 
[3] W. Jia, Z. Jiang and Y. Li, “Combined scheduling algorithm for 

re-entrant batch-processing machines in semiconductor wafer 

manufacturing,” International Journal of Production Research, vol. 53, 
no. 6, pp1866-1879, 2015  

[4] T. S. Yu and M. Pinedo, “Flow shops with reentry: Reversibility 

properties and makespan optimal schedules,” European Journal of 
Operational Research, vol. 282, no. 2, pp478-490, 2020 

[5] B. Jeong and Y. D. Kim, “Minimizing total tardiness in a two-machine 

re-entrant flow shop with sequence-dependent setup times,” 
Computers & Operations Research, vol. 47, pp72-80, 2014 

[6] S. Yoon and S. Jeong, “Line balancing strategy for re-entrant 

manufacturing,” IEEE Transactions on Semiconductor Manufacturing, 
vol. 31, no. 1, pp42-51, 2017  

[7] C. Zhang, Q. Gao, M. V. Basin, J. Lü and H. Liu, “Robust control of 

multi-line re-entrant manufacturing plants via stochastic continuum 
models,” IEEE Transactions on Automation Science and Engineering, 

vol. 21, no. 4, pp4923-4935, 2023 

[8] C. Sriskandarajah and B. Shetty, “A review of recent theoretical 
development in scheduling dual-gripper robotic cells,” International 

Journal of Production Research, vol. 56, no. 1-2, pp817-847, 2018 

[9] M. Hajiaghaei-Keshteli and M. Aminnayeri, “Solving the integrated 
scheduling of production and rail transportation problem by Keshtel 

algorithm,” Applied Soft Computing, vol. 25, pp184-203, 2014 

[10] H. Tang, J. Zhou, Y. Shao and Z. Yang, “Hybrid flow-shop scheduling 
problems with missing and re-entrant operations considering process 

scheduling and production of energy consumption,” Sustainability, vol. 

15, no. 10, pp7982, 2023 
[11] S. Aminzadegan, M. Tamannaei and M. Fazeli, “An integrated 

production and transportation scheduling problem with order 

acceptance and resource allocation decisions,” Applied Soft 
Computing, vol. 112, pp107770, 2021 

[12] Y. Liu, J. Fan, L. Zhao, W. Shen and C. Zhang, “Integration of deep 

reinforcement learning and multi-agent system for dynamic scheduling 

of re-entrant hybrid flow shop considering worker fatigue and skill 

levels,” Robotics and Computer-Integrated Manufacturing, vol. 84, 

pp102605, 2023 
[13] H. J. Kim and J. H. Lee, “Scheduling of dual-gripper robotic cells with 

reinforcement learning,” IEEE Transactions on Automation Science 

and Engineering, vol. 19, no. 2, pp1120-1136, 2021 
[14] J. P. Huang, Q. K. Pan and Z. H. Miao, “Effective constructive 

heuristics and discrete bee colony optimization for distributed flow 

shop with setup times,” Engineering Applications of Artificial 
Intelligence, vol. 97, pp104016, 2021 

[15] C. Chamnanlor, K. Sethanan, M. Gen and C. Chien, “Embedding ant 

system in genetic algorithm for re-entrant hybrid flow shop scheduling 
problems with time window constraints,” Journal of Intelligent 

Manufacturing, vol. 28, pp1915-1931, 2017 

[16] J. Mlekusch and R. F. Hartl, “The dual-resource-constrained re-entrant 
flexible flow shop a constraint programming approach and a hybrid 

genetic algorithm,” International Journal of Production Research, 

pp1-22, 2024  
[17] J. Dong and C. Ye, “Green scheduling of distributed two-stage 

reentrant hybrid flow shop considering distributed energy resources 

and energy storage system,” Computers & Industrial Engineering, vol. 
169, pp108146, 2022 

[18] S. M. Mousavi, I. Mahdavi, J. Rezaeian and M. Zandieh, “An efficient 

bi-objective algorithm to solve re-entrant hybrid flow shop scheduling 
with learning effect and setup times,” Operational Research, vol. 18, 

pp123-158, 2018 

[19] S. Topaloglu and G. Kilincli, “A modified shifting bottleneck heuristic 
for the reentrant job shop scheduling problem with makespan 

minimization,” The International Journal of Advanced Manufacturing 

Technology, vol. 44, pp781-794, 2009 
[20] R. Hu, X. Wu, B. Qian, J. Mao and H. Jin, “Differential Evolution 

Algorithm Combined with Uncertainty Handling Techniques for 
Stochastic Reentrant Job Shop Scheduling Problem,” Complexity, vol. 

2022, no. 1, pp9924163, 2022 

[21] E. A. Eigbe, B. De Schutter, M. Nasri and N. Yorke-Smith, 
“Sequence-and time-dependent maintenance scheduling in twice 

re-entrant flow shops,” IEEE Access, vol. 11, pp103461-103475, 2023 

[22] K. C. Ying, S. W. Lin and S. Y. Wan, “Bi-objective reentrant hybrid 
flow shop scheduling: an iterated Pareto greedy algorithm,” 

International Journal of Production Research, vol. 52, no. 19, 

pp5735-5747, 2014 

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1632-1647

 
______________________________________________________________________________________ 



 

[23] J. Hurink and S. Knust, “Tabu search algorithms for job-shop problems 

with a single transport robot,” European Journal of Operational 
Research, vol. 162, no. 1, pp99–111, 2005 

[24] J. Carlier, M. Haouari, M. Kharbeche and A. Moukrim, “An 

optimization-based heuristic for the robotic cell problem,” European 
Journal of Operational Research, vol. 202, no. 3, pp636-645, 2010 

[25] H. J. Paul, C. Bierwirth and H. Kopfer, “A heuristic scheduling 

procedure for multi-item hoist production lines,” International Journal 
of Production Economics, vol. 105, no. 1, pp54-69, 2007  

[26] A. Che, H. Hu, M. Chabrol and M. Gourgand, “A polynomial 

algorithm for multi-robot 2-cyclic scheduling in a no-wait robotic cell,” 
Computers & Operations Research, vol. 38, no. 9, pp1275-1285, 2011 

[27] I. G. Drobouchevitch, S. P. Sethi and C. Sriskandarajah, “Scheduling 

dual gripper robotic cell: One-unit cycles,” European Journal of 
Operational Research, vol. 171, no. 2, pp598-631, 2006 

[28] H. N. Geismar, L. M. A. Chan, M. Dawande and C. Sriskandarajah, 

“Approximations to Optimal k-Unit Cycles for Single-Gripper and 
Dual-Gripper Robotic Cells,” Production and Operations Management, 

vol. 17, no. 5, pp551-563, 2008 

[29] H. Gultekin, B. Coban and V. E. Akhlaghi, “Cyclic scheduling of parts 

and robot moves in m-machine robotic cells,” Computers & Operations 

Research, vol.90, pp161-172, 2018 

[30] M. Dawande, H. N. Geismar, M. Pinedo and C. Sriskandarajah, 
“Throughput optimization in dual-gripper interval robotic cells,” IIE 

Transactions, vol. 42, no. 1, pp1-15, 2009 

[31] Y. E. Hou, W. Gu, C. Wang, K. Yang and Y. Wang, “A Selection 
Hyper-heuristic based on Q-learning for School Bus Routing Problem,” 

IAENG International Journal of Applied Mathematics, vol. 53, no. 4, 

pp817-825, 2022 
[32] A. Boumaalif and O. Zytoune, “Power Control Based on Safe Q 

Learning for D2D Communication,” IAENG International Journal of 

Applied Mathematics, vol. 53, no. 2, pp518-523, 2023 
[33] S. Yeganeh, A. B. Sangar and S. Azizi, “A novel Q-learning-based 

hybrid algorithm for the optimal offloading and scheduling in mobile 

edge computing environments,” Journal of Network and Computer 
Applications, vol. 214, pp103617, 2023 

[34] C. L. Liu, C. C. Chang and C. J. Tseng, “Actor-critic deep 

reinforcement learning for solving job shop scheduling problems,” 
IEEE Access, vol. 8, pp71752-71762, 2020 

[35] F. Zhao, S. Di and L. Wang, “A hyper-heuristic with Q-learning for the 
multi-objective energy-efficient distributed blocking flow shop 

scheduling problem,” IEEE Transactions on Cybernetics, vol. 53, no. 5, 

pp 3337-3350, 2022 
[36] H. Li, K. Gao, P. Y. Duan, J. Q. Li and L. Zhang, “An improved 

artificial bee colony algorithm with Q-learning for solving permutation 

flow-shop scheduling problems,” IEEE Transactions on Systems, Man, 
and Cybernetics: Systems, vol. 53, no. 5, pp2684-2693, 2022 

[37] Y. Jia, Q. Yan and H. Wang, “Q-learning driven multi-population 

memetic algorithm for distributed three-stage assembly hybrid flow 
shop scheduling with flexible preventive maintenance,” Expert 

Systems with Applications, vol. 232, pp120837, 2023 

 
Jiajia Wang received B.Eng. degree in Electrical and Intelligent in Nanjing 

Tech University in 2022. She is Currently pursuing a Master’s degree in 

Mechanical Engineering at the College of Mechanical and Electrical 
Engineering, Wenzhou University, Wenzhou, China. Her research interest is 

intelligent manufacturing. 

 
Hongming Zhou is a Professor of College of Mechanical and Electrical 

Engineering, Wenzhou University, China. He received a PhD degree in 

Industrial Engineering from the Jiangsu University, China. His research 
interests include manufacturing system modeling and simulation, virtual 

prototyping and industrial engineering, and digital design. 

  
Jian Guo is an associate professor of College of Mechanical and Electrical 

Engineering, Wenzhou University, China. He received a PhD degree in 

Mechanical Engineering from Northwestern Polytechnical University. His 
research interests include production system scheduling and intelligent 

manufacturing systems. 

 
Hongwei Si received a master’s degree in mechanical engineering from 

College of Mechanical and Electrical Engineering, Wenzhou University, 

China. His main research interest is intelligent manufacturing. 
 

Xu Chen is currently a senior business manager in Senken Group CO., LTD, 

Wenzhou, Zhejiang, China. 
 

Minhai Zhang is currently a senior business manager, a first-level human 

resources manager, and a patent engineer in Senken Group CO., LTD, 
Wenzhou, Zhejiang, China. 

 

Yaqi Zhang received a Bachelor’s degree in Electronic Information 
Engineering from Qiqihar University in 2023. She is Currently pursuing a 

Master’s degree in Mechanical Engineering at the School of Mechanical and 

Electrical Engineering, Wenzhou University, Wenzhou, China. Her main 
research interest is intelligent manufacturing. 

 

Guixuan Zhou received a Bachelor’s degree in Mechanical design, 
manufacture, and automation in Hubei Polytechnic University in 2022. He is 

Currently pursuing a Master’s degree in Mechanical Engineering at the 

School of Mechanical and Electrical Engineering, Wenzhou University, 
Wenzhou, China. His main research interest is intelligent manufacturing. 

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1632-1647

 
______________________________________________________________________________________ 




