
 

 

 

  

Abstract—A multi-scale feature fusion based small object 

vehicle detection approach (MS-YOLO) is proposed to 

address the problem of poor feature extraction ability 

caused by the complex backgrounds and dense objects. Due 

to the vehicle small object is easy to be interfered by the 

background, it is difficult to locate the detection model. this 

paper designs a parallel self-attention module (PAM) to 

suppress redundant non-singular feature expressions and 

focus on the most relevant vehicle information. The PAM 

module is embedded into the feature layers of different 

scales in the backbone network, optimizing the feature 

extraction ability of the network by adaptively allocating 

the weights of channels and space. Moreover, the 

multi-branch feature pyramid network (MB-FPN) is 

proposed to integrate the feature information of different 

resolutions, which effectively solves the problem that the 

small vehicle object are prone to generate false information 

in the upsampling process. Finally, the Focaler-CIOU loss 

function is introduced to address the problem of sample 

imbalance. Experimental verification on the Aerial dataset 

confirms that the proposed method achieves the best 

detection performance compared to classic detection 

algorithms such as YOLOv5, YOLOv7, YOLOX, YOLOv8, 

YOLOv11, Fast R-CNN, and SSD. 
Index Terms—small object vehicle detection, 

multi-scale feature fusion, parallel self-attention, 

MB-FPN. 

 

I. INTRODUCTION 

he utilisation of high-elevation aerial detection systems 

has gained significant traction in both military and civilian 

contexts, encompassing a wide range of applications such as 

battlefield reconnaissance, urban traffic management, road 

safety monitoring, field rescue, and numerous others [1]. 

Unfortunately, the traditional detection methods such as the 
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HOG [2], SIFT [3], and SURF [4] cannot adapt the practical 

application requirements since the complex algorithm 

processes, large parameter quantities, and the performance in 

real time is unsatisfactory. In recent years, the mainstream 

approach to object detection has gradually become that based 

on deep learning [5-7], such as Faster R-CNN [8], FPN [9], 

YOLO [10-13], SSD [14], and RetinaNet [15], which get the 

good detection performance for large-scale objects. However, 

the feature information in the small-scale objects gradually 

disappears with the increase of downsampling times, and even 

only a few pixels are left in the final layer, which is not 

conducive to the subsequent detection.  

The scholars have made a significant number of 

contributions to the improvement of the performance of small 

object detection. In terms of feature fusion, Tsung Yi Lin [9] 

proposed the feature pyramid network (FPN) to improve the 

multi-scale fusion ability. The PANet [16] further integrate 

deep and shallow information of feature maps. The ASFF [17] 

and AugFPN [18] are used the FPN module from different 

perspectives to enhance the feature fusion capability. Song [19] 

used the Bi-FPN module instead of the PANet module to 

improve the fusion degree feature. Jiang [20] designed 

multi-scale feature extraction block (MSFEM) and 

bidirectional dense feature pyramid network (BDFPN) to 

achieve efficient multi-scale information fusion. Moreover, 

Zhang [21] improved the YOLOX algorithm by combining the 

convolutional block attention module [22] (CBAM) module 

for small target detection of aerial vehicles. In proposing the 

BCC-Yolov8n model for infrared small targets, Xiang [23] 

suggested an enhancement to the neck network, building upon 

the reference network Yolov8. This model incorporates an 

attention mechanism, with the objective of addressing the 

challenges posed by low detection accuracy and missed 

detections in complex traffic scenarios. In summary, these 

algorithms have achieved significant improvements in the 

low-altitude aerial vehicle images object detection. However, 

there is currently limited research on aerial images captured by 

high-altitude drones (above 120 meters). The high-altitude 

aerial vehicle images are highly susceptible to background 

interference with low pixel rates and difficulty in extracting 

feature information, posing significant challenges to the aerial 

vehicle detection. 

In response to the above problems, this paper proposes a 

multi-scale feature fusion based small object vehicle detection 

approach (MS-YOLO), the primary contributions of which are 

as follows. 

(1) This paper proposes a parallel self-attention module 

(PAM) to address the problem of background interference by 
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focusing on the object information through the parallel spatial 

and channel attention mechanisms. The PAM module is 

embeded into different scale feature layers of the backbone 

network to improve the feature extraction capability of the 

model. 

(2) A multi-branch feature pyramid network (MB-FPN) is 

presented to address the issue of false information generated 

during the traditional upsampling process. The proposed 

MB-FPN module greatly improves the small object detection 

capability by fully integrating the deep and shallow 

information. 

(3) In response to the problems of imbalanced samples and 

differences between the foreground and background in the 

aerial images, the Focaler-CIOU loss function is introduced to 

distinguish different regression samples through linear interval 

mapping, which improve the accuracy of bounding box 

regression. 

The remainder of this paper is structured as follows. In 

Section II, we introduce the YOLOv5 network structure and 

related work. Section III proposes the MS-YOLO model and 

the components of each module in detail. In Section IV, the 

experimental environment and parameter configuration are 

introduced. Section V conducts the experimental comparison 

and result analysis to demonstrate the applicability and 

effectiveness of the method. Finally, Section VI is our 

conclusion. 

II. RELATED WORKS 

A. System process YOLOv8 network structure 

The YOLOv8 [24] proposed by Glenn Jocher is one of the 

popular one-stage object detection models in the YOLO 

family, as shown in Fig. 1. It employs a novel SOTA model, 

facilitating applications such as object detection, image 

classification, instance segmentation, and object tracking 

within the domain of computer vision. The standard 

YOLOv8 network is comprised of three components: 

backbone, neck, and head. The backbone network has 

changed the preprocessing of the Cross Stage Part (CSP) 

structure [25] from 3 convolutions to 2 convolutions. The C3 

structure of YOLOv5 has been replaced with a C2f structure 

with richer  

gradient flow by drawing on the design concept of YOLOv7. 

ELAN module stacking. The neck network adopts path 

aggregation network (PANet) structure, which is the 

FPN+PAN structure. The FPN and PAN respectively 

convey strong semantic information and localization 

features to enhance network feature fusion capabilities. The 

prediction layer introduces three decoupling heads of 

different sizes to predict the positions and categories of large, 

medium, and small-scale objects. 

B. Advantage of CBAM 

The CBAM is the lightweight module that simultaneously 

adds attention mechanism in both channel and spatial 

dimension, which can effectively enhance information 

transmission between networks. Specifically, We 

sequentially multiply cM and SM  with the given feature 

map X  and perform adaptive feature refinement to obtain 

the feature map outX  with the added attention, as shown in 

Fig. 2. “  ” represents point multiplication operation. 

Therefore, this paper parallelizes the spatial and channel 

attention mechanisms after absorbing the ideas of the 

CBAM and introduces them into the backbone network, 

which can effectively improve the ability of the backbone 

network to suppress the background interference. 
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Fig. 1 Network structure of YOLOv8 
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Fig. 2 The CBAM module schematic diagram 

 

III. PROPOSED METHED 

Due to the susceptibility of aerial vehicle objects to 

background interference and the detection algorithm is 

difficult to accurately locate the vehicle position ，  a 

MS-YOLO network has proposed, as shown in Fig. 3. The 

PAM attention mechanism module is proposed in the 

backbone with a view to reducing the adverse effects of 

background noise on object localization. Moreover, in order 

to deal with the false information generated by upsampling 

on the original FPN module, this paper proposes the 

MB-FPN module to avoid upsampling operations while 

fusing features of different resolutions. Finally, the 

Focaler-CIoU loss function is introduced to alleviate the 

problem of imbalanced aerial vehicle samples. 

A. PAM module for feature extraction 

The background interference in aerial images of vehicles 

can introduce a large amount of noise in the feature 

extraction process, resulting in the detection system being 

unable to correctly recognize and locate aerial images of 

vehicle [26]. This paper designs the PAM module based on 

the CBAM module，aiming to improve the feature extraction 

capability of the model, as shown in Fig. 4. On the one hand, 

the PAM inherits the idea of the CBAM and consists of 

spatial attention mechanism and channel attention 

mechanism. The spatial attention mechanism is concerned 

with the capture of dependency relationships at differing 

positions within the image, whilst the channel attention 

mechanism is concerned with the capture of correlation 

between differing channels in the feature map. On the other 

hand, the PAM models the spatial and channel dimensions 

separately by parallelizing the channel and spatial attention 

mechanisms to obtain richer and more accurate feature 

representations. We embed the PAM module into the feature 

layers with downsampling multiples of {4, 8, 16, 32} in the 

YOLOv8 backbone network, effectively reduce the noise 

interference in the feature extraction process and the 

highlight important features of the object vehicle. 

Firstly, the PAM module adaptively calculates weights to 

obtain the refined feature cM  and sM  through the 

H-channel and spatial attention mechanisms. The two 

features are concatenated in terms of channels, and the 

output features are obtained by 3×3 convolution. The output 

feature map outX  can be written as 

                          out c sX M M= +                       (1) 

The H-channel attention mechanism obtains the global 

information from the feature map X  by the global average 

pooling (GAP) module, and proportionally reduce and 

expand the feature map dimensions through the Hardswitch 

activation function [27] and 1×1 convolution, respectively. 

The sigmoid function is used to obtain the weight cA and 

multiply them with feature X  to obtain the weighted 

feature cM .  
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Fig. 4 Structure of PAM module 
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where ( ) cg X R  is the GAP layer; ( )Hs is the 

Hardswitch activation function; ( )R is the Relu activation 

function; [ , ]i jX is the i-th row and j-th column of X ; 

H and W  represent the length and width of X , 

respectively;  is the sigmoid activation function; “ ” is 

point multiplication operation; 1 1( )f   is 1×1 convolution. 

The spatial attention mechanism can obtain the average 

and maximum values of each channel in the feature map and 

compress the number of channels in the image to 1. Then we 

use 3 × 3 convolution and the sigmoid activation function to 

fuse spatial information and activate spatial weights, which 

are multiplied with feature X  points to obtain the weighted 

feature map sM . The spatial weight sA  and the weighted 

feature map sM  are denoted by 

                              s sM A X=                        (5) 

                3 3( ( ( ), ( ))sA f AP X MP X =              (6) 

where 3 3( )f   is 3×3 convolution, ( )AP is the average 

pooling operation, and ( )MP  is the maximum pooling 

operation. 

In summary, the PAM module can parallelize channel and 

spatial attention mechanisms while adaptively allocating 

target weights, thereby suppressing background interference 

and redundant information and improving the detection 

performance of the model. 

B. MB-FPN module for feature fusion 

The traditional FPN networks integrate the deep feature 

maps with the strong semantic features and the shallow 

feature maps with the strong texture information through the 

top-down and bottom-up paths, which can improve the 

network performance without affecting inference speed or 

increasing memory consumption. However, they are prone 

to generating false information when low resolution feature 

maps are upsampled. The false information makes the 

already small features of the object more chaotic, which is 

not conducive to subsequent recognition and detection. 

Therefore, the MB-FPN module is proposed, as shown in 

Fig.5. The feature maps 1 2 3 4, , ,C C C C  are the feature 

layers downsampled from the feature extraction network 

 4,8,16,32 , and the feature maps  1 2 3 4, , ,P P P P  are 

the feature layers that  1 2 3 4, , ,C C C C  have passed by the 

PAM module. Compared with the traditional FPN, the 

MB-FPN can integrate multi-scale information, avoid 

upsampling operations, and enrich the network’s multi-scale 

expression ability. 
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Fig. 5 Structure of MB-FPN module 
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Firstly, we concatenate features 1P  and 1C  to obtain 

richer shallow information. The fused feature 
'

1P  is denoted 

by 

                    
'

1 3 3 1 1( )P f P C=                                   (7) 

Afterwards, we fuse the fused feature maps of 2P  and 

2C  with the downsampled feature map of 
'

1P  to obtain the 

feature map 
'

2P . The feature map 
'

2P  is subjected to 1×1 

convolution to obtain the final output feature map 1X . The 

output feature 1X  is represented as 

          
'

1 1 1 3 3 2 2 1(( ( )) ( ( ))X f f P C Ds P =           (8) 

where ( )Ds  represents downsampling the feature map. 

Next, we fuse features 3C , 3P , and the downsampled 

features from 
'

2P  to obtain the feature map
'

3P . The output 

feature 2X  is obtained by 1×1 convolution and denoted by 

         
'

2 1 1 3 3 3 3 2(( ( )) ( ( ))X f f P C Ds P =          (9) 

Similarly, the calculation process for output feature 3X  

is represented as 

         
'

3 1 1 3 3 4 4 3(( ( )) ( ( ))X f f P C Ds P =          (10) 

C. Focaler-CIOU loss function for object location 

The bounding box regression loss function is of pivotal 

significance for the domain of object detection. The 

positioning accuracy of object detection is contingent on the 

efficacy of the bounding box regression loss function. The 

YOLOv8 model employs the CIoU  [28] as the regression 

loss function for the purpose of determining the distance 

between the true and predicted boxes. The CIoU  loss 

function comprehensively considers the aspect ratio, center 

point distance, overlap area between the predicted box and 

the true box, improving the accuracy of object localization. 

However, the problem of significant background differences 

in aerial images leads to a highly imbalanced state between 

the object and background. The Focaler-IoU method is an 

algorithm that utilises linear interval mapping to address the 

challenges posed by imbalanced datasets, thereby enhancing 

the efficacy of regression models. Therefore, this paper 

applies the Focaler-IoU to the IoU  loss function. 

According to the difficulty of object detection, the object 

is divided into difficult samples and simple samples. We 

define general samples as simple samples, while small 

objects or objects that are difficult to accurately locate are 

considered difficult samples. The Focaler-IoU method uses 

linear interval mapping to reconstruct IoU  loss. For 

detection tasks that mainly focus on simple samples, it is 

necessary to focus on simple samples during the regression 

process. On the contrary, it is necessary to focus on difficult 

samples when difficult samples dominate the regression 

process. The Focaler-IoU method can be formulated as 

                       1 focaler

Focaler IoUL IoU− = −                  (11) 

If IoU u , then 0focalerIoU =                   (12) 

If d IoU u , then
focaler IoU d

IoU
u d

−
=

−
     (13) 

If IoU u , then 1focalerIoU =                   (14) 

where IoU  is the ratio of intersection to union, 

and , [0,1]d u  . It can be seen that the Focaler-IoU method 

can focus on different detection tasks in different regression 

samples by adjusting the values of d and u . Therefore, this 

paper introduces the Focaler-CIoU loss function to alleviate 

the imbalance of positive and negative samples. the 

Focaler-CIoU loss function is defined as 

        
Focaler

Focaler CIoU CIoUL L IoU IoU− = + −        (15) 

where CIoUL  is the loss of CIoU , and 
FocalerIoU  

denotes the reconstructed IoU  loss. 

C. Dataset introduction 

The Aerial dataset is sourced from aerial images of 

Spanish roundabouts, and mainly includes four types of 

objects: cars, buses, cycles, and trucks. This paper selects 

captured images from multiple scenes and uses data 

augmentation methods such as geometric transformation and 

brightness adjustment to improve the richness of the data, as  

shown in Fig. 6. We used labelimg software for manual 

annotation to construct the standard vehicle dataset, and 

randomly divided the dataset into training, validation, and 

testing sets in 8:1:1 ratio to obtain the best model. The 

reasonable partitioning of the dataset can prevent overfitting 

of the network and improve the accuracy of model training. 

This paper uses the K-means++ algorithm [29] to recluster 

the object categories. The anchor box parameters are shown 

in Table I. 
TABLE I 

ANCHOR BOX PARAMETERS 

Feature map 

size 

Receptive field 

size 
Anchor 

20×20 Big (114, 91), (155, 199), (375, 327) 

40×40 Middle (31, 62), (63, 46), (58, 118) 

80×80 Small (11, 14), (15, 31), (32, 23) 

D. Dataset experiment environment and parameters 

To ensure the rigor of the experiment, all experiments are 

conducted in the same environment. The specific 

environmental configuration is shown in Table II. 

 

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1693-1704

 
______________________________________________________________________________________ 



 

 

 

 
Fig. 6 Aerial vehicle dataset for different scenarios 

 

TABLE II 

EXPERIMENTAL ENVIRONMENT CONFIGURATION 

Parameter Configuration Parameter Configuration 

GPU NVIDIA GeForce RTX 3060 CPU 
Intel(R) Core(TM) i7-9750H CPU 

@2.6GHz 

Image size 640×640 Learning rate 0.01 

Operating System Windows10 Epochs 200 

CUDA 12.1 Momentum 0.937 

Python 3.9.12 Weight decay 0.0005 

Torch 2.2.1 Batch size 16 

 

E. Evaluation index 

In order to comprehensively and intuitively evaluate the 

performance of the MS-YOLO model, this paper selects 

common indicators such as precision, recall, mAP, F1, and 

FPS to evaluate the model. Precision is defined as the 

probability of detecting correctly among all detected objects. 

The recall refers to the probability of correctly identifying all 

positive samples. The average precision (AP) value is 

indicative of the precision of all recall rates. The mean 

average of each AP category is denoted by mAP. The 

following formulae are employed to calculate this mean 

average. 

                          precision = 
TP

FP TP+
                           (16) 

                        recall = 
TP

FP TN+
                            (17) 

                           mAP = 
riP

K


                                (18)  

where TP  and FP  are respectively true positive and false 

positive, riP  represents the area under the precise recall 

curve of a specific category, K is the number of categories, 

and 4K = . 

The 1F  is the harmonic mean of precision and recall, 

which evaluates P and R  as a whole. The 1F  is 

represented as 

                           
2

F1 = 
R P

R P

 

+
                                 (19) 

where P  and R  are the precision and recall, respectively. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

In the YOLOv8s model, we first add different attention 

mechanism modules at the same location, compare different 

feature fusion methods and loss functions, and verify the 

superiority of innovative points. Secondly, the ablation 

experiments are designed to verify the superiority of each 

module. Finally, this paper compared the proposed model 

with different object detection models to verify its 

superiority. 

A. Performance comparison and analysis of feature fusion  

This paper redesigns the feature fusion module and 

propose the MB-FPN module to suppress the false 

information generated by the upsampling of the original 

FPN. We compare the MB-FPN module with other modules 

uch as FPN, Bi-FPN, FPN-PAN, AFPN, and MB-FPN as 

shown in Table III. Note, the bold numbers in the tables 

represent the optimal results, while the italicised numbers 

represent the suboptimal results. 

From Table III, it can be seen that compared to the 

original FPN module, the MB-FPN module has improved 

precision, recall, and mAP@0.5. Compared with other 

mainstream feature fusion methods, the mAP@0.5 has also 

been enhanced to a certain extent, indicating that the 

MB-FPN module has relatively excellent overall 

performance in detecting small objects in aerial vehicles. 

Overall, the MB-FPN module effectively avoids the false 

information generated by the original FPN when upsampling 

low resolution feature maps, fully integrates the deep and 
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shallow information of the backbone network, which can 

accurately locate the vehicle objects. 

B. Comparative analysis of attention mechanisms  

In order to solve the problems of background interference 

and small object feature loss in the feature extraction process, 

this paper adds mainstream attention mechanisms such as 

the SENet [30], CBAM, CA [31], SimAM [32], and PAM 

attention mechanisms to feature maps with downsampling 

multiples of  4,8,16,32 in the backbone network for 

comparison. 

Table IV shows the performance indicators of different 

attention mechanisms. It can be seen that the PAM module 

proposed in this paper has the highest precision, recall, and 

mAP@0.5. Specifically, compared with the original 

YOLOv5 network, the mAP of the PAM has increased by 

1.5%, which can verify the effectiveness of the PAM 

module. 

This paper uses visual images to show the attention 

situation of four different attention mechanisms on small 

objects of aerial vehicles, which can intuitively illustrate the 

superiority of the PAM module, as shown in Fig. 7. Due to 

the image is a high-altitude aerial image with small pixel 

ratios and significant differences in aspect ratios, we can see 

from Fig. 7 that the attention mechanisms of the SimAM, 

CBAM, and SENet all have varying degrees of feature loss. 

However, the PAM module can accurately focus on the 

vehicle position information by parallelizing spatial and 

channel attention mechanisms, adaptively adjusting spatial 

and channel weights. The module can also highlight vehicle 

features and suppress background noise interference.  

TABLE III 

COMPARISON EXPERIMENT OF FEATURE FUSION METHODS 
Index 

Model 
P/% R/% F1 mAP@0.5/% mAP@0.5:0.95/% 

FPN 87.5 87.6 87.5 91.3 65.9 

FPN-PAN 92.1 92.1 92.0 93.3 68.8 

Bi-FPN 95.2 90.6 92.8 94.9 70.7 

AFPN 95.1 90.3 92.6 93.2 68.9 

MB-FPN 94.2 93.4 93.7 95.2 71.8 

 

TABLE IV 

PERFORMANCE INDICATORS OF DIFFERENT ATTENTION MECHANISMS 

Index 

Model 
P/% R/% F1 mAP@0.5/% mAP@0.5:0.95/% 

YOLOv8 92.1 92.1 92.0 93.3 68.8 

YOLOv8+SENet 93.1 91.3 92.1 93.8 67.4 

YOLOv8+CBAM 92.5 91.0 91.7 94.7 69.6 

YOLOv8+SimAM 95.0 90.6 92.5 94.6 68.3 

YOLOv8+PAM 94.6 90.8 92.6 94.8 71.3 

（a）original （b）PAM （c）SimAM （d）CBAM （e）SENet

 
(a) Original                                    (b) PAM                                 (c) SimAM                                  (d) CBAM                                  (e) SENet 

Fig. 7 Visualization of different attention mechanisms  
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C. Performance comparison and analysis of loss functions  

This paper compares the loss function of Focaler-CIoU 

with that of the YOLOv8, as shown in Fig. 8. The overall 

convergence speed of the Focaler-CIoU loss function is 

higher than that of CIoU, with smaller loss values and a more 

stable network. The Focaler-CIoU loss function uses a linear 

interval mapping method to select the types of samples that 

are of particular concern, effectively suppressing the adverse 

effects of sample imbalance on the model.  

 

YOLOv8

YOLOv8＋Focaler-CIoU

 
Fig. 8 Comparison of loss functions 

 

Therefore, the Focaler-CIoU loss function has smaller 

positioning errors, faster and more accurate regression, 

which improves the detection accuracy of the model. 

D. Ablation experiment 

We design eight ablation experiments on the aerial 

datasets using YOLOv8 as the baseline network to verify the 

improvement of the model performance by PAM, MB-FPN, 

and Focaler-CIoU.  

Table V shows the results of the ablation experiment. It 

can be seen that the introduction of PAM module reduced the 

detection speed, but mAP also decreased by 5.6 percentage 

points, and the detection accuracy was significantly 

improved. Compared to the YOLOv8 network, adding the 

PAM module increased the precision and mAP@0.5 of the 

model by 2.5% and 1.5%, respectively. The PAM module 

effectively enhances the expression of vehicle feature 

information. The MB-FPN module integrates feature maps 

of different scales. Compared with the original YOLOv8 

network, mAP@0.5 has improved by 1.9% and achieved the 

highest recall rate, indicating that the MB-FPN network has 

improved detection accuracy with minimal loss of detection 

speed. The introduction of the Focaler-CIOU loss function 

has led to growth in various evaluation indicators, with 

increases of 1.1%, 0.6%, and 0.7%, respectively. Overall, 

compared to the YOLOv8 network, the network proposed in 

this paper improves the precision, recall, and mAP@0.5 by 

3.8%, 0.5%, and 2.6%, respectively, with only a small 

number of parameters added. The results of the ablation 

experiment prove that all modules proposed in this paper 

have the effectiveness. 

To visually illustrate the impact of each module on model 

detection performance, Fig. 9 shows the changes in 

mAP@0.5 values after adding each module. It can be seen 

that the mAP@0.5 value shows varying degrees of 

improvement after the successive addition of different 

modules, reaching stability around 170 rounds. Meanwhile, 

the model proposed in this paper has better mAP@0.5 value 

and better convergence of the curve within the iteration 

period from the locally enlarged graph. 

Fig. 10 shows the P-R curves of YOLOv8 before and after 

improvement. The larger the area enclosed by P-R, and the 

better the model performs in measuring accuracy and recall, 

which means that while maintaining the recall rate, the 

model's prediction accuracy is higher. The P-R area of 

“vehicle” categories in the YOLOv8 network and 

MS-YOLO network approaches 1. This is because there are 

many “vehicle” class objects in the dataset, which allows 

both networks can effectively extract features. For the 

“cycle” class with the smallest pixel proportion and small 

sample size, the P-R area value and the mAP@0.5 value of 

the network proposed in this paper are higher than those of 

the original YOLOv8 network, which can demonstrate the 

superiority of the MS-YOLO network in high-altitude aerial 

image of small-scale vehicles. 

TABLE V 

ABLATION RESULT 

 

Index 

Model 
PAM MB-FPN Focaler-CIOU P/% R/% mAP@0.5% mAP@0.5:0.95% FPS 

1    92.1 92.1 93.3 68.8 41.5 

2    94.6 90.8 94.8 71.3 35.9 

3    94.2 93.4 95.2 71.8 39.3 

4    93.2 92.7 94.0 69.7 39.6 

5    95.0 93.3 95.3 72.1 38.7 

6    94.4 88.2 94.0 71.5 37.7 

7    95.6 92.8 95.1 71.3 40.1 

8    95.9 92.6 95.9 72.3 35.5 
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Fig. 9 Changes in index in ablation experiments 
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(a) YOLOv8 network                                                                                             (b) MS-YOLO network 

Fig. 10 P-R curve 
 

E. Comparative experiment 

To comprehensively evaluate the actual performance of 

MS-YOLO model, this paper provides the detailed 

comparison between the MS-YOLO model and six classic 

algorithms in terms of precision, recall, F1, mAP@0.5, 

mAP@0.5:0.95, and FPS. Table VI is the comparison of 

indexes for different models. The MS-YOLO has greater 

advantages compared to the other object detection methods. 

Specifically, compared with the original YOLOv8 network, 

the precision, recall, and mAP@0.5 have improved by 3.8%, 

0.5%, and 2.6%, respectively. Compared with the latest 

YOLOv11model, the recall rate is slightly lower, but other 

evaluation metrics have slightly improved, which can verify 

the superiority of MS-YOLO model. There has been a 

certain improvement in all indicators by compared with the 

two-stage classical models and other one-stage models. 

Moreover, the detection speed of the model in this paper is 

slightly slower than the original YOLOv8 model, but still 

faster than the two-stage object detection models.  Therefore, 

although the MS-YOLO sacrifices the smaller detection 

speed, it significantly improves the detection performance of 

the model, making it more suitable for detecting small object 

vehicles in the high-altitude aerial images. 

In order to further verify the detection performance of the 

MS-YOLO model on aerial small target vehicles in different 

scenarios, this paper selected multiple images from different 

scenes. Fig. 11 shows the original image, the visualization 

results of Faster R-CNN, YOLOv5, YOLOX [33], YOLOv8, 

YOLOv11 and our model, respectively. The yellow boxes in 

the visualization image represent the missed detections, 

while the green boxes represent false detections. In Fig. 

11(b), the Faster R-CNN model has a large number of 

missed detections, which cannot meet the actual needs of 

traffic vehicle detection. The YOLOv5 original model and 

YOLOX model have improved the missed detections of 

Faster R-CNN, but there are still missed and false detections 

when capturing small vehicle objects at high altitudes from 

Fig. 11(c) and (d). In Fig. 11(e), the YOLOv8 model 

misclassifies the truck as the bus class and misclassifies the 

background as the bus, with an amount of false detection. As 

can be seen from Fig. 11(f), the latest YOLOv11 detection 

algorithm will still produce false detection when the 

background is similar to the shape and color of the object, 
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and there will be missed detection when the object is dense. 

The MS-YOLO model can effectively distinguish the 

vehicle categories, significantly reduce the number of 

missed detections, and has the better confidence. 

In summary, the MS-YOLO detection model has superior 

detection performance, especially in densely populated 

vehicles. This paper verifies the feasibility of the MS-YOLO 

model through intuitive data and visualization results in 

different scenarios. Therefore, the MS-YOLO can be applied 

to small object detection tasks in traffic scenes. 

TABLE VI 

COMPARISON OF INDEXES FOR DIFFERENT MODELS 

Index 

Model 
P/% R/% F1 mAP@0.5/% mAP@0.5:0.95/% FPS 

Faster R-CNN 63.1 85.7 73.0 77.4 43.6 7.36 

SSD 89.2 81.0 84.9 83.3 51.6 14.3 

YOLOv4 81.9 83.2 82.5 86.9 54.9 39.7 

YOLOv5 93.2 91.6 92.4 92.3 66.4 37.3 

YOLOv7 93.1 89.0 90.9 91.1 66.9 40.6 

YOLOX 93.9 91.6 92.7 94.2 65.3 43.7 

YOLOv8 92.1 92.1 92.0 93.3 68.8 41.5 

YOLOv11 95.3 93.1 94.1 94.9 70.3 38.5 

MS-YOLO 95.9 92.6 94.5 95.9 72.3 35.5 
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Fig. 11 Visualization results of different object detection network 

 

VI. CONCLUSION 

This paper proposes the new model for detecting small 

objects in aerial vehicles. Firstly, the PAM module is 

constructed in the backbone network to parallelize channel 

and spatial attention mechanisms, intelligently allocate 

weights between background and target, thereby enhancing 

the model's feature extraction capability and reducing 

interference from irrelevant background. Moreover, we 

propose the MB-FPN module in the neck to fully utilize the 

feature information of different layers and improve the 

detection performance of small objects. In order to alleviate 

the imbalance between background and object, the 

Focaler-CIoU loss function is introduced, which can 

selectively focus on simple and difficult samples to improve 

the detection accuracy of the model. The experimental 

results on the Aerial dataset show that the MS-YOLO model 

outperforms other compared models in terms of precision, 

recall, and mAP evaluation metrics, and can effectively 

avoid problems such as false positives, missed detections, 

and duplicate detections. In the future, we will further 

optimize the model to have better detection ability and faster 

detection speed when facing complex traffic scenes of 

vehicle objects. 
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