
 

  

Abstract — This work presents a discussion of optimal 

decoupling and control approach for multiple-input multiple-

output (MIMO) systems utilizing the contemporary linear 

matrix inequality (LMI) algorithm. Initially, an approach using 

optimal decoupling is employed to address the issue of coupling 

effects in MIMO plants. These effects have the potential to 

negatively impact the performance of compensated systems. The 

utilization of the Relative Gain Array (RGA) method is 

employed in the analysis of MIMO systems to determine the 

optimal pairing. The LMI approach is commonly utilized to 

successfully mitigate the coupling effects between input & 

output of MIMO systems. Furthermore, this paper presents an 

enhanced proportional integral derivative (PID) control 

strategy for the resulting system, utilizing the Kharitonov 

theorem and Bacterial Foraging Optimization (BFO) algorithm. 

The proposed methodology has been effectively implemented in 

several MIMO systems, including square, time-delayed, and 

non-square non-minimum phase configurations. The 

disturbance rejection performance of the designed controller is 

also tested through output disturbance rejection.  The 

performance of suggested controller is assessed through 

simulation results in order to substantiate the theoretical 

assertions.   

 
Index Terms— MIMO, LMI, Convex optimization, RGA. 

I. INTRODUCTION 

URING the period of contemporary industrialization, 

numerous industrial systems consist of a combination of 

multiple interacting subsystems. The complexity of the 

system being considered poses challenges in implementing 

efficient control mechanisms for various components. The 

phenomenon wherein an input has an undesirable impact on 

an output is sometimes referred to as undesired interaction 

effect. The undesired interaction effects have a detrimental 

impact on the performance of ensued system.  The design of 

a decoupler is necessary to address the issue of eliminating 

the coupling effect. The authors in [1] provide a detailed 

explanation of the decoupling method utilizing optimization 

techniques to get the required optimal performance of 

compensated system. The paper demonstrates a methodology 

that combines decoupling using RGA analysis with Particle 

Swarm Optimization (PSO) [2]. The right pairing information 

of MIMO systems which ensures efficient decoupling is 

elucidated in [3] where RGA is identified as a potent 
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instrument for this purpose. The methodology of utilizing an 

algebraic approach for decoupling methods is elucidated in 

reference [4] which discusses the implementation of the 

output feedback control method. The decoupling technique 

utilizing the smith predictor methodology is described in [5]. 

However, it is important to note that this method is 

constrained to stable MIMO systems, which represents a 

limitation. In the study in [6] a technique for open loop 

decoupling is introduced which involves the utilization of a 

pre-compensator. The application of a static variable state 

feedback technique has been utilized for achieving total and 

partial decoupling of MIMO systems [7, 8]. The majority of 

decoupling approaches documented in academic literature are 

characterized by their complexity and limited applicability to 

various types of MIMO plants. The development of a novel 

decoupling method for a diverse variety of MIMO systems is 

motivated by a significant factor. Hence, the authors of this 

study endeavored to devise a decoupling technique for 

MIMO systems. This method draws upon the disturbance 

rejection strategy commonly employed in open loop systems. 

In this study a convex optimization using LMI is employed to 

minimize the adverse coupling effects that are regarded as 

disruptions to the intended outputs. The LMI algorithm has 

found extensive application in control issues, particularly 

with the advancement of interior point algorithms of the new 

generation. These algorithms have the capability to 

efficiently handle problems expressed in the LMI form [9-

11]. Another aim is to design PID controller for the decoupled 

plants obtained. It might be argued that PID controllers 

continue to be widely utilized in industries due to its inherent 

simplicity and ease of implementation. The accuracy of a PID 

controller is contingent upon the appropriate selection of its 

gain values. Nevertheless, the task of determining controller 

gain values becomes more challenging when the system 

characteristics exhibit variability. The utilization of the 

Kharitonov theorem is employed to construct an appropriate 

Proportional-Integral-Derivative (PID) controller in 

situations when the specific physical parameters of the 

control system are unknown. This theorem is commonly 

utilized in control system engineering to evaluate the stability 

of dynamical systems. The aforementioned study establishes 

the essential and comprehensive criteria for ascertaining the 

robust stability of polynomials that have been subject to 

perturbations in their coefficients [12]. The utilization of the 

Kharitonov theory has proven to be effective in determining 

the resilient interval of gains for PID controller settings [13-

14]. The Kharitonov theorem guarantees that the system 

under investigation will remain robustly stable within the 
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range of controller gains specified, as indicated by previous 

research [15-16]. An important goal is to ensure that gain 

values are appropriately optimized, necessitating the efficient 

tuning of PID controllers. The authors offer an optimization 

approach for tuning PID controllers.  

 

 Rest of this work is organized as below in which following 

part deals with the decoupling followed by development of a 

control algorithm and its application in different types of 

MIMO systems. Conclusion is narrated in the last section. 

 

II.  PROPOSED DECOUPLING METHOD  

Let us consider 𝑛𝑥𝑛 MIMO plant 𝐺(𝑠) as shown in Fig. 1 

described by equation (1) in which the outputs are 𝑦1, 𝑦2 ...., 
𝑦𝑛 and inputs are 𝑢1, 𝑢2 ...., 𝑢𝑛. 𝑛 as written by equation (2).  

 

𝐺(s) = [

G11(s) G12(s) . . . . G1n(s)

G21(s) G22(s) . . . . G2n(s)
. . . . . . . . . . . . . . . .

Gn1(s) Gn2(s) . . . . . Gnn(s)

]    (1)  

                                                                                                                           

[

𝑦1
𝑦2
⋮
𝑦𝑛

] = [

𝐺11(𝑠) 𝐺12(𝑠) . . . . 𝐺1𝑛(𝑠)

𝐺21(𝑠) 𝐺22(𝑠) . . . . 𝐺2𝑛(𝑠)
. . . . . . . . . . . . . . . .

𝐺𝑛1(𝑠) 𝐺𝑛2(𝑠) . . . . . 𝐺𝑛𝑛(𝑠)

] . [

𝑢1
𝑢2
⋮
𝑢𝑛

]          (2)  

                                                                                                          
𝑦1 = 𝐺11(𝑠). 𝑢1 + 𝐺12(𝑠)𝑢2+. . . . +𝐺1𝑛(𝑠)𝑢𝑛

𝑦2 = 𝐺21(𝑠)𝑢1 + 𝐺22(𝑠)𝑢2+. . . . +𝐺2𝑛(𝑠)𝑢𝑛
⋮
𝑦𝑛 = 𝐺𝑛1(𝑠)𝑢1 + 𝐺𝑛2(𝑠)𝑢2+. . . . +𝐺𝑛𝑛(𝑠)𝑢𝑛 }

 
 

 
 

       (3)   

                                                                                                           

The equations for individual outputs are defined by 

equation (3), which illustrates that each output is associated 

with distinct inputs. Furthermore, each output is dependent 

on all inputs that have been induced. To effectively develop 

a control method for MIMO system, it is advantageous to 

establish a relationship where a specific output is solely 

influenced by a single input. This can be achieved by 

employing pairing analysis, which utilizes the Relative Gain 

Array (RGA) technique. The RGA technique holds 

significant value as an analytical tool for identifying the 

optimal pairing between inputs and outputs in MIMO 

systems. For instance, let us consider the output that is 

associated with the input in accordance with RGA analysis. 

In this study, it is assumed that all inputs, except for the 

specified input, are regarded as disturbances to the output. 
 

 

Fig. 1. MIMO Plant 

 

A. Pairing analysis employing RGA  

 

RGA is a gain matrix which is determined to measure 

undesired coupling of MIMO systems. If system of transfer 

function 𝐺(𝑠) is considered with 𝑛 inputs and 𝑛 outputs, then 

there exists  𝑛 × 𝑛 having 𝜆𝑖𝑗, which in turn RGA matrix 

below. 

 

𝛬 = [

𝜆11 𝜆12 . . . . 𝜆1𝑛
𝜆21 𝜆22 . . . . 𝜆2𝑛
. . . . . . . . . . . .
𝜆𝑛1 𝜆𝑛2 . . . . 𝜆𝑛𝑛

]                    (4)   

                                                                                                                              

𝜆𝑖𝑗is defined as below, 

 

𝜆𝑖𝑗 =
𝑔𝑖𝑗
𝑜

𝑔𝑖𝑗
𝑐                                             (5) 

 

Where𝑔𝑖𝑗
𝑜  and 𝑔𝑖𝑗

𝑐  are gains of the transfer function  𝐺𝑖𝑗(𝑠) in 

open & closed loop. As a first case, it is considered  that 

except 𝑢𝑗  , all other inputs 𝑢𝑘(𝑘=1,2,...,𝑝,𝑘≠𝑗)  are absent, and a 

step change of magnitude 𝛥𝑢𝑗  in input 𝑢𝑗 will produce a 

change 𝛥𝑦𝑖  of the  output 𝑦𝑖 . Hence, when all other inputs are 

absent, the gain between input  𝑢𝑗 and output 𝑦𝑖  is calculated 

as 𝑔𝑖𝑗
0  which is given by. 

 

𝑔𝑖𝑗
𝑜 =

𝛥𝑦𝑖

𝛥𝑢𝑗
|
𝑢𝑘=0

(𝑗 ≠ 𝑘)                           (6) 

 

In the second case, if it is considered that except 𝑦𝑖  , all other 

outputs 𝑦𝑙 , (𝑙 = 1,2, . . . 𝑝, 𝑙 ≠ 𝑖), are zeros, then a step change 

of magnitude 𝛥𝑢𝑗in input 𝑢𝑗 will result in another change of 

𝑦𝑖 . However, under this condition, the output 𝑦𝑖  is also 

affected by the other inputs due to cross-coupling. The ratio 

between input and output can be written as below. 

 

𝑔𝑖𝑗
𝑐 =

𝛥𝑦𝑖

𝛥𝑢𝑗
|
𝑦𝑙=0

(𝑖 ≠ 𝑙)               (7)    

   

 Despite the fact that the gains shown above are between the 

same two factors, but it leads to different values since it is 

evaluated under different conditions. It can be stated that 

undesired pairing occurred, the change in 𝑦𝑖due to a change 

in 𝑢𝑗for the two cases (when other inputs and when other 

outputs are kept zeros) are different. 

 

𝜆𝑖𝑗 =

𝛥𝑦𝑖
𝛥𝑢𝑗

|
𝑢𝑘=0

(𝑗≠𝑘)

𝛥𝑦𝑖
𝛥𝑢𝑗

|
𝑦𝑙=0

(𝑖≠𝑙)

                          (8)    

                                                      

The above ratio defines the relative gain between the output 

𝑦𝑖and input𝑢𝑗. 

Here if 𝜆𝑖𝑗 = 0, the 𝑗𝑡ℎ input has no effect on 𝑦𝑖  output and if 

𝜆𝑖𝑗 = 1 in 𝑦𝑖only 𝑢𝑗effects. Generally, the RGA of the system 

𝐺(𝑠) can be determined as frequency dependent function, 

which is given by 

 

𝛬(𝑠) = 𝐺(𝑠).∗ (𝐺(𝑠)−1)𝑇                          (9) 

                                                                                              

The effect of other inputs on a particular output except from 

the corresponding input is termed as disturbance or coupling 

effect. The main objective of designing a decoupler is to 

eliminate undesired interactions. In pairing analysis, RGA of 
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MIMO system matrix is calculated and the corresponding 

maximum gain of each row of the matrix is fixed to one in the 

decoupling matrix to signify that the particular output is 

completely dependent on an individual input only.     

            

B. Decoupling Matrix 

 

The structure of the decoupler is as described in (10), if 

through the pairing analysis it is found that corresponding 

gain of 𝐺11is more than that of𝐺12,𝐺13….. 𝐺1𝑛 , then 𝑑11is 

fixed to 1 such that first output is solely dependent on the first 

input. If the corresponding gain of 𝐺22 is more then𝐺21, 

𝐺23,……,𝐺2𝑛then the decoupling matrix element is 𝑑22 fixed 

to 1 in a way that 2nd output is completely dependent on 2nd 

input. Similarly, if the corresponding gain of 𝐺𝑛𝑛 is more 

then𝐺𝑛1, 𝐺𝑛2,……,𝐺𝑛.(𝑛−1) then the decoupling matrix 

element is 𝑑𝑛𝑛 fixed to 1 in a way that nth   output is 

completely dependent on nth   input.  With the aforesaid logic 

the structure of a decoupler is written as equation (11) such 

that𝑌1,𝑌2….. 𝑌𝑛is completely influenced by 𝑈1,𝑈2…. 𝑈𝑛, 

respectively. 

𝐷 = [

𝑑11 𝑑12 . . . 𝑑1𝑛
𝑑21 𝑑22 . . . . 𝑑2𝑛
⋮ ⋮ . . . . ⋮
𝑑𝑛1 𝑑𝑛2 . . . . 𝑑𝑛𝑛

]               (10)  

                                                    

𝐷 = [

1 𝑑12 . . . 𝑑1𝑛
𝑑21 1 . . . . 𝑑2𝑛
⋮ ⋮ . . . . ⋮
𝑑𝑛1 𝑑𝑛2 . . . . 1

]               (11)                                                                                                                       

The new decoupled plant𝐺𝑁(𝑠) is written as  

 

𝐺𝑁(𝑠)

= [

𝐺11(𝑠) 𝐺12(𝑠) . . . . 𝐺1𝑛(𝑠)
𝐺21(𝑠) 𝐺22(𝑠) . . . . 𝐺2𝑛(𝑠)
⋮ ⋮ ⋮ ⋮

𝐺𝑛1(𝑠) 𝐺𝑛2(𝑠) . . . . . 𝐺𝑛𝑛(𝑠)

] . [

1 𝑑12 . . . 𝑑1𝑛
𝑑21 1 . . . . 𝑑2𝑛
⋮ ⋮ ⋮ ⋮
𝑑𝑛1 𝑑𝑛2 . . . . 1

] 

(12) 

[

G11(s)+. +G1n(s)dn1 G11(s)d12+.+G1n(s)dn2 . . G11(s)d1n+.+G1n(s)
G21(s)+. +G2n(s)dn1 G21(s)d12+.+G2n(s)dn2 . . Gn1(s)d1n+.+G2n(s)

⋮ ⋮ ⋮ ⋮
Gn1(s)+. +Gnn(s)dn1 Gn1(s)d12+.+Gnn(s)dn2 . . Gn1(s)d1n+.+Gnn(s)

] 

 

(13) 

The corresponding outputs are written as equation (14) where 

it is seen clearly that for any MIMO system one output is 

influenced by all the inputs. 

 

𝑌1 = (𝐺11(𝑠) + 𝐺12(𝑠)𝑑21 +⋯ .+𝐺1𝑛(𝑠)𝑑𝑛1). 𝑉1 
+(𝐺11(𝑠)𝑑12 + 𝐺12(𝑠) + ⋯ .+𝐺1𝑛(𝑠)𝑑𝑛2). 𝑉2 +⋯. 
+(𝐺11(𝑠)𝑑1𝑛 + 𝐺12(𝑠)𝑑2𝑛+. . . . +𝐺1𝑛(𝑠)). 𝑉𝑛 

 

𝑌2 = (𝐺21(𝑠) + 𝐺22(𝑠)𝑑21 +⋯ .+𝐺2𝑛(𝑠)𝑑𝑛1). 𝑉1 
+(𝐺21(𝑠)𝑑12 + 𝐺22(𝑠) + ⋯ .+𝐺2𝑛(𝑠)𝑑𝑛2). 𝑉2 +⋯. 

+(𝐺𝑛1(𝑠)𝑑1𝑛 + 𝐺𝑛2(𝑠)𝑑2𝑛 +⋯ .+𝐺2𝑛(𝑠)). 𝑉𝑛 

⋮ 
 

𝑌𝑛 = (𝐺𝑛1(𝑠) + 𝐺𝑛2(𝑠)𝑑21 +⋯ .+𝐺𝑛𝑛(𝑠)𝑑𝑛1). 𝑉1 
+(𝐺𝑛1(𝑠)𝑑12 + 𝐺𝑛2(𝑠) + ⋯ .+𝐺𝑛𝑛(𝑠)𝑑𝑛2). 𝑉2 +⋯. 
+(𝐺𝑛1(𝑠)𝑑1𝑛 + 𝐺𝑛2(𝑠)𝑑2𝑛+. . . . +𝐺𝑛𝑛(𝑠)). 𝑉𝑛 

              (14) 

The decoupling technique is interpreted as a convex 

constrained optimization problem in which the decoupling 

gain is obtained to minimize the objective function as 

described by equation (14) where it is desired that a particular 

output should influenced by the corresponding input only 

whose RGA is highest among all. The influence of other 

inputs on that particular output is treated as a disturbance and 

effect of this disturbance is minimized by using LMI 

approach. 

 

C. Linear Matrix Inequality 

 

A LMI is defined as, 

 

𝐹(𝑋) = 𝐹0 + 𝐹1𝑥1 + 𝐹2𝑥2+. . . . . +𝐹𝑛𝑥𝑛 < 0   (15)   

                                                                                      

Where, 𝑋 = (𝑥1, 𝑥2, . . . . 𝑥𝑛) is a vector of unknown 

decisional or optimization variables and 𝐹0, 𝐹1, 𝐹2, . . . . . , 𝐹𝑛 

are assigned symmetrical matrices. Finding the solution of 

equation (15) is known as a convex optimization problem 

[17-22]. An optimization problem consists of finding a 

minimum or maximum value in certain regions defined by 

certain constraints on the independent variables. If the 

conditions of a convex optimization problem is written as, 

 
𝐹1(𝑋) < 0

𝐹2(𝑋) < 0
⋮
𝐹𝑛(𝑋) < 0

}                           (16)    

                                                                                                     

Then equation (16) is represented by one single LMI as 

below, 

 

𝐹(𝑋) = [

𝐹1(𝑋) 0 ⋯ 0
0 𝐹2(𝑋) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝐹𝑛(𝑋)

] < 0    (17)      

                                         

For convenience the detail procedure for minimizing the 

coupling effect by implementing LMI algorithm is described 

as below.   

Step 1: Initialization of LMI function and its description. 

The LMI function is initialized and the formulation of the 

LMI problem does not depend on the type of problem rather 

it is completely generalized. Plant can be represented through 

A, B, C & D matrix and should be obtained before the 

initialization of LMI function. 

Step 2: Defining the decision variable of LMI in the form 

of structure & matrix. 

It is necessary to define the decisional variables at the time of 

the initialization of the LMI problem. The decisional matrix 

consists of type and structure. The matrix may be 

symmetrical matrices, rectangular matrices etc. For type one 

the matrix should be square and symmetrical, for type two it 

should be rectangular. 

Step 3: Defining the different LMI conditions and 

arguments one by one. 

The LMI inequality is characterized by defining each of its 

constituent terms. The value of 𝛾 is suitably chosen to achieve 

the desired performance.  

Step 4: Checking the feasibility of the solution. 

For solving LMI problem first stability and feasibility of the 

problem is determined by calculating the feasible solution. 

The state 𝑥 = 0 of the system 𝑥
.
= 𝐴(𝑥) is asymptotically 

stable if there is a matrix 𝑃 > 0  which satisfies𝐴𝑇𝑃 + 𝑃𝐴 <
0. The LMI problem is feasible if the system is asymptotically 
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stable. The condition is represented as below to be satisfy to 

ensure the stability and feasibility of a LTI system. 

𝑃 > 0 

 

[𝐴
𝑇𝑃 + 𝑃𝐴 𝑃𝐵 − 𝐶𝑇

𝐵𝑇𝑃 − 𝐶 −𝐷𝑇 − 𝐷
] ≤ 0                        (18) 

 

Step 5: Determining the solution of the problem using 

LMI solver. 

The generalized form of the linear convex optimization 

problem is considered as to find the minimum value of 𝜆 that 

minimizes the objective function while satisfying the 

constraints [16]. The constraints are classified as the linear 

inequality constraints.  

 

𝐴(𝑥) < 𝜆𝐵(𝑥)
𝐵(𝑥) > 0

𝐶(𝑥) < 0
}                    (19)  

                                                                                                                                                                                                             

The interior point optimization algorithms developed by 

Nesterov and Nemirovski [11] provide an efficient method to 

solve the generically LMI problems. The inequality is 

formulated as linear matrix inequality which is termed as 

generalized eigenvalue minimization problem. 

 

𝑃 > 0 

 

[𝐴
𝑇𝑃 + 𝑃𝐴 + 𝐶𝑇𝐶 𝑃𝐵

𝐵𝑇𝑃 0
] ≤ 𝛼2 [

𝛾𝐼 0
0 𝐼

]     (20) 

                                                                                        

𝛾 is the quantity introduced to get the numerical solution of 

the problem, if the value of 𝛾  is near to zero, it causes a slow 

convergence and if its value is high the desired performance 

is not guaranteed. Therefore 𝛾 is chosen suitably to tradeoff 

between guaranteed performance and slow convergence.𝛼 is 

the 𝐻∞norm of the system 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵. 

 

D. Steps for the design of decoupler 

 

Following are the different steps adopted for the design of 

decoupler. 

Step 1: Best paired interconnection is selected on the basis of 

RGA technique for the given MIMO plant. 

Step 2: Transfer matrix of the MIMO system is converted 

into the state space form so that LMI can be easily 

implemented. 

Step 3: Apart from the best-paired interaction the gain of 

other interactions are minimized using LMI technique 

described above. 

Step 4: After following the above steps the achieved 

decoupler gain values are represented as Equation (11). 

E. Example 

 

The following section implements the suggested decoupling 

techniques while taking various MIMO plant types into 

consideration. To get the desired response after the 

decoupling closed loop control is required. In this direction 

PID controller is designed using Kharitonov theorem [13,14] 

in next section. 

 

 

 

Square Time delayed MIMO System 

 

A square time delayed MIMO system having the transfer 

function as below is considered first to implement the 

proposed method.  

 

𝐺(𝑠) = [
𝐺11(𝑠) 𝐺12(𝑠)
𝐺21(𝑠) 𝐺22(𝑠)

] = [

12.8𝑒−𝑠

16.7𝑠+1

−18.9𝑒−3𝑠

21𝑠+1

6.6𝑒−7𝑠

10.9𝑠+1

−19.4𝑒−3𝑠

14.4𝑠+1

](21)   

    

    

                                

                                     

The relative gain array of the MIMO system is calculated as 

below 

 

𝑅𝐺𝐴 = [
2.0094 −1.0094
−1.0094 2.0094

]             (22)   

                                                                                                               

It is signifying by the relative gain analysis that 1st output 

should paired with 1st input & 2nd output is paired with 2nd 

input. Hence the structure of decoupler is written as below 

 

𝐷 = [
1 𝑑12
𝑑21 1

]                      (23)    

                                                                                                                                          

By using the equation below, the decoupled system with the 

decoupler matrix is expressed as follows (12). 

 

GN(s) = [

12.8e−s

16.7s+1

−18.9e−3s

21s+1

6.6e−7s

10.9s+1

−19.4e−3s

14.4s+1

] [
1 d12
d21 1

] (24) 

                                                                                               

      

[
 
 
 
 
12.8e−s

16.7s + 1
+
−18.9e−3s

21s + 1
d21

12.8e−s

16.7s + 1
d12 +

−18.9e−3s

21s + 1

6.6e−7s

10.9s + 1
+
−19.4e−3s

14.4s + 1
d21

6.6e−7s

10.9s + 1
d12 +

−19.4e−3s

14.4s + 1 ]
 
 
 
 

 

 

 (25)     

                                                                   

𝑌1 = (
12.8𝑒−𝑠

16.7𝑠 + 1
+
−18.9𝑒−3𝑠

21𝑠 + 1
𝑑21) . 𝑉1 

+(
12.8𝑒−𝑠

16.7𝑠+1
𝑑12 +

−18.9𝑒−3𝑠

21𝑠+1
). 𝑉2(26) 

 

 

𝑌2 = (
6.6𝑒−7𝑠

10.9𝑠 + 1
+
−19.4𝑒−3𝑠

14.4𝑠 + 1
𝑑21) . 𝑉1 

+(
6.6𝑒−7𝑠

10.9𝑠 + 1
𝑑12 +

−19.4𝑒−3𝑠

14.4𝑠 + 1
). 𝑉2 

(27)                                                                                                                                         

The corresponding outputs are calculated as below following 

the equation (14) in which the effect of input 𝑉2is act as a 

disturbance for output 𝑌1as described in equation (26) and 

effect of input 𝑉1is act as a disturbance for output 𝑌2as 

described in equation (27). The goal is to reduce both the 

disruption and the issue is considered as a generalized 

eigenvalue minimization problem for the corresponding gain 

value of 𝑑12&𝑑21. In this problem the range of 𝑑12&𝑑21 are 

taken in between 0.0001 to 1 and for individual gain the 

eigenvalue is calculated. It is found that the gain value is 

minimum for 𝑑12is obtained as 0.25 &𝑑21is as 0.0002.   
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Non-square Non-minimum Phase System 

 

A non-square MIMO system having the transfer function as 

below is also considered to test the proposed decoupling 

control method. The plant considered here is of non-

minimum phase type which make the system more complex 

for design the controller. In this also the pairing analysis is 

calculated to know the best paring between inputs and outputs 

of the MIMO system using RGA. 

 

𝐺(𝑠) = [

4

20𝑠+1

2

20𝑠+1

4𝑠−2

20𝑠+1
3𝑠−3

10𝑠+1

3

10𝑠+1

5𝑠−1

10𝑠+1

]                      (28)  

                                                  

                          

                                                                   

The relative gain array of the MIMO system is calculated as 

below 

 

𝑅𝐺𝐴 = [
0.5818 0.2273 0.1909
0.3818 0.5455 0.0727

]    (29) 

                                                                                                                      

It is signified by the relative gain analysis that 1st output 

should paired with 1st input and 2nd output with 2nd input. 

Hence the structure of decoupler is written as below 

 

𝐷 = [

1 𝑑12
𝑑21 1
𝑑31 𝑑32

]                        (30)  

                                                              

                                      

                                                                           

Hence the decoupled system is designed as  

 

𝐺𝑁(𝑠) = [

4

20𝑠+1

2

20𝑠+1

4𝑠−2

20𝑠+1
3𝑠−3

10𝑠+1

3

10𝑠+1

5𝑠−1

10𝑠+1

] . [

1 𝑑12
𝑑21 1
𝑑31 𝑑32

]   (31)  

                          

              

                                                                            

 

 

The corresponding outputs are calculated as below following 

the equation (14) in which the input 𝑉2is act as a disturbance 

for output 𝑌1as described in equation (32) and input 𝑉1is act 

as a disturbance for output 𝑌2as described in equation (33). 

 

𝑌1 = (
4

20𝑠 + 1
+

2

20𝑠 + 1
𝑑21 +

4𝑠 − 2

20𝑠 + 1
𝑑31) . 𝑉1 

+(
4

20𝑠 + 1
𝑑12 +

2

20𝑠 + 1
+
4𝑠 − 2

20𝑠 + 1
𝑑32). 𝑉2 

(32) 

 

𝑌2 = (
3𝑠 − 3

10𝑠 + 1
+

3

10𝑠 + 1
𝑑21 +

5𝑠 − 1

10𝑠 + 1
𝑑31) 𝑉1 

+(
3𝑠 − 3

10𝑠 + 1
𝑑12 +

3

10𝑠 + 1
+
5𝑠 − 1

10𝑠 + 1
𝑑32). 𝑉2 

        

      (33)                   

                                                                

The problem is optimized in the similar fashion as discussed 

in previous example. In this problem there are four variables 

to be optimized with the two equations hence in order to 

achieve the optimum performance first two gain values are 

fixed one from each equation as 𝑑31&𝑑32is -1. After those the 

other two values of the gains are determined by the following 

the procedure of LMI algorithm and the value of 𝑑12is 

obtained as -0.6651 &𝑑21is as -0.9804. 

III. CONTROLLER DESIGN 

Although a conclusion may review the main points of the 

paper, do not replicate the abstract as the conclusion. A 

conclusion might elaborate on the importance of the work or 

suggest applications and extensions. The performance of any 

system depends only on the designing of effective controllers 

[26-29,31-34]. PID control scheme using Kharitonov method 

of nth subsystem of decoupled MIMO plant is shown in Fig. 

2. Kharitonov method is applied for understanding robust 

performance of the designed compensated system. [15] 

described a stability theorem, known as Kharitonov stability 

theorem, for classes of polynomial defined by choosing each 

element independently in a class of specified region. This 

theorem demonstrates the important finding that four well-

defined polynomials must be stable in order for the entire 

class of polynomials to be Hurwitz stable. Another name for 

these polynomials is interval polynomials. Only when every 

member of a set of polynomials is a Hurwitz polynomial can 

the set be considered stable. Let us examine the collection of 

𝑝(𝑠) real polynomials of degree in the following form:  

  

𝛿(𝑠) = 𝛿0 + 𝛿1𝑠 + 𝛿2𝑠
2 + 𝛿3𝑠

3 + 𝛿4𝑠
4+. . . . . . . . . 𝛿𝑛𝑠

𝑛  (34)   

             

In this case, the coefficient falls inside a specific range as, 

𝛿0 ∈ [𝑥0, 𝑦0], 𝛿1 ∈ [𝑥1, 𝑦1], . . . . . . 𝛿𝑛 ∈ [𝑥𝑛 , 𝑦𝑛]. In this 

instance a polynomial 𝛿 = [𝛿0 + 𝛿1, . . . . . . . , 𝛿𝑛] and its 

coefficient vector were discovered as 𝛥 = {𝛿: ∈ 𝐼𝑅𝑛+1, 𝑥𝑖 ≤

𝛿𝑖 ≤ 𝑦𝑖 , 𝑖 = 0,1,2, . . . . . . . 𝑛}. Following Kharitonov theorem 

in each polynomial the set 𝑝(𝑠) is Hurwitz if and only if 

following extreme polynomial will be stable. 

 

𝐾1(𝑠) = 𝑥0 + 𝑥1𝑠 + 𝑦2𝑠
2 + 𝑦3𝑠

3 + 𝑥4𝑠
4 + 𝑥5𝑠

5

+ 𝑦6𝑠
6+. . . . . . ., 

 

𝐾2(𝑠) = 𝑥0 + 𝑦1𝑠 + 𝑦2𝑠
2 + 𝑥3𝑠

3 + 𝑥4𝑠
4 + 𝑦5𝑠

5

+ 𝑦6𝑠
6+. . . . . . ., 

 

𝐾3(𝑠) = 𝑦0 + 𝑥1𝑠 + 𝑥2𝑠
2 + 𝑦3𝑠

3 + 𝑦4𝑠
4 + 𝑥5𝑠

5

+ 𝑥6𝑠
6+. . . . . . ., 

 

𝐾4(𝑠) = 𝑦0 + 𝑦1𝑠 + 𝑥2𝑠
2 + 𝑥3𝑠

3 + 𝑦4𝑠
4 + 𝑦5𝑠

5 
+𝑥6𝑠

6+. . . . . . .,       
  

                                                                                   (35) 

 

The Kharitonov theorem, as mentioned above, is applied for 

controller design for each of the two transfer functions [13–

14]. The characteristic equation for each transfer function is 

determined along with the transfer function of PID controller. 

After that following (36) interval equations are written with 

lower and upper controller values. To get the values of 

controller parameters one parameter is assumed first and rest 

two are obtained by satisfying [13, 14] the conditions of 

interval polynomials described by equation (35). In order to 

get the optimized performance of the PID controller with 

guaranteed stability, fine tuning of the controller parameters 

as accomplished with the help of BFO within the obtained 

range of Kharitonov theorem [13]. The flow chart of BFO 

optimization is shown in Figure 3. It is widely acknowledged 

that performance of BFO is dependent on cost function and 

also the performance of PID controller depends on the gain 

values. Therefore, it is important to fix the cost function very  

wisely. In this work the cost function is taken as below 

[13,14]. 
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𝐶𝑜𝑠𝑡 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (1 − 𝑒−𝛽)(𝑀𝑝 + 𝐸𝑠𝑠) + 𝑒
−𝛽(𝑡𝑠 − 𝑡𝑟)                          

(36) 

                 

To test the proposed decoupling control method as stated in 

above sections is implemented through the various examples 

considered in previous section. In this a square time delayed 

MIMO system is considered first in section than the non-

square non-minimum phase system.  

 

A. Square Time delayed Decoupled System 

 

To implement the Kharitonov theorem, the decoupled 

transfer function as described in section 2.5.1 of the time 

delayed system is first rationalized on the basis of first order 

pade approximation method [29]. In case of 𝐺11(𝑠) the 

rational transfer function can be written as  

 

𝐺11(𝑠) =
12.8𝑒−𝑠

16.7𝑠+1
=

12.8

16.7𝑠+1
×
1−0.5𝑠

1+0.5𝑠
=

−6.4𝑠+12.8

8.35𝑠2+17.2𝑠+1
                      

(37) 

 

Similarly, for 𝐺22(𝑠) the rational transfer function can be 

written as  

 

𝐺22(𝑠) =
−19.4𝑒−3𝑠

14.4𝑠 + 1
=

−19.4

14.4𝑠 + 1
×
(𝑒−0.75𝑠)2

(𝑒0.75𝑠)2
 

 

=
−19.4

14.4𝑠 + 1
×
(1 − 0.75𝑠)2

(1 + 0.75𝑠)2
 

 

=
−19.4 + 29.1𝑠 − 10.91𝑠2

1 + 15.9𝑠 + 22.16𝑠2 + 8.06𝑠3
 

(38) 

    

 The PID controller's loop transfer function is expressed for 

𝐺11(𝑠) is as below, 

𝐺𝐿11(𝑠) = 𝐺11(𝑠). 𝐺𝑐1(𝑠) 
 

= [

−6.4𝐾𝑑1𝑠
3−𝑠2[6.4𝐾𝑝1−12.8𝐾𝑑1]

+𝑠[12.8𝐾𝑝1−6.4𝐾𝑖1]+12.8𝐾𝑖1

8.35𝑠3+17.2𝑠2+𝑠
]                 (39) 

 

And that for 𝐺22(𝑠) is written as  

 
Fig. 2. Decoupled PID control scheme 

 

 
 
 

Fig. 3. BFO algorithm flow chart 
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𝐺𝐿22(𝑠) = 𝐺22(𝑠). 𝐺𝑐2(𝑠) 

=

[
 
 
 
 
 
 
 
−10.91𝐾𝑑2𝑠

4 + 𝑠3[−10.9𝐾𝑝2 + 29.1𝐾𝑑2]

+𝑠2[−10.91𝐾𝑖2 + 29.1𝐾𝑝2 − 19.4𝐾𝑑2]

+𝑠[29.1𝐾𝑖2 − 19.4𝐾𝑝2] − 19.4𝐾𝑖2

8.06𝑠4 + 22.16𝑠3 + 15.9𝑠2 + 𝑠

]
 
 
 
 
 
 
 

 

 (40) 

Characteristic equation is written below for 𝐺𝐿11(𝑠) 
 

𝑠3[8.35 − 6.4𝐾𝑑1] 
 

+𝑠2[17.2 − 6.4𝐾𝑝1 + 12.8𝐾𝑑1] 

 
+𝑠[1 − 6.4𝐾𝑖1 + 12.8𝐾𝑝1] + 12.8𝐾𝑖1 = 0 

          (41) 

 

For finding the robustness of designed controller, an interval 

is used to represent the system's characteristic polynomial as 

[𝐾𝑝1
− 𝐾𝑝1

+ ], [𝐾𝑖1
−𝐾𝑖1

+] , [𝐾𝑑1
− 𝐾𝑑1

+ ] for𝐾𝑝1,𝐾𝑖1&𝐾𝑑1 , respectively, 

in the characteristic polynomial. Then, the four interval 

polynomials associated with the Kharitonov characteristic is 

obtained as below. In order to find the values of controller 

parameter, one parameter is suitably assumed, after which the 

remaining two parameters are determined by meeting and 

solving equation (35).  

 

𝐾1(𝑠) = 12.8𝐾𝑖1
− + 𝑠[1 − 6.4𝐾𝑖1

− + 12.8𝐾𝑝1
− ] 

+𝑠2[17.2 − 6.4𝐾𝑝1
+ + 12.8𝐾𝑑1

+ ] + 𝑠3[8.35 − 6.4𝐾𝑑1
+ ] 

 

𝐾2(𝑠) = 12.8𝐾𝑖1
− + 𝑠[1 − 6.4𝐾𝑖1

+ + 12.8𝐾𝑝1
+ ] 

+𝑠2[17.2 − 6.4𝐾𝑝1
+ + 12.8𝐾𝑑1

+ ] + 𝑠3[8.35 − 6.4𝐾𝑑1
− ] 

 

𝐾3(𝑠) = 12.8𝐾𝑖1
+ + 𝑠[1 − 6.4𝐾𝑖1

− + 12.8𝐾𝑝1
− ] 

+𝑠2[17.2 − 6.4𝐾𝑝1
− + 12.8𝐾𝑑1

− ] + 𝑠3[8.35 − 6.4𝐾𝑑1
+ ] 

 

𝐾4(𝑠) = 12.8𝐾𝑖1
+ + 𝑠[1 − 6.4𝐾𝑖1

+ + 12.8𝐾𝑝1
+ ]                                          

+𝑠2[17.2 − 6.4𝐾𝑝1
− + 12.8𝐾𝑑1

− ] + 𝑠3[8.35 − 6.4𝐾𝑑1
− ]  (42) 



 

 

(a) For 𝐺𝐿11(𝑠) 
 

 

(b) For 𝐺𝐿22(𝑠) 

Fig. 4 PID gain value range of square time delayed decoupled system 

 

The values of the controller gain thus found out are shown in 

Fig. 4(a). Similar process is adopted to determine the PID 

gain values for 𝐺𝐿22(𝑠) are also shown by Figure 4(b). The 

simulation is performed with the obtained gain value and 

found that there is no effect of coupling is present as 

displayed in Fig. 5. wherein the first input receives a step 

signal and no input is applied to 2nd input portrayed in Fig. 5 

(a) where it is observed from the figure that only first output 

is obtained and zero output is found on 2nd output. Similarly, 

in second case step signal is applied in second input and no 

signal is applied to first input, it is observed that only the 

output response for second is shown and first remains zero 

displayed in Fig. 5(b).  
 

 
(a) Step reaction of first output and interaction in second because of the 

first's step input  
 

 
(b) Step reaction of second output and the interaction in first because of 

the second's step input  

Fig. 5 Coupling effect for square time delayed decoupled system 

 

The simulation is performed with the optimized robust PID 

controller gains which are determined by Kharitonov theorem 

and optimized by BFO method. The loop transfer function of 

𝐺11(𝑠) &𝐺22(𝑠) with the optimized values of PID controller 

parameters are written as 𝐺𝐿11(𝑠) &𝐺𝐿22(𝑠), respectively. 

 

𝐺𝐿11(𝑠) = [
−8𝑠3+35.66𝑠2+5.42𝑠+0.09

8.35𝑠3+17.2𝑠2+𝑠
]                (43)   

                                                           

𝐺𝐿22(𝑠) = [
5.35𝑠4−12.73𝑠3+5.46𝑠2+2.636𝑠+0.05

8.06𝑠4+22.16𝑠3+15.9𝑠2+𝑠
]     (44) 
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Fig. 5 verifies that the plant is perfectly decoupled as there is 

no effect of one input to other output. When both inputs get 

the step input at the same time, Fig. 6 illustrates the step 

response and control signal analysis for each output. The 

output response shown in Fig. 6 (a) is satisfactory with 

respect to time response as there is no overshoot and settling 

time is also very less for such types of system. Fig. 6 (b) 

depicts the time response description of both the outputs. 

Control  signals applied for both the outputs are portrayed in 

Fig. 6(c). The response of first output with and without the 

incorporation of decoupler is presented in Fig. 6(d) and the 

bar charts displayed in Fig. 6 (e) shows the comparative 

analysis of the output ressponses. Similarly the second output  

responses with and without decouplers are shown in Fig. 6(f) 

and the respective bar chart analysis is portrayed in Fig. 6(g). 

Time response analysis of the first and second outputs for 

square time delayed decoupled system is tabulated in Table I. 

In Table II time response analysis of first output with and 

without decoupler for square time delayed decoupled system 

is tabulated. Table III depicts the time response analysis of 

second output with and without decoupler for square time 

delayed decoupled system. 

 

 
(a) Step response of the first and second outputs 

 

 
(b) Graphical analysis of the first and second outputs 

 

 
(c) Control Signal for first and second outputs 

 

 
(d) Step response of the first output with and without decoupler 

 

 
(e) Graphical analysis of first output with and without decoupler 

 

 
(f) Step response of the second output with and without decoupler 

 

 
(g) Graphical analysis of second output with and without decoupler 

 

Fig. 6 Time response analysis of square time delayed decoupled system 

 

 
TABLE I  

TIME RESPONSE ANALYSIS OF THE FIRST AND SECOND 

OUTPUTS FOR SQUARE TIME DELAYED DECOUPLED SYSTEM 

Specifications First Output Second Output 

Settling Time (second) 15 50 
Rise Time (second) 12 20 

% Maximum Overshoot 0 5 
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TABLE II 
TIME RESPONSE ANALYSIS OF FIRST OUTPUT WITH AND 

WITHOUT DECOUPLER FOR SQUARE TIME DELAYED 

DECOUPLED SYSTEM 

Specifications With 

Decoupler 

Without 

Decoupler 

Settling Time (second) 15 50 
Rise Time (second) 12 10 

% Maximum Overshoot 0 20 

 
TABLE III 

TIME RESPONSE ANALYSIS OF SECOND OUTPUT WITH AND 

WITHOUT DECOUPLER FOR SQUARE TIME DELAYED 

DECOUPLED SYSTEM 

Specifications With 

Decoupler 

Without 

Decoupler 

Settling Time (second) 50 50 
Rise Time (second) 20 20 

% Maximum Overshoot 05 25 

 

Robustness Study 

 

Determination of multi - channel output gain margin 

(MOGM) 

 

MOGM is calculated in this work by varying the 

multiplicative maximum and minimum gain values to the 

inputs and outputs of the MIMO plant [25]. In this work 0.65 

is minimum value of gain (𝜕𝑚𝑖𝑛)and 1.42 is maximum value 

of gain (𝜕𝑚𝑎𝑥) for which system is stable. After that, MOGM 

is calculated as 2.18 and output responses for these gain 

values are shown in Fig. 7. Fig. 7 (a) and (b) displayed the 

responses of 1st and 2nd output with the upper gain values 

respectively whereas the Fig. 7 (c) and (d) portrayed the 

responses of 1st and 2nd output respectively with lower gain 

values.    

 

 
(a) First output plot with maximum gain value 

 

 
(b) Second output plot with maximum gain value 

 

 
(c) First output plot with minimum gain value 

 

 
(d) Second output plot with minimum gain value 

 
Fig. 7 Output response for square time delayed decoupled system 

 

 

Output disturbance rejection 

 

Fig. 8 exhibit the output responses and control signal for the 

time delayed plant with disturbance rejection. Fig. 8 (a) and 

(b) displayed the output responses of 1st output and 

corresponding control signal. Fig. 8 (c) and (d) displayed the 

output responses of 2nd output and corresponding control 

signal. It is clearly visible from all the results that due to the 

output disturbances the performance of the system is not 

deteriorated.  

 

 
(a) First output plot 

 

 
(b) Control signal of first output 

 

 
(c) Second output plot 

 

 
(d) Control signal of second output 

 
Fig. 8. Response of square time delayed decoupled system with 

output disturbance 
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B. Non - Square Decoupled System 

 

Considering the transfer matrix obtained in section 2.5.2 after 

decoupling for controller design. In this controller is designed 

only for the diagonal plant transfer function 𝐺11(𝑠) &𝐺22(𝑠). 
 

𝐺11(𝑠) =
4

20𝑠+1
                            (46)     

                                                                      

𝐺𝐿11(𝑠) = 𝐺11(𝑠). 𝐺𝑐1(𝑠) 

= [
4𝐾𝑑𝑠

2 + 20𝑠2 + 4𝐾𝑝𝑠 + 𝑠 + 4𝐾𝑖

20𝑠2 + 𝑠
] 

 
= 𝑠2[20 + 4𝐾𝑑] + 𝑠[4𝐾𝑝 + 1] + 4𝐾𝑖  

    (47)                                       

The characteristic polynomial of the system is represented by 

an interval of [𝐾𝑝1
− 𝐾𝑝1

+ ], [𝐾𝑖1
−𝐾𝑖1

+], [𝐾𝑑1
− 𝐾𝑑1

+ ] to determine the 

range of robustness for 𝐾𝑝,𝐾𝑖&𝐾𝑑,respectively, in 

characteristic polynomial. After it four interval polynomials 

associated with the Kharitonov characteristic is obtained as 

below. 

 

𝐾1(𝑠) = 𝑠2[20 + 4𝐾𝑑
+] + 𝑠[1 + 4𝐾𝑝

−] + 4𝐾𝑖
− 

 

𝐾2(𝑠) = 𝑠2[20 + 4𝐾𝑑
+] + 𝑠[1 + 4𝐾𝑝

+] + 4𝐾𝑖
− 

 

𝐾3(𝑠) = 𝑠2[20 + 4𝐾𝑑
−] + 𝑠[1 + 4𝐾𝑝

−] + 4𝐾𝑖
+

     

                                  
 

𝐾4(𝑠) = 𝑠
2[20 + 4𝐾𝑑

−] + 𝑠[1 + 4𝐾𝑝
+] + 4𝐾𝑖

+   (48) 

                                               

The values of the PID controller gains thus found out are 

shown in Fig. 9 (a) & 9 (b) for 𝐺𝐿11 and 𝐺𝐿22following the 

same procedure as discussed in previous example.  

 

 

(a)  For 𝐺𝐿11(𝑠) 

 
(b) For 𝐺𝐿22(𝑠) 

 

Fig. 9. PID gain value range for non-square decoupled system 
 

 

The results are obtained with the optimized value of PID 

controller using BFO method as discussed previously. Fig. 10 

(a) shows the output responses when first input receives a step 

signal, whereas the second input receives no signal. it is seen 

that only the 1st output response is obtained whereas the 2nd 

output response is zero whereas in Fig. 10 (b) output 

responses is portrayed for such case where second input 

receives a step signal, whereas the first input receives no 

signal. It is seen that only the 2nd output response is obtained 

whereas 1st response is tending to zero. It justified that system 

is satisfactorily decoupled.  

 

(a) First output's step response and the coupling effect on the second 

 

 

(b) Second output's step response and the coupling effect on the first 
output 

 

Fig. 10 – Output response of non-square decoupled system 

When inputs are applied to both inputs simultaneously, Fig. 

11 displays the system's output reaction for both inputs. It is 

seen from the obtained results displayed in Fig. 11(a) that 

output response track the reference inputs satisfactorily. Fig. 

11 (b) depicts the time response description of both the 

outputs. Control  signals applied for both the outputs are 

portrayed in Fig. 11 (c). The response of first output with and 

without the incorporation of decoupler is presented in Fig. 

11(d) and the bar charts displayed in Fig. 11 (e) shows the 

comparative analysis of the output ressponses.  

 

 
Fig (a) First and Second outputs response 

 

 
(b) Graphical analysis of the first and second outputs 
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(c) Control signal for first and second outputs 

 
(d) Step response of the first output with and without decoupler  

 
(e) Graphical response analysis of first output with and without 

decoupler 

 
(f) Step response of the first output with and without decoupler 

 
(g) Graphical analysis of second output with and without decoupler 

Fig. 11 Time response analysis of non-square decoupled system 

Similarly the second output  responses with and without 

decouplers are shown in Fig. 11 (f) and the respective bar 

chart analysis is portrayed in Fig. 11(g). Time response 

analysis of the first and second outputs for square time 

delayed decoupled system is tabulated in Table IV. In Table 

V time response analysis of first output with and without 

decoupler for square time delayed decoupled system is 

tabulated. Table VI depicts the time response analysis of 

second output with and without decoupler for square time 

delayed decoupled system. 

 
TABLE IV  

TIME RESPONSE ANALYSIS OF THE FIRST AND SECOND 
OUTPUTS OF NON-SQUARE DECOUPLED SYSTEM 

Specifications First Output Second Output 

Settling Time (second) 18 42 

Rise Time (second) 10 18 

% Maximum Overshoot 0 15 

 
TABLE V  

TIME RESPONSE ANALYSIS OF FIRST OUTPUT WITH AND 

WITHOUT DECOUPLER OF NON-SQUARE DECOUPLED SYSTEM 

Specifications With 

Decoupler 

Without 

Decoupler 

Settling Time (second) 18 400 
Rise Time (second) 10 50 

% Maximum Overshoot 0 40 

 

TABLE VI  
TIME RESPONSE ANALYSIS OF SECOND OUTPUT WITH AND 

WITHOUT DECOUPLER OF NON-SQUARE DECOUPLED SYSTEM 

Specifications With 

Decoupler 

Without 

Decoupler 

Settling Time (second) 42 320 

Rise Time (second) 18 18 

% Maximum Overshoot 15 45 

 

Robustness Study 

 

Determination of MOGM 

 

In this work lower and upper values for gain is determined as 

(𝜕𝑚𝑖𝑛) is 0.55 and (𝜕𝑚𝑎𝑥) is 1.65 for the stable system as 

displayed in Fig.12 which in turns the MOGM to be 3. Fig. 

12 (a) & (b) displayed 1st and 2nd output with maximum gain 

values whereas Fig. 12 (c) & (d) portrayed 1st and 2nd output 

with minimum values of gains. 

 

 
(a) First output's step response using maximum gain value 

 

 
(b) Second output's step response using maximum gain value 

 

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1671-1683

 
______________________________________________________________________________________ 



 

 
(c) First output's step response using lower gain value 

 

 
(d) Second output's step response using lower gain value 

 
Fig. 12 Output response of non-square decoupled system 

 

 

Determination of MODM 

 
The first and second input's delay margin is found as 𝜏𝑑1 =
0.25 and𝜏𝑑2 = 0.2. As a result, the multi-channel output 

delay margin (MODM) is computed to be 0.2. Fig. 13 shows 

output responses at various levels.  

 

 
(a) First output response with delay 0.25 

 

 
(b) Second output response with delay 0.2  

 
Fig. 13 Output response of non-square decoupled system 

  

 

Fig. 13 (a) displayed 1st output with a time delay of 0.25 

whereas in Fig.13 (b) the output response of 2nd output is 

displayed with a time delay of 0.2.  
 
Output disturbance rejection 

 
Fig. 14 exhibit the output responses and control signal for the 

non-square plant with disturbance rejection. Fig. 14 (a) and 

(b) displayed the output responses of 1st output and 

corresponding control signal. Fig. 14 (c) and (d) displayed the 

output responses of 2nd output and corresponding control 

signal. One can clearly understand from all results that the 

designed controller is quite capable to exhibit the output 

disturbance rejection performance.  

 

 
(a) First output plot 

 

 
(b) Control Signal of  first output plot 

 

 
(c) Second output plot 

 

 
(d) Control signal for  second output 

  
Fig. 14 Response of for non-square decoupled system with output 

disturbance 

 

IV. CONCLUSION 

 

This study provides a comprehensive description of the 

optimal decoupling and control techniques for various types 

of MIMO systems. The suggested disentanglement approach 

is founded upon the principles of LMI and RGA 

methodology. This approach has demonstrated notable 

efficacy when evaluating the performance of various types of 

MIMO systems. The PID controller that has been optimized 

is also specifically tailored for decoupled MIMO plant, 

employing Kharitonov theorem and the BFO technique. The 

method of decoupling control has been effectively executed 

on several types of plants, including square and non-square 

plants, plants with time delays, and plants with non-minimum 
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phase characteristics. The robust performance is verified by 

computation of the MOGM and MODM. The disturbance 

rejection performance of the designed controller is also tested 

through output disturbance rejection.   
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