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Abstract—The Goose Optimization Algorithm (Goose
Optimization Algorithm) is an optimization algorithm based
on swarm intelligence, inspired by the behavioral patterns of
geese in their natural habitats, this approach aims to enhance
the convergence speed and precision of the initial algorithm. It
also addresses the issue of the algorithm's tendency to become
trapped in local optimal, a goose optimization algorithm based
on crossbar strategy and random walk improvement is
proposed. Three improvement strategies were proposed in this
paper, which introduced the random walk strategy, Lévy flight
walk strategy, and crossbar strategy into the development
stage, exploration stage, and the later stage of each population
iteration of the goose optimization algorithm. These three
strategies can enhance the development ability of the algorithm,
help the algorithm to escape from the local optimal when it
falls into the local optimal, boost the algorithm's capability for
global exploration, aveid premature convergence, and enhance
the precision of the algorithm's solutions and expedite its
convergence rate. The goose optimization algorithm based on
crosshar strategy and random walk improvement is
abbreviated as CRw-GOOSE. In order to confirm the efficacy
and excellence of CRw-GOOSE, 12 benchmark functions in
CEC-BC-2022 are adopted. First, simulation experiments are
conducted on GOOSE and CRw-GOOSE with three strategies
introduced separately. The outcomes of the experiments
indicate that these improvement strategies are very effective.
Among them, CRw-GOOSE, which combines the three
strategies, has the best effect. Then, CRw-GOOSE was
compared with seven advanced intelligent optimization
algorithms, and the findings from the experiments also
demonstrated the superiority and advanced nature of
CRw-GOOSE. In conclusion, optimization is carried out on
four engineering design problems. The simulation outcomes

Manuscript received January 20, 2025; revised March 22, 2025, This
work was supported by the Basic Scientific Research Project of Institution
of Higher Learning of Liaoning Province (Grant No. L.J222410146054) and
Postgraduate Education Reform Project of Liaoning Province (Grant No.
LNYIG2022137).

Yu-Liang Qi is a postgraduate student of School of Electronic and
Information Engineering, University of Science and Technology Liaoning,
Anshan, 114051, P. R. China (e-mail: qyl@stu.ustl.edu.cn).

Cheng Xing is aPh. D candidate in School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan,
114044, P. R. China (Corresponding author, phone: 86-0412-2538355; fax:
86-0412-2538244; e-mail: xingcheng0811@163.com).

Jie-Sheng Wang is a professor of School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan,
114051, P. R. China (e-mail: wjs@ustl.edu.cn).

Yu-Wei Song is a postgraduate student of School of Electronic and
Information Engineering, University of Science and Technology Liaoning,
Anshan, 114051, P. R. China (e-mail: syw(@stu.ustl.edu.cn).

Xin-Yi Guan is a postgraduate student of School of Electronic and
Information Engineering, University of Science and Technology Liaoning,
Anshan, 114051, P. R. China (e-mail: gxy(gstu.ustl.edu.cn).

indicate that the CRw-GOOSE approach is capable of
effectively addressing both function optimization and
engineering optimization problems.

Index Terms—Goose Optimization Algorithm, Crosshar
Strategy, Random Walk Strategy, Lévy Flight Migration Strategy,
Engineering Optimization

[. INTRODUCTION

ptimization problem 1s significant in numerous
areas, such as mathematics, engineering, economics,
and computer science. It involves finding the optimal value
of an objective function under given constraints [1]. The
objective function can be cost, profit, time, resource
consumption, etc., while the constraints may include
resource limitations, technical requirements, laws, and
regulations. Optimization problems can be divided into
linear optimization, nonlinear optimization, integer
optimization, combination optimization, and other types,
each type has its unique characteristics and application
scenarios. For example, the goal function and limitations of
linear optimization problems are linear, which is suitable for
problems such as resource allocation [2] and production
planning [3]. Nonlinear optimization problems involve
nonlinear functions and are often used in engineering design
[4], economic modeling [5], and other fields. Integer
optimization requires the decision variable to be integer,
which 1s applicable to project selection [6], network design
[7], ete.

Combinatorial optimization focuses on selecting the
optimal combination {rom a finite set, such as the traveling
salesman problem [8] and the backpack problem [9].
Optimization algorithms are the key tools to solve
optimization problems. They use different strategies and
methods to find optimal solutions or approximate optimal
solutions. The classical optimization algorithms include
gradient  descent technique, Newton's  approach,
quasi-Newton technique, etc. These algorithms are mainly
suitable for continuous and differentiable optimization
problems.

Heuristic  algorithm is an important branch of
optimization algorithm, whose purpose is to find a feasible
solution or an approximate optimal solution to a problem
within a limited time [10]. Heuristic algorithms usually
explore the solution space through heuristic search strategies
based on some characteristics or empirical rules of the
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problem. The advantage of this kind of algorithm is that it
has high computational efficiency and can quickly get a
relatively good solution, which is especially suitable for
solving large-scale, complex, or difficult to accurately solve
optimization problems. A notable feature of the heuristic
algorithm 1s its high efficiency. Heuristic algorithms usually
have low computational complexity and can be solved in a
short time [11].

In addition, the heuristic algorithm boasts a broad scope
of applicability and flexability. It does not rely on a strict
mathematical model of the problem, thus it is applicable to a
diverse array of issues, and the heuristic algorithm can be
adjusted and improved according to the specific
characteristics of the problem to adapt to different
application scenarios and needs. Many heuristic algorithms
also have strong global search ability and are able to find
high-quality solutions in complex solution Spaces, not just
locally optimal solutions [12]. For example, by emulating
natural selection and genetic processes i biological
evolution, genetic algorithms can explore solution space in
the global scope and prevent getting trapped in local optimal
solutions [13]. Particle swarm optimization (PSO) improves
search efficiency and global search ability by mimicking the
actions of biological communities and utilizing group
collaboration and information sharing [14]. By simulating
the positive feedback mechanism of pheromone in the ant
foraging process, the ant colony optimization algorithm can
find a shorter path in the complex network structure [15]. In
addition, over the past few years, numerous researchers have
devised a multitude of outstanding heuristic algorithms by
imitating some behaviors in nature. For example, Puma
Optimizer (PO)[16], Secretary bird optimization algorithm
(SBOA)[17], Black eagle optimizer (BEO)[18] and Crested
Porcupine Optimizer (CPO)[19].

By ntroducing horizontal and vertical operations in the
exploration process, the strategy enhances the
comprehensive search ability and local search ability of the
algorithm. Specifically, the horizontal crossover operation
resembles the crossover process found in genetic algorithms,
which 1s to cross between the same dimensions of different
individuals in the population, which can enhance the variety
within the population and prevent the algorithm from falling
into the local optimal solution prematurely. Vertical cross
operation 1s to cross different dimensions of the same
individual, which helps the individual to escape from the
local optimal trap, so as to improve the local search ability of
the algorithm to some extent.

For example, Liang et al. introduced lateral and vertical
crossover procedures of individuals after the global leader
stage of the spider monkey optimization algorithm, aiming
to boost the variety of the population, thereby improving the
algorithm's comprehensive search capability and its capacity
to break free from local optimal. The researchers carried out
numerical experiments on 23 test questions, and compared
the numerical results from many aspects. The outcomes of
the experiments demonstrate that the Spider monkey
optimization algorithm with crisscross optimization (CSMO)
has improved the precision of solutions and rate of
convergence 1 comparison with the original SMO
algorithm [20]. Zhao et al. proposed an improved Bald Eagle
Search (BES) algorithm. Gold-SA and Crisscross Bald

Hagle Search (GSCBES) 1s a combination of Gold-SA and
Crisscross Bald Eagle Search. The proposed approach
addresses the limitations of traditional condor search
algorithms, including their susceptibility to becoming
trapped in local optima and exhibiting slow convergence
rates. Simulation experiments were conducted on 11
benchmark functions as well as CEC2014 functions, with
the Wilcoxon rank sum test employed to evaluate the
optimization capabilities of the proposed algorithm. The
results indicate that the new algorithm demonstrates a faster
convergence speed and enhanced optimization performance
[21]

Random walk is a simple and effective search strategy,
which 1s commonly employed in optimization algorithms to
enhance the ability of global search and local optimization.
Typical random walk strategies encompass the Gaussian
random walk, Lévy flying random walk, and triangle walk.
Among them, the Gaussian random walk is a classical
random walk model, which updates the positions of
individuals by introducing random perturbations of
Gaussian distributions. This strategy can enhance the
development ability of the algorithm and assist it in escaping
the local optimal when it falls into the local optimal. For
example, in the Hams Eagle optimization algorithm,
Gaussian random walks are used to perturb the optimal
individuals of a population to generate new individuals,
thereby accelerating the algorithm's convergence rate. Lévy
flight is a long-tailed random walk strategy with step sizes
that adhere to the Levy stable distribution. This strategy can
generate a long jump in the search process, which can
effectively explore the solution space and boost the
algorithm's global search capability. Lévy-flying random
walks are often used in particle swarm optimization
algorithms to improve their ability to escape from local
optimal. The triangle walking strategy is a strategy used to
improve an intelligent optimization algorithm, which is
designed to improve the algorithm's local optimization and
global search capabilities. The basic idea of this strategy 1s to
make the population of the algorithm move around while
approaching the best position, so as to increase the
randomness and diversity of the algorithm.

Many researchers tend to integrate these wandering
strategies into heuristic algorithms in order to improve the
performance of the algornithms. For example, Wang et al.
proposed an improved algorithm, the Random Walk
Gaussian Estimated Distribution Algorithm (RW-GEDA),
to solve the precocious convergence problem that the basic
Gaussian estimated Distribution algorithm (GEDA) 1s prone
to when solving complex optimization problems. Statistical
results show that HW-GEDA is highly competitive in both
solving efficiency and accuracy [22]. Cai et al. proposed an
improved Strategy, the Triangle-Flipping strategy, to solve
the shortcomings of the Bat Algorithm (BA) in global search
capability. In this paper, we introduce three distinct
triangle-flipping strategies. These design methodologies
enable bats to explore the solution space more effectively
during the search process by employing various flipping
techniques and parameter settings. Consequently, this
enhances both the global search capability and the ability to
escape from local optima. The effectiveness of the enhanced
bat algorithm is evaluated using the CEC2013 benchmark
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function and compared with that of the standard bat
algorithm. The experimental findings indicate that the
hybrid triangle-flipping strategy significantly improves the
performance of the bat algorithm, making it more efficient
and precise in addressing complex optimization problems
[23].

The Goose Optimizer is a swarm intelligence-based
optimization algorithm, which is inspired by the behavior
patterns of geese in therr natural environment. This
algorithm simulates the cooperative and competitive
behavior of geese during foraging, migration and escaping
from natural enemies to achieve efficient solution of
complex optimization problems [24].

This paper introduces an enhanced goose algorithm
incorporating crossbar strategy and random walk. First, the
random walk strategy is embedded into two equations in the
development phase to discover new goose locations.
Secondly, the Lévy flight strategy is introduced into the
goose algorithm 1n the exploration stage to increase the
randomness of selecting screaming geese and boost the
algorithm's capability for global exploration. Then, after a
new goose population is generated at the end of each
iteration, a lateral and vertical crossover strategy 1s used to
cross a certain dimension of the two geese 1n the population,
thereby fostering the diversity of the population and
preventing the algorithm from prematurely converging to a
locally optimal solution. The goose algorithm based on
crossbar strategy and random walk improvement is called
CRw-GOOSE for short. To confirm the effectiveness and
superiority of the improved goose algorithm, 12 reference
functions n CEC-BC-2022 are used to verify the
effectiveness of the mmproved goose algorithm by first
comparing it with the original goose algorithm, and then
comparing it with 8 advanced intelligent heuristic
optimization algorithms in recent years to further verify the
superiority of the improved goose algorithm. Ultimately,
four engineering design problems were optimized, and the
enhanced algorithm was capable of effectively addressing
these engineering design problems.

II. THE BASIC PRINCIPLE OF GOOSE OPTIMIZATION
ALGORITHM

A. Algorithm Initialization Process

The Goose Optimization Algorithm (GOOSE) is an
innovative meta-heuristic algorithm inspired by the
collective behavior of geese. It is primarily employed to
address complex optimization challenges. This algorithm
facilitates the exploration and exploitation of the solution
space by mimicking the behaviors exhibited by geese during
their resting and foraging activities.

Firstly, a specific quantity of geese individuals are
randomly generated in the solution space, and each
individual represents a candidate solution. The positions of
these individuals are randomly distributed at initialization to
cover the entire solution space. Since the location of the
geese 1s random, the population is initialized based on the
problem's upper and lower bounds, as indicated in Eq. (1).

Xit(j)zlbj+m”d><(ubj*lbj),i=1,2,...,dim (1)

where, X, (i) is the j -dimensional position of the i -th

goose individual, N is the size of the goose population,
dim is the dimension of the decision variable, rand is the
random real number in the interval [0, 1], and ub, and b,
are the maximum and minimum limits of the J -dimensicnal
decision variable.

B. Development Phase: Protect and Wake Up the Geese
in the Team

During the algorithm's iterative process, a random
variable rand 1s in charge of the distribution between the
exploitation and exploration phases. When rand > 0.5, the
algorithm performs the development phase. Geese have a
habit of gathering in large groups during rest periods, with
one goose standing on one leg. Occasionally, the goose
would lift one leg and hold a small stone, so that when he fell
asleep and the stone fell again, the goose would wake up.
When other geese in the group notice any unexpected noise
or activity, the geese will emit a loud call to alert their
companions to be safe. In the development phase, the speed
of stone fall 1s first calculated, as shown in Eq. (2).

s _w,
F F §=T o 4 O,=3 =2 (2)

9.81

where, ' F_§ 1s calculating the speed at which the stone
falls. T o A4 O, isthe time it takes for the rock to fall to
the ground, where, T o 4 O, is a random number
vector. 8§ W, 1is the mass of the stone stored in the goose's
feet, estimated to range from 5 to 25 grams. 9.81 is the
acceleration of gravity at the surface of the Earth. Secondly,

the distance of sound propagation 1s calculated, as shown in
Eq. (3).
D S T,=85 8§« o 4 §, (3)

where, D § 7, calculates the distance of sound
propagation after the stone falls to the ground. § S is the
speed of sound inthe air, here §_§=3432. 7 _o_4_S,
is the time it takes for a rock to fall to the ground to make a
sound and transmit it to an individual goose within the flock,
where T _o_A_ S, isarandom number vector. 9.81 is the
acceleration of gravity at the surface of the Earth. Then you
need to find the best individual goose in the population, the
sound will travel to the best individual, and when the goose
hears the sound, it becomes the guardian goose. The position
update equation of the best individual is shown in Eq. (4).

Xy =F F _S+D _Gy»T A7 (4)
where, ' I § is calculating the speed at which the stone
falls. D G, is the gap between the guardian goose and
another goose that 1s resting or foraging. Then, take half of
the distance D § T, that the sound travels, because the
sound travels back and forth time, and when the sound
travels to a certain goose, there is no need to return time.
T A is the average of the total time it takes to spread and
reach individual geese within the flock.

In this process, if the weight of the stone § W 1is
continuously less than or equal to 12, and the variable
pro < 0.2 1s used, another strategy will be used to find the
best location of the geese in the population. At this time, the
speed at which the stone falls and the location of the optimal
individual are updated in the formula shown in Eq. (5)-(6).
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F F S=T o 4 0,5 (5)
0.81

Xip) =F _F_S+D_Gp=T ~ A*=Coe (6)

it+1)

where, Coe 1s a random number less than or equal to 0.17.

C. Exploration Phase: Scream to Protect All Individuals
in the Group

When rand < 0.5, the algorithm performs the exploration
phase. In goose behavior, if one of the geese becomes alert,
it begins to scream to safeguard all the members of the flock.
During the exploration phase, a variable alpha is set that
decreases significantly with each iteration in the cycle,
ranging from 2 to 0, as shown in Eq. (7).

loop
_— 7
Max It )
2
The position update equation is presented in Hq. (8).

alpha =| 2—

X(yy) = Best _pos+randn (Ldim = (M _T =alpha )(8)
where, Best pos is the best position in the current
population and M _T is always less than or equal to half of

the average I'_ 4 of the total time.

III. (GOOSE OPTIMIZATION ALGORITHM BASED ON
CROSSBAR STRATEGY AND RANDOM WALK
IMPROVEMENT

A. Random Walk Strategy

Because the goose optimization algorithm 1s prone to fall
into the deficiency of local optimum during the process of
finding the guardian goose in the development stage,
random walk updating is further used to find the best
guardian goose position updating formula. The step length
and direction of the random walk strategy based on
trigonometric function are determined randomly, which
ensures that each step is unpredictable and reflects the
randomness of the random walk, thus enhancing the
development ability of the algorithm and helping the
algorithm to escape from the local optimal when it is trapped
in the local optimal The formula of the random walk
strategy is shown in Eq. (9)-(10).

theta = 2% % rand (), lengh = rand() (M
Random _walk = length *cos (theta ) (10)

Here Eq. (10) uses theta to generate a random Angle in
the range [0,2x) , which represents a random direction. The
rand() function is used to generate a random step in the
range [0, 1), which determines the distance traveled in the
selected direction.

In the development stage, when looking for the best
position of the guardian goose, the duration needed for the
stone to descend to the ground T o 4 O, , the mass of
the stone kept in the goose's foot § W, , and the time for
the sound emitted by the stone to be transmitted to a single
goose in the flock T o 4 §, all provide a certain
randomness for the location search of the best individual.

However, due to the fixity of the position update formula in
calculation, The algorithm 1is prone to getting trapped in a
local optimal state. Therefore, the random walk strategy is
introduced into two position update formulas in the
development stage. The small perturbation provided by the
random walk strategy can help the algorithm to conduct fine
search around the optimal individual position, so as to find
new solution space positions. The position update formula
after introducing random walks 1s shown in Eq. (11)-(12).

_ 2
X(if+1)7F7F7S+D7GIf*T7A + an

Random _walk
Xipw)=F _F_S+D_G,»T _A"=Coe+

i+l (1 2)

Random _walk

The results show that the convergence curve of the goose
optimization algorithm with random walk strategy is much
better than that of the original goose optimization algorithm.

B. Lévy Flight Migration Strategy

The goose optimization algorithm is prone to fall into
the deficiency of local optimal in the process of searching
for screeching geese in the exploration stage, and the
random walk update is further used to find the best location
update formula of guardian geese. Lévy Flight is a particular
kind of random walk model, also known as Lévy Walk or
Lévy walk, used to describe patterns of movement with a
long-tail distribution. In a Lévy f{light, an individual or
particle moves randomly through space, its step size and
direction determined by the Lévy distribution. The Leévy
distribution 1s a kind of heavy tail probability distribution
whose probability density function satisfies the power law
relation. Lévy Flight can boost the algorithm's global search
capability and prevent early convergence. Its formula is
shown in Eq. (13)-(14).

e (13)

r(1+ ﬁ)sin[%j ’ (14)
1

i E ER '
r[%][m >

where, S 1s the shape parameter of the Lévy distribution,
which affects the characteristics of the step distribution.
and v are a set of random numbers sampled from a normal
distribution. |v|_'6 Is used to scale u so that the step size
follows the Leévy distribution. T™ is the gamma function used
to calculate the scale parameter of the normal distribution.
In the exploration phase, the optimal location of
screeching geese 1s affected by random number vectors,
which are often produced irregularly, which is not conducive
to the generation of excellent solutions and may affect the
convergence rate of the population. Therefore, Levi's flight
wandering strategy is introduced into the position updating
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formula in the exploration stage, and the generation of new
solutions through Levi's flight is beneficial for enhancing the
diversity of solution space exploration and boosting the
capability of global search. The position update formula
after the introduction of the Lévy flight is shown in Eq. (15).

X

(at+1

) = Best _pos +Levy(dim)*(M T *alphal) (15)

The test results indicate that the convergence curve of the
goose optimization algorithm, enhanced with a Lévy-flying
wandering strategy, significantly outperforms that of the
original goose optimization algorithm.

C. Crossbar Strategy

Aiming at the problems of low convergence accuracy and
premature convergence of the goose optimization algorithm,
the cross-cross strategy is further used to transform the
solutions in the population to help the population find new
excellent solution space, in order to enhance the algorithm's
convergence precision. The crossbar strategy includes
horizontal cross and vertical cross, and the crossbar process
is a competitive process, and the child generation will be
compared with the parent generation to ensure that the
update is carried out in a better direction. Horizontal and
vertical crossovers are conducted in sequence, and the
interaction between the two types of crossover enhances the
algorithm's solution accuracy and speeds up convergence.
Its formula is shown as Eq. (16)-(17).

X_new(L,j) =n*X (L,j)+(l—r1)*X (M,j)+

g *(X(L,]')—X(M’j)) (16)

X_new(M,j) =ry X (M,j)+ (l —rz)*X (L,j)+

(7)

& *(X (M.))-X (L))
where, M and L respectively represent the position of two
geese immediately selected from the population, J
represents dimension, j=1..-dim . # and », are random
numbers in the range [0, 1) respectively, and ¢, and ¢, are
random numbers in the range [-1, 1) respectively. The two
newly generated position vectors will update the population.

In many swarm intelligence search algorithms, premature
convergence often stems from certain stagnant dimensions
within the population, which can minimize search dead
zones and enhance the algorithm's global exploration
capability. Longitudinal crossover helps certain stagnant
population dimensions break free from premature
convergence, enabling the algorithm to escape local optima,
and crossing operations enhance the variety within the
population. The results show that the convergence curve of
the goose optimization algorithm is much better than that of
the original goose optimization algorithm. The flow of the
improved goose optimization algorithm based on crossbar
strategy and random walk is shown in Fig. 1.

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS
A. CEC2022 Test Function

In this paper, we select 12 single-objective test functions
with boundary constraints from CEC-BC-2022. All the test
functions are designed to address minimization problems.

start

.

Population initialization, set
parameters N, Max I7T and dim

I

loop=0

I

If loop<Max IT <

l Yes

Calculate the fitness value of
each mdividual and find the best
individual Best pos

end i

pro=rand md=rand
coe=rand(coe<=0.17),
S _W=randi([5, 25])

No

If md>=0.5

Yes| T 9 .No
2 v c
v
Ne If pro>0.2 .
Update the position formula
using Eq .(15)
Yes

v

No
If§ w==12

Yes
v

Update the position formula
using Eq.(11)

Update the position formula
using Bq.(12)

The population s updated using
Eq.(16)-(17)

I

loop=loop—+1

.

Fig. 1 Flow chart of goose optimization algorithm based on crossbar
strategy and random walk improvement.

The effectiveness and superiority of the goose
optimization algorithm, which is based on a crossbar
strategy and enhanced by random walk improvements, are
demonstrated through the optimization results obtained for
these 12 test functions. To ensure the impartiality of the
experimental evaluation, we set the maximum number of
iterations for the goose optimization algorithm utilizing both
crossbar strategy and random walk enhancements to 1000
iterations. Additionally, a population size of 30 was
established, and all test functions were configured in a
10-dimensional space.

The function expressions of the 12 test functions in
CEC-BC-2022 are shown in Table I. The selected functions
include four categories: unimodal function f; ; Multimodal
function f, — f5 ; Mixed function f; — f; and combined
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function  f, — fi2 These functions have different
characteristics and can fully evaluate the optimization ability
of the algorithm. And the CEC-BC-2022 test function has a
boundary constraint, which raises the complexity of the
1ssue and 1s closer to the problem in real applications.

B. Vdlidity Verification of Goose Optimization
Algorithm Based on Crossbar Strategy and Random Walk

In this section, the GOOSE optimization algorithm
improved by using only random walk strategy is referred to
as Rw-GOOSE, the GOOSE optimization algorithm
improved by using only Lévy flying walk strategy is referred
toas Levy-GOOSE, and the GOOSE optimization algorithm
mmproved by using only Crossbar strategy is referred to as
Crossbar-GOOSE. To demonstrate the efficacy of
CRw-GOOSE, we tested Rw-GOOSE, Lévy-GOOSE, and
Crossbar-GOOSE respectively on 12 CEC-BC-2022 test
functions. Each algorithm was executed 30 times, with the
best solution from these runs being documented. Moreover,
mathematical statistical analysis was conducted on the
experimental outcomes to aid in comparing the impact of the
three strategies on the algorithm improvement respectively,
and the effect of the combined three strategies on the jointly
mmproved CRw-GOOSE. The optimal value, average value,
and variance results are summarized in Table I . The
convergence curve derived from the expeniment 1s illustrated
in Fig. 2.

By analyzing the data in Table II, the following
conclusions can be drawn: CRw-GOOSE optimizes
functions £, f,. f5. J7 . Jo fia- J12 to achieve the minimum
optimal value and average value, optimizes functions f;. f;;
to achieve the minimum optimal value, optimizes function
/5 to achieve the minimum average value, and optimizes
functions f; - f5, /o, fi; to achieve the minimum variance.
It can also be found that in function f], the performance of
each algorithm is not much different, indicating that the
GOOSE algorithm itself has a very good effect in solving
unimodal functiens. In function f, , the mean and variance
obtained by Lévy-GOOSE are the best. In function f;, the
best and average values obtained by Lévy-GOOSE are the
best. In function f; , the optimal value obtained by
Crossbar-GOOSE is the best. In functions fg.f, .
Rw-GOOSE and CRw-GOOSE achieve the best results
among the three indexes. In function f;, the optimal value
obtained by Crossbar-GOOSE is the best. In function f,,
the variance obtained by Lévy-GOOSE is the smallest. In
function 7, . the optimal values obtained by all comparison
algorithms are the same. The average value obtained by
Crossbar-GOOSE is the best, while the variance obtained by
Rw-GOOSE is the smallest. In function f, , the variance
obtained by Crossbar-GOOSE is the smallest.

Asillustrated in Fig. 2, the convergence curve displays the
iteration count on the horizontal axis and the corresponding
fitness value on the vertical axis. It can be obviously
observed that CRw-GOOSE can converge to the lowest
level in most of the test functions, and the effect of the other
three strategies on the 12 test functions improved by
GOOSE alone is far better than that of the original GOOSE.
The convergence curve shown in Fig. 2 strongly proves the

effectiveness and superiority of integrating three strategies
to improve GOOSE.

As shown in Fig. 3, the violin diagram, where the
horizontal coordinate represents different algorithms, and
the vertical coordinate represents the 30 optimal fitness
values counted. It can be obviously observed that
CRw-GOOSE performs well in most of the test functions,
whether it is the optimal fitness value or the average fitness
value. Except for the function, the enhanced GOOSE
strategy markedly outperforms the original GOOSE in terms
of effectiveness. In addition, the difference in fitness values
calculated by CRw-GOOSE each time is smaller than that of
other improvement strategies, which reflects the stability of
CRw-GOOSE. In summary, the goose optimization
algorithm based on crosswalk strategy and random walk
improvement is effective for each strategy improvement,
and it can well optimize each test function in CEC-BC-2022.

C. Advantages of Goose Optimization Algorithm Based
on Crossbar Strategy and Random Walk Improvement
Compared with Other Intelligent Algorithms

In order to prove the superiority of the goose optimization
algorithm based on crossbar strategy and random walk
improvement compared with other intelligent optimization
algorithms, 12 CEC-BC-2022 test functions are still
simulated. The six intelligent optimization algorithms
selected are: Eel and grouper optimizer (EGO) [25], Human
Evolutionary Optimization Algorithm (HEOA) [26],
Improved Dwarf Mongoose Optimization (IDMO) [27],
Hippopotamus  Optimization  Algorithm (HO)  [28],
Newton-Raphson-based optimizer (NRBO) [29], Osprey
Optimization  Algorithm  (OOA) [30] and Parrot
Optimizer (PO) [31]. The dimensionality of each function is
configured to 10 dimensions, and the maximum number of
iterations for each algorithm 1s established at 1000
generations. Each algorithm is executed 30 times, with the
optimal solution from these trials being recorded. The results,
including the optimal value, average value, and vanance
obtained, are presented in Table ML

Additionally, the convergence curve generated from the
experiment is illustrated in Fig. 4. By analyzing the data in
Table ML the following conclusions can be drawn: the
optimal value and average value obtained by CRw-GOOSE
optimizing the eight test functions f — /.5 — fo. i1 fiz
are the best, the optimal value obtained by optimizing
functions fs./1o is the smallest, and the variance obtained
by optimizing functions f, fz.fe. /12 is the smallest. It can
also be found that in function f;, the optimal value obtained
by CRw-GOOSE ranks third, next to NRBO and PO. In
function f5, the best value and average value obtained by
CRw-GOOSE rank second, next to HO.

As shown in Fig. 4, the convergence curve, where the
abscissa denotes the iteration count, and the vertical axis
indicates the fitness value. It can be obviously observed that
CRw-GOOSE can converge to the lowest in most test
functions, especially 1 the five test functions
Ji> 125 13, 05, Jo . Inthe other test functions, except function
J1 . CRw-GOOSE is only slightly less effective than the
individual intelligent algorithms, but it can also converge to
a good value.
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TABLE I. PROPERTIES AND SUMMARY OF THE CEC-BC-2022 TEST FUNCTIONS

No. Expression Name Fi*
Unimodal Function
Do, D : D 4 .
1 fi(x)= Z x5+ Z 0.5x% | + Z 0.5x; Zakharov Function 300
i=1 i=1 i=1
Basic Functions
D-1 5 2 2
2 flx)= Z . 100 (xi —xi4 ) +{ria-1) Rosenbrock's Function 400
i=
[sin2 [sz + y2 j— O.SJ
Schajffer' sFunction: g (x,y) =05+ 5 )
3 (1 +0.001 (xz . y2 )] Expanded Schaffer's Function 600
f(x)=gln.0)+g(n.x)+ +glvpyxp)+elip.n)
D
4 fix)= Zl_l (xf —10cos (2, )+ 10) Rastrigin's Function 800
.2 D1 2 .2 2 .2
S (x)=sin” (mw )+ Z (w;-1) [1+1051n {rw, -1 )}+ -1 [1+51n grwp )}
i=1
5 _ Lévy Function 900
w.herewI:1+JCi I,W:l,,,,,D W
Hybrid Functions
50 2 . .
6 fo(x)=xF+10 I Bent Cigar Function 1800
0.5
; Do, 2 o 3 Do, D
fr(x)= Zi:lxi - Zi:l"i * O'SZK-:I"I +ZI:1"I D+ 05 HGBat Function 2000
I=Y
8 filx)= Z o (1 of ) o xl_z High Conditioned Elliptic Function 2200
i=1
Composition Functions
10
i i Dl 2
9 0 32 2 xi—r‘ound(l xi) 10
Jo(x)= — sy | 1+ Z _ -— Katsuura Function 2300
D J=1 2/ bog
L
D 1 D D .
10 Jo (x) = Z xl2 -D| + [O.SZ Jci2 +Z x J {D+ 0.5 Happyeat Function 2400
i=1 i=1 i=1
_ Y D R
1 As (x) = Zizl 4000 15 COS[J{} 1 Expanded Rosenbrock's plus
Griewangk's Function 2600
Ar1(*)=As (o m )+ s (o aom ) -+ A5 (2 oavp) As (B 6o )
D
fiz (%)~ 41898295 D~ ) &)
i=
z; = x; +4.209687462275036E + 002
1
z; sin |Zzl2 ,1f|21|£500
12
. (Zz - 500)2 Modified Schwefel’s Function
g(z)=13(500-mod(z ,500))Sm( 500—maod (z,, 500 )Uf S if z > 500 2700
10000D
2
_ (z+500)"
(mod(lzI,SO(Jl)—SOO)Sln [ 0d (|2, |,500)—500| - oo & <00

D
Search range: I:*l 00,1 00] , D (Dimensions)=10/20.
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TABLE II. PERFORMANCE COMPARISON RESULTS OF CEC-2022 FUNCTION OPTIMIZA TION

Function GOOSE Crossbar-GOOSE Lévy-GOOSE Rw-GOOSE CRw-GOOSE
Best 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02
£ Ave 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02
Std 3.7584E-04 4.4108E-04 12165E-03 4 4815E-04 4.4815E-04
Best 4.0010E+02 4.0003E+02 4.0001E+02 4.0000E+02 4.0000E+02
£ Ave 4.1401E+02 4.1218E+02 4.0524E+02 4.0702E+02 4.0702E+02
Std 2.1988E+01 1.9852E+01 3.8214E+00 1.5506E+01 1.5506E+01
Best 6.2672E+02 6.0656E+02 6.0036E+02 6.2529E+02 6.2329E+02
gA Ave 6.5500E+02 6.3942E+02 6.2788E+02 6.3299E+02 6.2943E+02
Std 1.3596E+01 1.8764E+01 1 4999E+01 1.1240E+01 5.8545E+00
Best 8.2288E+02 8.2188E+02 8.2388E+02 8.2587E+02 8.2187E+02
L Ave 8.6096E+02 8.4240E+02 8 A980E+02 8.6014E+02 8.3989E+02
Std 2.1784E+01 1.4192E+01 1.7711E+01 1.8688E+01 9.3873E+00
Best 1.5613E+03 1.2245E+03 1.5715E+03 1.4912E+03 1.4912E+03
£ Ave 2.3657E+03 1.9613E+03 2 4463E+03 2.2379E+03 1.9519E+03
Std 5.8401E+02 4.8638E+02 7.9953E+02 4.9598E+02 2.8710E+02
Best 2.0172E+03 1.9152E+03 2.0637E+03 1.8635E+03 1.8635E+03
A Ave 4 5515E+03 3 8594E+03 4 0493E+03 3.6449E+03 3.6449E+03
Std 2.4321E+03 1.8872E+03 2.1019E+03 1.7580E+03 1.7580E+03
Best 2.0596E+03 2.0390E+03 2.0529E+03 2.0529E+03 2.0130E+03
5 Ave 2.1661E+03 2.0427E+03 2.1593E+03 2.1593E+03 2.0481E+03
Std 7.2397E+01 3.7766E+01 7.3899E+01 7.3899E+01 3.4191E+01
Best 2.2310E+03 2.2110E+03 2.2216E+03 2.2310E+03 2.2310E+03
g Ave 2.4184E+03 2.2506E+03 2.2557E+03 2.3398E+03 2.3398E+03
Std 1.3152E+02 5.0846E+01 5.3093E+01 1.0452E+02 1.0452E+02
Best 2.5293E+03 2.5293E+03 2.5293E+03 2.5150E+03 2.5150E+03
A Ave 2.5293E+03 2.5293E+03 2.5293E+03 2.5285E+03 2.5285E+03
Std 3.6846E-02 6.0061E-04 6.1915E-04 7.8549E+00 7.8549E+00
Best 2.5004E+03 2.5004E+03 24218E+03 2.4915E+03 2.4101E+03
Lo Ave 3.1248E+03 2.7433E+03 2.6344E+03 2.7686E+03 2.6011E+03
Std 6.8944E+02 2.8936E+02 1.3899E+02 3.5531E+02 2.3282E+02
Best 2.6001E+03 2.6001E+03 2.6001E+03 2.6001E+03 2.6001E+03
5 Ave 2.8070E+03 2.7303E+03 2.7603E+03 2.7711E+03 2.7711E+03
Std 1.6352E+02 1.2503E+02 1 4382E+02 1.2046E+02 1.2046E+02
Best 2.8712E+03 2.8718E+03 2.8646E+03 2.8781E+03 2.8522E+03
A Ave 3.0104E+03 2.8963E+03 2 9002E+03 2.9871E+03 2.8952E+03
Std 1.0588E+02 1.8417E+01 3.0355E+01 7.1466E+01 3.1292E+01
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Fig. 2 The convergence graph of CEC-BC-2022 test function is solved based on crossbar strategy and random walk improved goose optimization algorithm.
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Fig. 3 The violin graph of CEC-BC-2022 test function is solved based on crossbar strategy and random walk improved goose optimization algorithm.
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TABLE III. PERFORMANCE COMPARISON RESULTS OF CEC-2022 FUNCTION OPTIMIZATION

Function CRw-GOOSE COA EGO HEOA IDMO HO NRBO 00A PO
Best  3.0000E+02 2.8989E+03  3.5887E+03  4.1957E+03 1.0075E+03  34010E+02 4.6728E+02 4.5303E+03  3.5257E+02
i Ave 3.0000E+02 74632E+03  6.1858E+03  74799E+03  23220E+03  5.0052E+02  93386E+02  9.1136E+03  6.0731E+02
Std 1.3433E-03 2.1089E+03  2.1823E+03  1.5102E+03  73168E+02 1.2066E+02  7.0000E+00  2.6958E+03  3.7772E+02
Best  4.0001E+02 7.5895E+02  54443E+02 4.2524E+02  4.2021E+02  4.0000E+02  4.1323E+02 7.9708E+02  4.0205E+02
£ Ave 4.1360E+02 1.5621E+03  7.6167E+02 4 8801E+02 6.6005E+02 4.3236E+02 44715E+02 1.5863E+03 4.1719E+02
Std 2.5192E+01 73372E+02  1.1392E+02 3.6851E+01  29388E+02 3.2563E+01  7.0000E+00 5.6249E+02  2.2295E+01
Best  6.0002E+02 62357E+02  6.3436E+02 6.1407E+02 6.1092E+02 6.0947E+02  6.1519E+02 6.3331E+02  6.1387E+02
£ Ave 6.1091E+02 6.4655E+02  6.4663E+02  64607E+02  63550E+02 6.2669E+02  62775E+02  6.4424E+02  6.2141E+02
Std 1.3105E+01 93126E+00  6.2967E+00 1.3898E+01 1.6837E+01  9.9517E+00  7.0000E+00  7.3802E+00  7.1245E+00
Best 8.2370E+02 83358E+02 8.3835E+02 B8.2218E+02 8.0916E+02 8.1393E+02  8.1851E+02 8.2969E+02  §.0929E+02
£ Ave 8.4055E+02 8.5358E+02 8.5028E+02  84514E+02 82668E+02  8.2244E+02  83225E+02 8.4627E+02  8.2432E+02
Std 1.2490E+01 9.5249E+00  6.6173E+00 1.2066E+01  7.1154E+00  4.1024E+00  7.0000E+00  8.4915E+00  6.5850E+00
Best  9.0000E+02 1.1098E+03  1.2211E+03 98941E+02 98649E+02 9.2149E+02  92294E+02 1.1446E+03  9.1113E+02
£ Ave 1.0894E+03 1.3943E+03 1.4407E+03 1.5268E+03  1.3759E+03 1.6358E+03 1.0402E+03 1.4111E+03 1.0561E+03
Std 1.0704E+02 1.6211E+02  1.5790E+02 32133E+02 1.5534E+02 5.6271E+02  7.0000E+00 1.8260E+02 1.1157E+02
Best 1.9167E+03 8.7500E+05  2.7902E+06  3.1897E+04  3.2392E+03  1.8436E+03 1.9532E+03  2.5632E+03  2.2573E+03
5 Ave 3.7818E+03 2.0753E+07  2.3240E+07 5.0981E+05 1.0099E+04 1.8736E+03 4.6421E+03 4.9417E+06  54248E+03
Std 1.9283E+03 29546E+07  1.5181E+07  7.0924E+05  5.7355E+03 1.8798E+01  7.0000E+00 1.2295E+07  2.0935E+03
Best  2.0030E+03 2.0545E+03  2.0851E+03  2.0365E+03 2.0403E+03 2.0275E+03  2.0266E+03  2.0543E+03  2.0311E+03
5 Ave 2.0405E+03 2.0894E+03  2.1024E+03  2.1206E+03  2.0945E+03  2.0459E+03  2.0552E+03 2.0871E+03  2.0483E+03
Std 3.7812E+01 1.2803E+01 1.2864E+01 38153E+01 38693E+01 1.1647E+01  7.0000E+00 1.8868E+01 1.2515E+01
Best  2.2024E+03 22326E+03  2.2259E+03  2.2271E+03  2.2229E+03  22085E+03  2.2225E+03  2.2256E+03  2.2218E+03
£ Ave 2.2241E+03 22405E+03  2.2323E+03  22358E+03  22576E+03  22271E+03  2.2420E+03  2.2317E+03  2.2308E+03
Std 3.7559E+00 1.0725E+01  3.8552E+00 4.6272E+00 53525E+01  6.2348E+00  7.0000E+00  4.8473E+00  4.2580E+00
Best  2.5293E+03 26685E+03  2.6208E+03  2.6125E+03  25968E+03  2.5299E+03  2.5324E+03  2.6247E+03  2.5321E+03
5 Ave 2.5293E+03 27418E+03  2.6766E+03  2.6571E+03  2.6628E+03  2.5493E+03  2.5681E+03  2.7414E+03  2.5725E+03
Std 6.4604E-04 43379E+01 2.8766E+01 3.1362E+01 4.0128E+01 3.7708E+01  7.0000E+00 3.8706E+01 44755E+01
Best  2.5003E+03 2.5129E+03  2.5169E+03  2.6296E+03  25005E+03  2.5005E+03  2.5005E+03  2.5138E+03  2.5004E+03
fo Ave 2.5994E+03 27099E+03  2.5925E+03  2.6563E+03  2.6704E+03  25438E+03  2.5241E+03  2.7193E+03  2.5126E+03
Std 1.0814E+02 14187E+02 7.4668E+01 2.1778E+01  2.2495E+02  6.0063E+01  7.0000E+00 2.3503E+02 3.5931E+01
Best  2.6001E+03 3.0530E+03  2.8398E+03  2.7127E+03  2.6536E+03 2.6001E+03 2.7357E+03  2.9383E+03  2.6061E+03
fs Ave 2.7228E+03 37955E+03  2.9919E+03  2.7443E+03  3.1970E+03  2.8239E+03  2.8186E+03  3.5076E+03  2.7470E+03
Std 1.9819E+02 4.0851E+02  8.1383E+01  1.5353E+01  44501E+02  2.1609E+02  7.0000E+00 4.6449E+02 1.6186E+02
Best  2.8623E+03 28827E+03  2.8682E+03  2.8691E+03 28711E+03 28641E+03  2.8631E+03  2.9514E+03  2.8639E+03
f Ave 2.8664E+03 29617E+03  2.8957E+03  29272E+03  29325E+03  2.8809E+03  2.8677E+03 3.0616E+03  2.8836E+03
Std 2.1967E+00 63909E+01  1.0071E+01  5.5136E+01  5.1356E+01  2.7942E+01  7.0000E+00  7.6293E+01  3.1223E+01
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Fig. 4 The convergence graph of CEC-BC-2022 test function was solved by the improved goose optimization algorithm based on the vertical and horizontal
crossing strategy and random walk and other intelligent optimization algorithms.
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It can be seen that CRw-GOOSE, which integrates the
three strategies to improve, is better than other advanced
intelligent optimization algorithms in most cases in recent
years, which proves the superiority and advancement of
CRw-GOOSE and the feasibility of the algorithm
improvement strategy. As shown in the box diagram in Fig 5,
the horizental coordinate represents different algorithms,
and the vertical coordinate represents the 30 optimal fitness
values collected. It can be obviously observed that
CRw-GOOSE performs very well in most test functions,
whether it is the optimal fitness value or the average fitness
value. In addition to the function, the average value and
optimal value obtained by CRw-GOOSE can reach the
minimum when compared with other 7 advanced intelligent
optimization algorithms. It can be observed from the figure
that the box length of CRw-GOOSE 1in each test function
species is relatively small, which indicates that there are few
extreme values of CRw-GOOSE, and also indicates the
stability of CRw-GOOSE. In summary, compared with the
goose optimization algorithm improved by random walk, the
advanced intelligent optimization algorithm based on
crossbar strategy has excellent performance, and it can well
optimize each test function in CEC-BC-2022.

VII. ENGINEERING OPTIMIZATION DESIGN PROBLEM

A. Three-bar Truss Design Problem

The design of a three-bar truss represents a classic
engineering optimization challenge, particularly within the
realm of structural engineering. The primary objective is to
enhance the performance and cost-effectiveness of the
structure while adhering to specified constraints by adjusting
parameters such as the size, shape, and connection methods
of the truss members. Due to its straightforward
configuration and remarkable efficiency, the three-bar truss
has found widespread application in bridges, buildings, and
various mechanical devices. In optimizing three-bar truss
designs, key objectives encompass structural strength and
stiffness, overall weight reduction, stability considerations,
and economic viability. A schematic representation of the
three-bar truss design problem is illustrated in Fig. 6. The
objective function along with the associated constraints for
this design problem is delineated as follows:

Objective function: f(X)= (2\/5)( 1+X 5 )*l

Constraints: g (X )=\/%/§Xi—;;(}P—GSO
1204,
X
X)=——1 ___P_5<0
&) V2X, +2X,X,
1
X)=—/——P-0<0
& () J2x, + X,

Boundary conditions: 0 < .X;, X, <1
where, [ =100cm, P = 2KN /em, o = 2KN /em .

Fig. 7 illustrates the convergence plots of CRw-GOOSE
alongside seven other  state-of-the-art intelligent
optimization algorithms applied to the three-bar truss design
problem. The optimization outcomes for the optimal
solution of this design challenge are summarized in Table V.
To facilitate a comparative analysis between the

performance of the enhanced algorithm and other
optimization techniques, each algorithm was constrained to
a maximum iteration limit of 1000 generations, with
simulations conducted over 30 trials. The optimal value,
average value, and variance were calculated and recorded in
Table TV, with the optimal experimental data highlighted in
bold. As indicated in Table IV, CRw-GOOSE's average
results for optimizing the three-bar truss design closely
match those achieved by six other intelligent optimization
algorithms, excluding EGO.

However, it 1s noteworthy that CRw-GOOSE’s identified
optimal value aligns only with those obtained by IDMO and
NRBO. Furthermore, CRw-GOOSE exhibits the smallest
variance among all methods evaluated, demonstrating its
stability when addressing the three-bar truss design problem.
In conclusion, both Fig. 7 and Table IV confirm that
CRw-GOOSE delivers commendable overall performance
in optimizing the three-bar truss design.

B. Cantilever Beam Design Problem

Cantilever beam design is a classic and challenging
problem in the field of engineering optimization. It relates to
a key component in structural engineering - cantilever
beams, which are fixed at one end and extend freely at the
other and are widely used in structures such as Bridges,
buildings, and mechanical components. The central goal of
cantilever beam design is to optimize the use of materials,
reduce costs, and improve the economic efficiency of the
structure while satisfying the criteria of strength, stiffness,
and stability.

VR
I)
Fig. 6 Three-bar truss design problem model.
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Fig. 7 The convergence diagram of three-bar truss design problem is
optimized based on crossbar strategy and random walk improved goose

optimization algorithm and other intelligent optimization algorithms.
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The beam is made up of five hollow square sections with
uniform thickness, where the height serves as the decision
variable, and the thickness remains constant. The schematic
representation of the cantilever beam design problem is
depicted in Fig. 8. The objective function and constraints
associated with this design challenge are delineated as
follows:

Objective function:

S(X)=0.0624 (X + X, + X3+ X, +X5)

Constraints:

g(X)=%+%+%+%+%£O
1 2 3 4 5

Boundary conditions: 0.01< X, £100,i=1,2,3,4,5

The convergence curve illustrating the optimization of the
cantilever beam design problem using CRw-GOOSE,
alongside seven other advanced intelligent optimization
algorithms, is presented in Fig. 9. The optimal solutions for
the cantilever beam design problem are detailed in Table V.
To facilitate a comparative analysis of the performance
between the improved algorithm and other optimization
methods, each algorithm was subjected to a maximum
iteration limit of 1000 generations, with simulations
conducted over 30 trials. The optimal value, average value,
and variance were calculated and documented in Table V ;
furthermore, the best experimental results have been
highlighted in bold within the table. As can be seen from
Table V , the average value, optimal value and variance
obtained by CRw-GOOSE optimization of the cantilever
beam optimization issue are the best, which are 1.7038,
1.7330, and 0.010055 respectively. It can be observed from
the data in the table that CRw-GOOSE has absolute
advantages in solving cantilever beam design problems
compared with other 7 intelligent optimization algorithms.
Moreover, the convergence curve illustrated n Fig. 9
indicates that CRw-GOOSE converges at a relatively faster
rate compared to other algorithms. As demonstrated in both
Fig. 9 and Table V , the overall performance of
CRw-GOOSE in optimizing cantilever beam design is
notably effective.

C. Pressure Vessel Design Problem

Pressure vessel design is an important subject in the field
of engineering optimization, which involves many
disciplines such as structural engineering, material science,
and optimization algorithms. As a kKey industrial equipment,
the pressure vessel is widely used in chemical, oil, natural
gas, nuclear energy, and other industries, and its design
quality is directly related to production safety and economic
benefits. The schematic representation of the pressure vessel
problem is depicted in Fig. 10. The objective function and
constraints associated with the optimal design problem of
the pressure vessel are outlined as follows:

Objective function:

S(X)=06224X XX, +1.778LY X 7+

3.1661X7X, +19.84X7 X,
Constraints: g (X)=0.0193X;-X; <0
2, (X)=0.00954X; - X, <0

4
g3 (X)=1296000-7zX X, - g;rxg <0

g4(X)=X,-240<0
Boundary conditions: 0.0625 < X, X, <6.1875

where, X, and X, represent the cylinder head (7#) and
cylinder wall thickness (7s), X5 represents the radius of the
cylinder and cylinder head (R), and X, denotes the
cylinder's length (1.).

Fig. 11 illustrates the convergence plot of CRw-GOOSE
alongside seven other advanced intelligent optimization
methods employed for optimizing pressure vessel design
problems. The experimental results pertaining to the optimal
solutions for these design challenges are presented in Table
VI. To facilitate a comparative analysis of the performance
between the improved algorithm and other optimization
techniques, each algorithm was subjected to an iteration
limit set at 1000 generations, with simulations conducted
over 30 trials. The optimal value, average value, and
variance were computed and documented in Table VI,
Notably, the best experimental data highlighted within this
table is presented in bold. As evidenced by Table VI, both
the average value and optimal value achieved by
CRw-GOOSE 1n addressing the pressure vessel design
problem are superior to those obtained through other
methods, 5.7357E+03 and 6.2414e+03 respectively. The
convergence diagram of Fig. 11 also shows that
CRw-GOOSE optimization of pressure vessel design has
obvious advantages compared with some intelligent
optimization algorithms. Fig. 11 and Table VI show that
CRw-GOOSE achieves an excellent overall performance in
optimizing pressure vessel design.

Fig. 8 Cantilever beam design problem model.
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Fig. 9 The convergence graph of cantilever beam design problem is
optimized based on crossbar strategy and random walk improved goose
optimization algorithm and other intelligent optimization algorithms.
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TABLE IV. THE RESULTS OBTAINED FROM THE THREE-BAR TRUSS DESIGN PROBLEM

Algorithm x il
Ave Best Std

CRw-GOOSE [0.7893, 0.4066] 2.6390E+02 2.6390E+02 3.4187E-03

COA [0.7965, 0.3865] 2.6390E+02 2.6394E+02 6.5029E-02

EGO [0.7908, 0.3983] 2.6391E+02 2.6392E+02 2.2870E-02

HEOQOA [0.7759, 0.4456] 2.6390E+02 2.6440E+02 5.4011E-01

IDMO [0.7882, 0.4097] 2.6390E+02 2.6390E+02 6.8163E-03

HO [0.7839, 0.4241] 2.6390E+02 2.6392E+02 1.6316E-02

NRBO [0.7887, 0.4082] 2.6390E+02 2.6390E+02 3.0700E-02

00A [0.7945, 0.3921] 2.6390E+02 2.6637E+02 2.1991E+00

PO [0.7821, 0.4270] 2.6390E+02 2.6395E+02 1.7070E-01

TABLE V. THE RESULTS OBTAINED FROM THE CANTILEVER BEAM DESIGN PROBLEM
Algorithm x i
Ave Best Std

CRw-GOOSE [0.1919, 47134, 9.0366, 0.2057] 1.7038E+00 1.7330E+00 1.0055E-02
COA [0.2068, 9.0221, 9.0221, 0.2068] 1.7692E+00 2.3681E+00 2.4016E-01
EGO [0.1899, 3.5656, 9.1559, 0.2053] 1.7078E+00 1.7409E+00 1.5541E-02
HEOA [0.2787, 2.9130, 6.6869, 0.3900] 2.0476E+00 3.3781E+00 7.2155E-01
IDMO [0.1895,3.5717, 9.1356, 0.2054] 1.7066E+00 1.7334E+00 1.4455E-02
HO [0.1968, 3.5219, 8.6880, 0.2226] 1.7845E+00 1.8788E+00 2.1099E-01
NRBO [0.2062, 3.2665, 8.9673, 0.2090] 1.7089E+00 1.7341E+00 3.4437E-02
O0A [0.2513, 6.0095, 5.0208, 0.6664] 2.2588E+00 3 8736E+00 9.4091E-01
PO [0.1803, 3.7715, 9.0423, 0.2057] 1.7070E+00 1.7336E+00 2.8325E-02

D. Tension Spring Design Problem

The design of tensile spring is an important topic in the
field of engineering optimization. It relates to the spring
design in mechanical engineering, the purpose is to adjust
the geometric parameters and material properties of the
spring, so that the spring has the best performance and the
mimmum material cost while f{ulfilling the specified
performance criteria. The constraints imposed on the design
include minimum deflection, shear stress limits and
vibration frequency requirements. The model for the stretch
spring design problem is illustrated in Fig. 12. The objective
function along with the constraints pertinent to the stretch
spring design problem are detailed as {ollows:

Objective function: /(X )= (X, +2)X X7

. Xx
Constraints: £, (X):l—ﬁgo
4X1-X X

g (X e 1
12566(X, X/ - X;')  S108X]

140.45X
X)=1-——""L<o

ga( ) X22X3

Boundary conditions: 0.05< X, <200 025<X, <130,
200X, <150

Fig. 13 shows the convergence curve of CRw-GOOSE
and seven other advanced intelligent optimization
algorithms for optimizing the stretch spring design problem.
The optimization results for the optimal solution of the
stretch spring design problem are presented in Table VII. To
enable a comparison of the mproved algorithm's
performance and other optimization algorithms, the iteration
cap for each algorithm was established at 1000 generations,
and the experiment was simulated 30 times. The optimal
value, average value, and variance were obtamed and
recorded in Table VII, with the best experimental data
highlighted in bold. As illustrated in Table VII, the average
value, optimal wvalue, and variance achieved by
CRw-GOOSE in optimizing the design problem of stretch
springs are superior when compared to those generated by
the other seven intelligent optimization algorithms. In the
index of average value, CRw-GOOSE and PO obtained the
same minimum average value.

In addition, the variance obtained by CRw-GOOSE in
optimizing the design problem of stretch spring is about 0,
which is far superior to other intelligent optimization
algorithms, and proves the stability of CRw-GOOSE in
addressing the stretch spring design problem. As can be seen
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from Fig. 13 and Table VI, the comprehensive effect of
CRw-GOOSE in optimizing the design of tensile spring is
very good.

Fig. 13 shows the convergence curve of CRw-GOOSE
and seven other advanced intelligent optimization
algorithms for optimizing the stretch spring design problem.
The optimization results for the optimal solution of the
stretch spring design problem are presented in Table VII. To
enable a comparison of the improved algorithm's
performance and other optimization algorithms, the iteration
cap for each algorithm was established at 1000 generations,
and the experiment was simulated 30 times. The optimal
value, average value, and variance were obtained and
recorded in Table VI, with the best experimental data
highlighted in bold.

As illustrated in Table VII, the average value, optimal
value, and wvariance achieved by CRw-GOOSE in
optimizing the design problem of stretch springs are superior
when compared to those generated by the other seven
intelligent optimization algorithms. In the index of average
value, CRw-GOOSE and PO obtained the same minimum
average value. In addition, the variance obtained by
CRw-GOOSE in optimizing the design problem of stretch
spring is about 0, which is far superior to other intelligent
optimization algorithms, and proves the stability of
CRw-GOOSE in addressing the stretch spring design
problem. As can be seen from Fig. 13 and Table VI, the
comprehensive effect of CRw-GOOSE in optimizing the
design of tensile spring is very good.
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Fig. 10 Pressure vessel design problem model.
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Fig. 11 The convergence graph of pressure vessel design problem is
optimized based on crossbar strategy and random walk improved goose
optimization algorithm and other intelligent optimization algorithms.
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Fig. 13 The convergence graph of tension spring design problem is
optimized based on crossbar strategy and random walk improved goose
optimization algorithm and other intelligent optimization algorithms.

TABLE VI. THE RESULTS OBTAINED FROM THE PRESSURE VESSEL DESIGN PROBLEM

S
Algorithm %
Ave Best Std
CRw-GOOSE [1.1278, 0.5369, 59.5367, 37.0000] 5.7357E+03 6.2414E+03 4.7247E+02
COA [2.5411, 15.4987, 59.9535 , 34.8612] 6.8713E+03 2.6531E+04 2.8906E+04
EGO [1.2131, 0.4229, 43.7087, 158.4888] 5.8499E+03 6.2571E+03 9.1285E+02
HEOA [1.0772, 0.4875, 52.6928, 126.8476] 7.2549E+03 3.3095E+04 4.5349E+04
IDMO [1.1725, 0.5367, 61.7582, 25.9534] 5.8129E+03 6.4274E+03 4.4261E+02
HO [0.8065, 0.3970, 43.4379, 160.7174] 5.8200E+03 6.4424E+03 4.5082E+02
NRBO [1.1789, 0.5718, 62.3243, 23.1048] 5.7560E+03 6.2694E+03 5.3448E+02
O0A [15.7067, 12.7774, 52.6461, 78.6511] 9.8250E+03 1.6132E+05 1.3227E+05
PO [1.2294, 0.5848, 64.8047, 11.8273] 5.7558E+03 6.5760E+03 5.2460E+02
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TABLE VII. THE RESULTS OBTAINED FROM THE TENSION SPRING DESIGN PROBLEM

Ax)
Algorithm x
Ave Best Std

CRw-GOOSE [0.0555, 0.2917, 8.1624] 1.2020E-02 1.2020E-02 3.7755E-18
COA [0.0527, 0.2500, 10.1432] 1.2044E-02 1.4374E-02 2.6311E-03
EGO [0.0556, 0.2302, 10.1640] 1.2054E-02 1.2084E-02 3.0709E-05
HEOQOA [0.0676, 0.5943, 2.0000] 1.2145E-02 1.3889E-02 1.1679E-03
IDMO [0.0621, 0.4400, 3.6128] 1.2034E-02 1.2195E-02 2.3030E-04
HO [0.0540, 0.2634, 4.1632] 1.2230E-02 2.0434E-02 9.8921E-03
NRBO [0.0542, 0.2661, 9.7853] 1.2022E-02 1.2073E-02 2.9661E-05
00A [0.0544, 0.2677, 4.1928] 1.2252E-02 2.0443E-02 9.9205E-03
PO [0.0535 0.2543, 10.4985] 1.2020E-02 1.2055E-02 2.5931E-05

VIII. CONCLUSION

The goose optimization algorithm is often susceptible to
becoming trapped in local optima, exhibiting relatively low
convergence accuracy and speed. This paper introduces an
enhanced goose optimization algorithm that incorporates a
crossbar strategy and random walk improvements. These
enhancements  significantly  bolster the algorithm's
exploration and exploitation capabilities, thereby mitigating
the risk of local optimization and improving convergence
accuracy.

In this study, two types of simulation experiments are
conducted to evaluate the effectiveness and superiority of
the proposed CRw-GOOSE algorithm. The simulation
results obtained by CRw-GOOSE on 12 different types of
reference functions in CEC-BC-2022 all prove that the
enhanced algorithm performs well. In the first simulation
experiment, GOOSE and CRw-GOOSE, which introduced
three strategies separately, were first simulated, and the
results showed that each strategy had a better effect than the
original GOOSE, among which the optimized test function
of CRw-GOOSE obtained the best result. In the second
simulation experiment, CRw-GOOSE 1s compared with
other 7 advanced intelligent optimization algorithms. The
results show that CRw-GOOSE can achieve very good
results in most simulation experiments.

The results of two simulation experiments prove the
superiority and advanced nature of the designed
CRw-GOOSE. In addition, four engineering design issues
were optimized. The test results indicate that all four
engineering design challenges addressed by CRw-GOOSE
yielded favorable outcomes. Notably, the average value,
optimal value, and variance achieved through CRw-GOOSE
are superior in three specific engineering problems: the
three-bar truss optimization issue, the cantilever beam
design challenge, and the tensile spring design problem. In
summary, all simulation results demonstrate that the
proposed CRw-GOOSE effectively tackles both function
optimization and engineering optimization challenges.
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