
 

 
 Abstract—This research presents a new target detection 

network model, the DRL-YOLO model, in response to the 

YOLO network's limitations in identifying small targets in 

uncertain settings. The DRL-YOLO network model is based on 

the YOLO architecture and integrates dynamic snake 

convolution in the Backbone component. This offers the model a 

strong approach for feature extraction through a 

multi-perspective feature fusion strategy. In the Neck section, 

the DRL-YOLO model incorporates the RepViT Block module, 

utilizing the self-attention mechanism of ViT to enhance the 

feature extraction efficiency of the CNN for improved feature 

processing. The Head section introduces PLDetect, an 

innovative detection head that markedly reduces the model's 

computational complexity while maintaining accuracy through 

structural innovation and replacing the original convolution 

module. The DRL-YOLO model exhibited improvements in 

mAP of 1.7% and 1.3% on the DUO and URPC2020 datasets, 

respectively, compared to the baseline model, alongside a 

significant 40.1% decrease in GFLOPs. The experimental 

results validate that DRL-YOLO provides an optimal solution. 

 
Index Terms—lightweight, multi-view feature fusion, small 

target detection, YOLOv8s 

 

I. INTRODUCTION 

etection of small targets in ambiguous environments is a 

significant research focus in computer vision, with 

extensive applications in several fields, including security 

surveillance, medical imaging, and biological detection. The 

primary challenge in locating small targets is their minimal 

spatial presence in the image and the scarcity of discernible 

features. Traditional target identification algorithms can be 

deceived by background noise while attempting to identify 

small targets, diminishing their accuracy and dependability. 

In intricate fuzzy environments, the challenge of detecting 

small targets is exacerbated by numerous additional 

considerations. Occlusion occurrences in the scene might 

partially or conceal the target's feature information, hindering 

the detector's ability to reliably identify the target. The 

blurring effect diminishes image quality, renders the edge 
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and texture details of the target less discernible, and 

complicates feature extraction. Variations in lighting 

conditions will affect the visual performance of the target; 

specifically, brightness and contrast will diminish in 

low-light environments, while overexposure may arise in 

intense lighting conditions, both of which will negatively 

influence the detection of small targets. In practical small 

target identification applications, real-time mobile devices 

are preferred due to their intricate settings. Although 

conventional big target detection models exhibit excellent 

recognition accuracy, they are computationally demanding, 

possess several parameters, and pose challenges for 

deployment on mobile devices or embedded systems. 

Deep learning is ineffective in detecting small objects in 

complex scenarios because of its extensive training samples, 

protracted training duration, and intricate network 

architecture, which complicate its application on standard 

devices. This research introduces the novel network model 

DRL-YOLO to address these difficulties. DRL-YOLO 

achieves an optimal equilibrium between model complexity 

and accuracy, enhancing precision while diminishing 

computing speed. 

This paper's primary contributions are as follows: 

The Backbone part incorporates C2f_DynamicConv to 

augment a segment of the basic C2f architecture. The 

application of the quantization technique using 

C2f_DynamicConv enhances the understanding of gradient 

flow while maintaining a lightweight model. This accelerates 

the model's convergence and enhances training efficacy. 

A refined C2f module, derived from RepViT, partially 

substitutes the original module in the Neck portion. RepViT 

Blocks alter the sequence of the 3x3 depth separable 

convolutions within the MobileNetV3 module and 

consolidate them into a unified branch. This accelerates 

feature representation and processing. 

This work proposes PLDetect, a lightweight detection 

head based on PConv, in the head portion. By meticulously 

streamlining the original framework, PLDetect enhances 

detection accuracy while markedly accelerating operational 

speed. This enhancement renders the detecting head more 

appropriate for real-time, demanding application settings 

while preserving efficient performance. 

II. RELATED WORKS 

In recent years, various methods have arisen to tackle 

intricate application scenarios, constrained resources, and 
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additional obstacles. Although the conventional R-CNN [1] 

attains superior accuracy, it incurs a trade-off in terms of 

speed and resource utilization. Conversely, the YOLO [2-7] 

series and SSD [8] are better suited for real-time applications. 

Recent model enhancement strategies have facilitated small 

target detection in ambiguous settings. Wang et al. [9] 

proposed the UTD-Yolov5 approach, an enhanced YOLOv5 

target detection algorithm. It emphasizes enhancing detection 

flexibility and accuracy by substituting the original Backbone 

with a two-phase cascaded CSP (CSP2) and incorporating a 

visual channel attention mechanism module, SE, among 

other modifications. Zhou et al. [10] introduced a method 

utilizing an enhanced YOLOv4, which includes the 

Multi-scale Retina Algorithm (MSRCR) for picture 

enhancement alongside an updated Spatial Pyramid Pooling 

(SPP) module. Ge et al. [11] introduced a lightweight model, 

UW_YOLOv3, to mitigate computational energy and storage 

resource limitations in intricate application contexts. Huo et 

al. [12] introduced an enhanced Ghost module developed by 

a feature reuse concept to augment the accuracy and 

robustness of biometric identification and detection in 

intricate circumstances. Resource identification has emerged 

as a significant aspect of tiny target detection in intricate 

circumstances, with numerous studies contributing to this 

field. Wu et al. [13] developed the YOLOv5-fish detection 

algorithm, which employs an autonomous MSRCR algorithm 

to enhance blurred images. This advancement accelerates and 

increases the accuracy of fish target identification in 

obscured environments by optimizing critical components of 

the YOLOv5 model. Liang et al. [14] introduced the C3 

module, which employs depth-separable convolutions and 

Ghost convolutions, alongside the structurally parameterized 

RepVgg module, to enhance the model's detection accuracy 

and inference time. Yi et al. [15] introduced a compact target 

identification method utilizing YOLOv7, incorporating the 

SENet attention mechanism and improving the FPN network 

architecture. Liu et al. [16] introduced MarineYOLO, 

enhancing target localization accuracy and stability through 

the utilization of upgraded EC2f and EMA modules, together 

with the incorporation of CBAM and Wise-IoU loss 

functions. Liu et al. [17] introduced YoLoWaternet (YWnet), 

enhancing the detection accuracy of tiny targets with the use 

of CBAM, CRFPN, and SRC3 modules, alongside EIoU loss 

functions and decoupling heads. Zhang et al. [18] introduced 

a biometric method utilizing an enhanced lightweight 

YOLOv5, selecting EfficientNetV2-S as the lightweight 

backbone network, thereby decreasing the computational 

load of network parameters and enhancing recognition speed. 

Qu et al. [19] introduced the YOLOv8-LA model, an 

innovative neural network designed for small target detection. 

This model enhances performance through the 

implementation of the LEPC module and the AP-FasterNet 

architecture, along with the integration of the CARAFE 

upsampling operation, ensuring high detection accuracy 

while preserving real-time processing capabilities. These 

enhancement modules are essential for augmenting the 

precision of small target detection in ambiguous contexts and 

signify the swift advancement of fuzzy target detection. 

Contemporary research methodologies inadequately address 

the unique challenges presented by complex ecosystems. 

They either inadequately address these issues or render 

computations excessively costly in the pursuit of enhanced 

performance. Both of these challenges hinder the practical 

application of these technologies in real-world scenarios. 

Achieving a balance between detection accuracy and model 

complexity remains challenging; hence, small target 

detection in ambiguous circumstances continues to encounter 

difficulties in efficient application with constrained 

resources. 

III. METHODS 

A. Network Model 

YOLOv8 (You Only Look Once version 8) represents the 

most recent advancement in the YOLO series of object 

detection models developed by the Ultralytics team, 

maintaining the series' esteemed standards of efficiency, 

rapidity, and precision. The Ultralytics team classifies 

YOLOv8 into five model sizes: n, s, m, l, and x. This research 

uses YOLOv8s as the primary model. YOLOv8s is 

acknowledged for its exceptional detection precision, rapid 

computational efficiency, and diminished parameter quantity. 

It is recognized for its simple deployment on mobile devices 

and its ability to maintain a high level of detection accuracy. 

The Backbone component of YOLOv8 enhances feature 

extraction via a sophisticated amalgamation of three 

modules: Conv, C2f, and SPPF. The Conv module comprises 

multiple convolutional layers, batch normalization, and SiLU 

activation functions that improve model performance while 

maintaining computing efficiency. The C2f module utilizes 

skip-layer connections and split operations in a novel manner. 

This facilitates the network in attaining an optimal balance 

between depth and width, improving gradient propagation 

and expediting information transfer. The SPPF module 

utilizes a method called "spatial pyramid pooling" to 

facilitate the model's extraction of relevant features across 

several scales. This augments its ability to adjust to 

objectives across several scales. In the Neck section, 

YOLOv8 has improved feature fusion by removing 

redundant convolutional layers found in YOLOv5, leading to 

a more efficient and streamlined network. In the Head region, 

YOLOv8 has offered a notable innovation by employing a 

decoupled architecture that separates target classification 

from localization tasks, thereby resolving the conflicts 

present in conventional frameworks. This innovative 

adjustment improves the model's performance in 

classification and localization accuracy. 

YOLOv8 has achieved extensive use in target detection 

owing to its remarkable versatility. Nonetheless, the 

identification of small objects in ambiguous environments 

continues to be hindered by issues such as intricate 

backdrops, inadequate illumination, and diminutive, 

indistinct targets, which increase the likelihood of missing 

and erroneous detections. This research proposes a novel 

DRL-YOLO network model (Fig. 1) that guarantees precise 

detection in particular environments while maintaining a 

compact and lightweight design. 

 

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 1735-1745

 
______________________________________________________________________________________ 



 

 

Fig. 1. A network structure diagram of DRL-YOLO.  

DRL-YOLO utilizes various unique methodologies to 

enhance computing efficiency, detection precision, memory 

utilization, and model resilience. The optimization 

methodologies are as follows: 

Employing a static convolutional kernel for input features 

in a conventional convolutional layer may lead to extended 

image processing durations, especially when the dimensions 

of the image and the number of features fluctuate. This paper 

introduces the C2f_DynamicConv module within the 

Backbone section as a resolution to this problem. It alters the 

dimensions and arrangement of the convolutional kernel 

based on differing input features. This improves feature 

extraction efficiency and accelerates the training and 

inference procedures. 

The gradient may diminish or information may be 

compromised in YOLOv8's traditional convolutional 

network, especially during the deep feature extraction stage. 

This research introduces the C2f_RVB module, which 

enables the transfer of feature information between layers 

using residual connections, so effectively mitigating 

information loss and accelerating the training process. This 

improves the model's adaptability to diverse object sizes and 

complex environments. 

This study proposes a novel PLDetect detection module to 

enhance detection efficiency and accuracy, employing a 

serial configuration of PConv and Conv. Pconv circumvents 

the computation of invalid regions by convolving solely the 

valid areas, thereby substantially decreasing the 

computational load, particularly in intricate landscapes with 

increased occlusion and absent components. The serial 

architecture additionally diminishes memory usage and 

enhances the model's performance. 

B. Backbone Network Improvements 

The C2f in the Backbone segment of the YOLOv8 

model has a fixed-size convolutional kernel, potentially 

limiting its applicability to targets of varying shapes and 

sizes. For objects with intricate geometries or atypical 

proportions, a static convolutional kernel may prove 

ineffective in capturing their characteristics. DSConv 

(Dynamic Snake Convolution) enhances the capture of 

local characteristics in an image by dynamically altering 

the convolution kernel, which is crucial for target 

detection. This study replaces the usual convolution in the 

bottleneck section of C2f to improve adaptability for 

feature extraction in complicated situations and better 

target identification accuracy. Figure 2 depicts the 

configuration of the enhanced C2f_DynamicConv module. 

 

Fig. 2. The C2f_DynamicConv module. 
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Fig. 3. Calculation process of DSConv coordinates. 

The DSConv (Dynamic Snake Convolution) operation 

is a dynamic convolution operation designed to segment 

tubular structures that adapt to the target's geometry. It 

works best on thin, winding tubular structures like blood 

vessels and roads. DSConv can focus on features from 

different perspectives through the multi-perspective 

feature fusion strategy, ensuring that important 

information from different global patterns is retained. 

Although DSConv provides more complex feature 

extraction, it still maintains a high computational 

efficiency, which is necessary for real-time or 

near-real-time image processing applications, and satisfies 

the goal of fuzzy target detection to be deployed on limited 

resources. The calculation of the DSConv coordinates is 

shown in Figure 3. 

This paper modifies the usual convolution kernel along 

the x-axis and y-axis to enhance DSConv (Dynamic 

Serpentine Convolution) for modeling tubular structures. 

A convolution kernel measuring 3x3 is utilized as an 

example to demonstrate the process: In the x-axis 

direction, each grid point of the convolution kernel is 

represented in this work as Ki±c= (xi±c, yi±c), where c might 

assume the values {0, 1, 2, 3, 4}, indicating the horizontal 

distance from the central grid. The selection of each grid 

place in the convolution kernel is a cumulative procedure. 

Commencing with the central location K i, the subsequent 

position Ki+1 of each grid is determined by the preceding 

position Ki augmented by an offset Δ={δ∣δ∈[-1,1]}. To 

preserve a linear morphological structure in the 

convolution kernel, the offsets Σ must be aggregated to 

allow for dynamic adjustment of the kernel along the local 

structure of the target. The variation of the convolution 

kernel along the x-axis and y-axis is illustrated in 

equations (1) and (2), respectively. 

𝐾𝑖±𝑐 = {
(𝑥𝑖+𝑐 , 𝑦𝑖+𝑐) = (𝑥𝑖 + 𝑐, 𝑦𝑖 + Σ𝑖

𝑖+𝑐Δ𝑦),

(𝑥𝑖−𝑐 , 𝑦𝑖−𝑐) = (𝑥𝑖 − 𝑐, 𝑦𝑖 + Σ𝑖−𝑐
𝑖 Δ𝑦),

     （1） 

𝐾𝑗±𝑐 = {
(𝑥𝑗+𝑐 , 𝑦𝑗+𝑐) = (𝑥𝑗 + Σ𝑗

𝑗+𝑐
Δ𝑥, 𝑦𝑗 + 𝑐),

(𝑥𝑗−𝑐 , 𝑦𝑗−𝑐) = (𝑥𝑗 + Σ𝑗−𝑐
𝑗

Δ𝑥, 𝑦𝑗 − 𝑐),
    （2） 

The bilinear interpolation approach, as delineated in 

equation (3), is employed to transform the input feature 

map according to the new coordinate mapping, resulting in 

the deformed feature map. Finally, the DSConv 

convolutional layer analyses the distorted feature map. 

𝐾 = Σ𝐾′𝐵(𝐾′, 𝐾) ⋅ 𝐾′                （3） 

C. Neck Network Improvements 

The neck architecture in the YOLOv8 model is crucial as it 

amalgamates feature maps at many sizes to improve target 

detection precision. The initial neck component of YOLOv8 

insufficiently examines the intricate interrelationship among 

several feature layers in the realm of feature fusion. This 

suggests that the combined traits possess limited expressive 

potential. This may lead to a deterioration in the model's  

efficacy when tackling targets with complex backgrounds or 

multi-scale variability. Classic necks may result in increased 

computing costs when processing high-resolution feature 

maps, hence affecting the model's overall efficiency, 

especially on resource-constrained systems. The two 

challenges are particularly crucial in fuzzy target detection 

within resource limitations. This study seeks to improve the 

depth and quality of feature fusion while reducing 

computational resource consumption. This paper integrates 

the RVB (RepViT Block) with the original C2f module to 

improve the network's performance. The C2f_RVB module 

amalgamates traditional convolutional processes with the 

RepViT Block module, which is based on RepViT (To Look 

Back at Mobile CNN From A ViT Point Of View). The 

RepViT Block module aims to optimize network 

performance, decrease computing demands and parameter 

quantity, and boost model dependability by allowing 

C2f_RVB to adapt more proficiently to varying picture 

conditions and target discrepancies via multi-scale and 

multi-path feature processing. This method allows the model 

to provide strong feature extraction and fusion capabilities 

while being lightweight. Figure 4 depicts the structure of the 

improved C2f_RVB module.  
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Fig. 4. The C2f_RVB module. 

ViT Perspective Block) is an innovative network module 

that enhances the efficacy of conventional convolutional 

neural networks (CNNs) by integrating the advantages of 

Vision Transformer (ViT), which performs more 

effectively in resource-constrained environments, such as 

mobile devices. The purpose of the RepViT Block is to 

utilize the self-attention mechanism in ViT to improve the 

feature extraction efficacy of CNNs.The Vision 

Transformer (ViT) effectively captures global 

dependencies via the self-attention mechanism, whereas 

Convolutional Neural Networks (CNNs) specialize in 

local feature extraction. The RepViT Block integrates the 

advantages of both methodologies to enhance feature 

processing efficiency. In contrast to the conventional 

MobileNetV3 block that closely integrates spatial mixing 

and channel mixing, the RepViT Block implements 

multiple measures to delineate these processes. This work 

repositions the 3×3 deep convolution (DW) to precede the 

1×1 extended convolution. Furthermore, the 

Squeeze-and-Excitation (SE) layer is repositioned after the 

3x3 depthwise convolution, as it requires spatial 

information that has been previously processed by the 3x3 

depthwise convolution. This modification enables the 

paper to distinctly differentiate the spatial mixer from the 

channel mixer within the MobileNetV3 block. This paper 

employs a conventional structural reparameterization 

technique to enhance the 3x3 DW layer. This facilitates the 

model's learning during the training process. This article 

utilizes the structural reparameterization technique to 

avoid the additional computational and memory burdens 

linked to skip connections during the inference phase, 

which is particularly crucial for resource-limited mobile 

devices. Figure 5 illustrates the configuration of the 

RepViT Block module. 

 

Fig. 5. RepViT Block 

The self-attention mechanism in the RepViT Block 

significantly improves feature extraction capabilities. The 

self-attention technique allows the model to dynamically 

allocate different weights to features across several 

channels throughout the processing of the input feature 

map. This enables the recognition of salient 

characteristics. This mechanism is particularly proficient 

in fuzzy target recognition, as the complexity and dynamic 

unpredictability of certain circumstances require the 

model's adaptability in recognizing and responding to 

various visual cues. The C2f_RVB module enhances the 

model's ability to recognize multi-scale targets by 

effectively amalgamating feature maps from various 

scales. In the identification of small targets within 

obscured surroundings, where target size and shape 

display considerable variability, multi-scale feature fusion 

improves the model's capacity to accurately identify and 

localize these targets. The RepViT Block significantly 

enhances feature extraction by the integration of an 

advanced self-attention mechanism, multi-scale feature 

fusion, and deep separable convolution. The 

structure-intensive parameterization method and carefully 

designed network architecture improve lightweight 

efficiency while maintaining excellent performance, 

which is essential for resource-constrained fuzzy target 

recognition applications. 

D. Head Network Improvements 

The detection head of YOLOv8 predicts bounding boxes 

and category probabilities from the feature map. It 

comprises two branches, each employing two 3x3 

convolutions and one 1x1 convolution to extract 

information from the input, subsequently computing 

Bbox.loss and Cls.loss. The detecting head constitutes 

approximately one-fifth of the model's computation. In 

conventional convolution, every channel of the input 

feature map must be processed. A large feature map 

dimension might result in substantial computational 

demands (FLOPs), prolonging inference time. 

Structurally, parallel convolutional layers augment 

computational complexity and memory consumption. In 

this study, we present the novel detection head PLDetect to 

address the computational burden while enhancing 

detection accuracy. Figure 6 illustrates the configuration of 

the PLDetect detection head: 

 

Fig. 6. PLDetect structure 

 In PLDetect, the initial 3x3 standard convolution layer is 

substituted with a PConv layer (Partial Convolution), which 

executes convolution operations on select channels of the 

input feature map while preserving the other channels, hence 

diminishing computational load and memory access. 
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Substituting the 3x3 convolution in the second layer with a 

1x1 convolution diminishes computational load and 

parameter count, preserving the spatial dimensions of the 

feature map, hence rendering the model more efficient while 

sustaining detection efficacy. These modifications transform 

the detecting head from an original parallel configuration to a 

serial configuration. The serial architecture facilitates a more 

efficient integration of feature information across various 

scales through the sequential processing of features. This 

layer-by-layer feature fusion enables the model to discern the 

intricacies of multi-scale targets, hence enhancing detection 

accuracy. In contrast to the parallel structure, the serial 

structure necessitates fewer parameters and computations. 

The serial structure compresses and integrates characteristics 

at each stage, hence minimizing duplicate calculations. In 

deep neural networks, particularly in convolutional neural 

networks (CNNs), the feature map sometimes includes 

substantial redundant information. This redundancy is 

evident in the similarity of features across many channels. 

PConv is predicated on this finding and diminishes 

computational demands by executing convolutional 

operations on select channels while preserving the efficacy of 

feature extraction. The PConv operation can be characterized 

as a standard convolutional operation applied to a subset of 

the input feature map. PConv structure in Figure 7. 

 

Fig. 7. PConv structure. 

PConv processes only a subset of the c channels in an 

input feature map, rather than convolving all of them (e.g., 

cp channels). This operation can be mathematically 

represented as follows: 

PConv(𝐼) = Conv(𝐼𝑐𝑝)                 （4） 

Icp represents the cp channels chosen from the input 

feature map I, whereas Conv signifies the standard 

convolution procedure. The PConv operation significantly 

reduces the number of floating point operations (FLOPs) 

by operating solely on a subset of the input feature map's 

channels. The formula for FLOPS in PConv is as follows: 

ℎ × 𝑤 × 𝑘2 × 𝑐𝑝
2                      （5） 

PConv is an innovative method for employing 

convolutional processes to enhance the speed and 

efficiency of neural networks. It accomplishes this by 

replicating feature maps to reduce unnecessary 

computations. This method decreases computational 

complexity, optimizes memory access patterns, and 

facilitates quicker inference. The new PLDetect model, 

enhanced by the incorporation of PConv and structural 

modifications, has notable lightweight properties, 

rendering it more appropriate for operation on 

resource-constrained devices to fulfill the requirements of 

real-time detection in ambiguous situations. 

IV. EXPERIMENT 

A. Experimental Environment and Configuration 

 This experiment establishes the necessary environment on 

a computer operating with the Ubuntu system, configured as 

detailed in Table I below: 

TABLE I 

EXPERIMENTAL ENVIRONMENT 

Parameters Configuration 

GPU NVIDIA GeForce RTX 4060 

Ti 

GPU memory size 16GB 

Operating systems Unbuntu20.04 

Python Python 3.8.10 

CUDA 12.6 

In the training phase, the input image size is 640x640, the 

epoch is 100 rounds, and the batch size is 16. 

B. Model Evaluation Metrics 

 This experiment employs a set of established evaluation 

metrics in target detection to assess model performance: 

precision (P), recall (R), mean average precision (mAP), 

floating point operations (GFLOPs), model parameters, and 

frame rate (FPS). These indicators collectively indicate the 

model's accuracy, efficiency, and resource 

utilization.GFLOPs (Giga Floating Point Operations Per 

Second) quantify the volume of floating-point operations a 

computing device can execute in one second and are 

frequently employed to assess the computational efficacy of a 

computer or processor. The formula for computing GFLOPs 

is as follows: 

GFLOPs=
FLOPs

109
                          （6） 

The term FLOPs refers to the quantity of floating point 

operations executed per second. The mean Average Precision 

(mAP) is a widely utilized performance evaluation statistic in 

target detection, assessing the average precision across all 

target categories of the model. mAP is derived by computing 

the average precision (AP) for the predicted outcomes of each 

category and subsequently averaging the APs across all 

categories. To calculate mAP, generate the precision-recall 

(PR) curve for each category and determine the area beneath 

the curve. Consequently, mAP may thoroughly represent the 

model's detection efficacy across many categories. The 

formula for calculating mAP (Mean Average Precision): 

mAP =
1

𝑁
∑ AP𝑖
𝑁
𝑖=1                    （7） 

N is the number of categories, and AP_i is the average 

precision of the ith category.The formula for AP is: 

AP = ∑ (𝑟𝑖+1 − 𝑟𝑖)𝑃inter(𝑟𝑖+1)
𝑛−1
𝑖=1         （8） 

Where r1, r2, ..., and rn are the recall values 

corresponding to the first interpolation at the first 
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interpolation of the precision interpolation segment in 

ascending order. 

C. Introduction to The Dataset 

In ambiguous situations, the undersea milieu serves as a 

quintessential special scenario, encompassing numerous 

characteristics that might depict the intricate environment. 

The DUO dataset [20] comprises data gathered from URPC 

contests, containing 7,782 precisely tagged photos, with 

6,671 allocated for training and 1,111 for assessment. The 

photos in the DUO dataset exhibit common characteristics, 

including inconsistent lighting, blurriness, elevated noise 

levels, and other traits typical of indistinct images, which 

significantly illustrate the challenges encountered in small 

target detection within authentic fuzzy environments. Figure 

8 displays representative images from the DUO dataset. 

The collection comprises four groups of underwater 

organisms: holothurian, echinus, scallop, and starfish. Figure 

9(a) illustrates the distribution of sample quantities, with 

echinus representing the highest proportion and scallops 

exhibiting a lower percentage. Figure 9(b) illustrates the 

spatial distribution of the items, indicating that the detected 

objects are predominantly clustered in the center of the image. 

Figure 9(c) depicts the allocation of sample sizes within the 

dataset. The scatter points suggest that the DUO dataset 

comprises a higher quantity of small samples and diminutive 

targets. 

 

Fig. 8. DUO dataset. 

The URPC2020 dataset comprises 5,543 photos 

extensively utilized in Chinese underwater robotics 

competitions, featuring four distinct marine organisms: 

holothurian, echinus, scallop, and starfish. Of these, 4434 

are allocated for training, while 1109 are designated for 

testing. Figure 10 illustrates the exact distribution of the 

dataset.

Fig. 9. Distribution of the DUO dataset, where a is the number of samples, b is the sample location, and c is the sample size.

Fig. 10. Distribution of URPC2020 dataset where a is the number of samples, b is the sample location, and c is the sample size.
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D. Ablation Experiment 

This study uses YOLOv8s as a baseline model to evaluate 

the efficacy of the enhanced model. It accomplishes this by 

including several modules in the DUO dataset and evaluating 

the efficacy of the enhanced algorithmic model. All 

experiments in the ablation study commenced under identical 

settings, with the experimental environment detailed in Table 

I. The outcomes of the ablation experiments conducted on the 

DUO dataset are presented in Table II. 

Experiment 1 functions as a benchmark for the original 

YOLOv8s model and offers a comparative reference for 

later experiments. Experiment 2 employs the 

C2f_DynamicConv method. The mAP50 has increased to 

83.9%, the FPS has risen to 106.4, and the FLOPS/G has 

slightly decreased relative to the original model. This 

illustrates that the dynamic convolution technique can 

significantly enhance the model's detection accuracy and 

operational efficiency. Experiment 3 additionally presents 

C2f_RVB, resulting in a mAP50 increase of 84.3%, an 

FPS rise of 112.7, and a decrease in FLOPS/G to 23.9. This 

outcome underscores the beneficial impact of the RVB 

module in improving model performance, particularly in 

diminishing computational complexity. In Experiment 4, 

PLDetect was incorporated into the model, resulting in an 

enhancement of mAP50 to 84.7%, an increase in FPS to 

115.4, and a reduction in FLOPS/G to 20.1. The PLDetect 

technology markedly enhances detection accuracy and 

efficiency. In Experiment 5, the integration of C2f_RVB 

and PLDetect yielded a mAP50 of 84.9%, an FPS of 102.9, 

and a FLOPS/G of 26.3. The experimental findings 

demonstrate that the integration of these two strategies can 

significantly improve the model's detection ability. In 

Experiment 6, the concurrent application of 

C2f_DynamicConv, C2f_RVB, and PLDetect yielded a 

mAP50 of 84.3%, an FPS of up to 120.7, and a FLOPS/G 

of 19.3. This arrangement attains maximal computing 

efficiency while preserving elevated detection accuracy. 

Experiment 7 and Experiment 8 were optimized according 

to Experiment 6, with Experiment 8 attaining the highest 

mAP50 of 84.8%, the lowest FLOPS/G of 17.0, and the 

highest FPS of 124.8. Experiment 8's design yielded the 

highest performance among all experiments, offering an 

effective solution for small target recognition in uncertain 

situations. Table Ⅲ displays the ablation experiments on 

the URPC2020 dataset. 

Through ablation trials, this study validates the 

effectiveness of the suggested augmentation approach.  

While maintaining a lightweight design, the use of 

methods like C2f_DynamicConv, C2f_RVB, and PLDetect 

significantly improves detection accuracy and operating 

efficiency. 

TABLE II 

RESULTS OF ABLATION EXPERIMENTS ON THE DUO DATASET 

Experiment C2f_DynamicConv C2f_RVB PLDetect mAP50(%) FLOPS/G FPS 

1 × × × 83.1 28.4 96.8 

2 √ × × 83.9 26.1 106.4 

3 √ √ × 84.3 23.9 112.7 

4 √ × √ 84.7 20.1 115.4 

5 × √ × 84.9 26.3 102.9 

6 × √ √ 84.3 19.3 120.7 

7 × × √ 84.6 21.5 119.5 

8 √ √ √ 84.8 17.0 124.8 

TABLE Ⅲ 

RESULTS OF ABLATION EXPERIMENTS ON THE URPC2020 DATASET 

Experiment C2f_DynamicConv C2f_RVB PLDetect mAP50(%) FLOPS/G FPS 

1 × × × 82.7 28.4 100.7 

2 √ × × 83.1 26.1 108.5 

3 √ √ × 83.6 23.9 102.1 

4 √ × √ 83.7 19.1 114.7 

5 × √ × 83.6 26.3 105.6 

6 × √ √ 83.5 19.3 112.5 

7 × × √ 83.9 21.5 115.9 

8 √ √ √ 84.0 17.0 121.6 
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Table IV 

THE EXPERIMENTAL RESULTS WERE COMPARED WITH MAINSTREAM MODELS ON THE DUO DATASET 

Model 
AP（%） 

mAP50(%) 
FLOPs 

(GFLOPs) 
Starfish Scallop Echinus Holothurian 

Faster R-CNN[1] 78.9 48.3 77.9 69.7 68.7 210.3 

SSD[8] 75.1 39.6 75.1 72.9 65.7 62.7 

ResNet[21] 89.6 55.4 90.0 77.3 78.1 64.5 

YOLOv5s 93.0 45.8 91.7 81.1 77.9 15.8 

YOLOv7 91.0 54.7 90.2 79.3 80.1 105.2 

YOLOvX-s 92.4 65.3 92.2 77.9 81.9 21.8 

YOLOv8s 92.2 64.6 91.8 83.8 83.1 28.4 

YOLOv10s 90.5 66.5 92.8 89.5 84.6 21.3 

DRL-YOLO 92.8 66.4 92.6 87.3 84.8 17.0 

TABLE V 

EXPERIMENTAL RESULTS OF COMPARISON WITH MAINSTREAM MODELS ON THE URPC2020 DATASET 

E. Comparison Experiment 

This article contrasts DRL-YOLO with the leading deep 

learning object identification models currently available, 

including Faster R-CNN, SSD, ResNet, YOLOv5s, YOLOv7, 

and YOLOv10s, utilizing the DUO dataset. The findings 

indicate that DRL-YOLO performs exceptionally effectively. 

The assessment metrics employed in this comparative 

experiment are AP (%), mAP50 (%), and FLOPs (GFLOPs) 

for each category. Table IV demonstrates that the 

DRL-YOLO model has superior detection capabilities while 

maintaining a lightweight design in comparison to other 

models. It is also more effective at utilizing limited resources 

for detection in complex environments. The mAP50(%) of 

DRL-YOLO surpasses that of all compared models, while its 

GFLOPs are significantly lower than those of most models, 

demonstrating superior detection accuracy and computing 

efficiency compared to the current YOLOv10s 

model.DRL-YOLO offers superior accuracy and average 

precision relative to alternative models, all while maintaining 

a cheap computational cost. This research employs uniform 

assessment criteria and experimental settings to thoroughly 

assess the generalisability of the models, conducting 

comparison tests on the URPC2020 dataset, with the results 

presented in Table V. 

In the URPC2020 dataset, DRL-YOLO attained a mAP50 

of 84.0 and a computational cost of 17.0 GFLOPs. Relative to 

the baseline, there was a 1.3% enhancement in the mAP50 

and a 40.1% reduction in the FLOPs (GFLOPs). The 

experimental findings exhibited the robust generalization 

capability of DRL-YOLO. 

To achieve a compromise between detection accuracy and 

processing efficiency, DRL-YOLO employs modules that 

preserve detection precision while being lightweight. This 

research contrasts the Backbone structure of DRL-YOLO by 

partially substituting C2f_DynamicConv with the Fusion 

Backbone, currently the predominant lightweight detection 

framework, with the experimental results presented in Table 

VI. 

The experimental findings indicate that the enhanced 

backbone in DRL-YOLO is lightweight, however, the mAP 

score increases by 0.8% relative to the baseline. In 

comparison to previous models, it continues to exhibit good 

Model 
AP（%） 

mAP50(%) 
FLOPs 

(GFLOPs) Starfish Scallop Echinus Holothurian 

Faster R-CNN 81.4 75.1 87.9 67.5 78.0 210.3 

SSD - - - - 76.2 62.7 

DETR - - - - 60.3 188.7 

YOLOv5s - - - - 79.5 15.8 

YOLOv7 83.3 77.8 86.6 70.3 79.5 105.2 

YOLOv8s 88.8 80.4 90.2 71.4 82.7 28.4 

DRL-YOLO 89.1 80.7 91.2 75.1 84.0 17.0 
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accuracy despite a reduction in computational complexity. 

This feature enables the DRL-YOLO model to adjust for 

real-time detection while enhancing detector quality. 

TABLE VI 

COMPARATIVE EXPERIMENTAL RESULTS OF REPLACING 

OTHER LIGHTWEIGHT BACKBONE WITH DRL-YOLO 

BACKBONE ON THE DUO DATASET 

Backbone mAP50(%) 
FLOPs 

(GFLOPs) 

Starnet[22] 80.8 17.3 

Mobilenetv3[23] 79.0 16.3 

Fasternet[24] 83.0 21.7 

Efficientnet[25] 83.1 22.0 

Improved Backbone 83.9 26.1 

A. Results 

 
Fig. 11. shows the YOLOv8 PR plot on the DUO dataset. 

 

 
Fig. 12. A DRL-YOLO PR plot on the DUO dataset. 

The PR plot indicates that the enhanced DRL-YOLO 

achieves a mean average precision (mAP50) score of 84.8%. 

This represents a significant increase from the baseline score 

of 83.1. The enhanced DRL-YOLO demonstrates superior 

accuracy compared to YOLOv8 across all categories, 

indicating that the optimization of the model architecture and 

the refinement of the training approach have a substantial 

impact. PR plots of the baseline versus the improved 

DRL-YOLO model are shown in Fig.11 and Fig.12. 

V.  CONCLUSIONS 

This study presents DRL-YOLO, an innovative 

micro-target detection model for uncertain scenarios based 

on YOLOv8s.  DRL-YOLO exhibits exceptional 

performance due to enhancements in the model architecture 

through the integration of deep convolution and dynamic 

convolution.  It exceeds conventional detection models and 

current micro-target detection methods in terms of accuracy 

and computational complexity under uncertain conditions.  It 

provides substantial advantages in feature performance, 

processing efficiency, and generalization capability.  The test 

findings indicate that DRL-YOLO excels in detecting small 

objects within complex surroundings.  It achieved mAP 

scores of 84.8% and 84.0% on the DUO and URPC2020 

datasets, respectively.  This indicates an enhancement of 

1.7% and 1.3% relative to the baseline.  An optimal balance 

of lightness and precision was achieved. GFLOPs dropped by 

40.1% relative to the baseline.  These changes render 

DRL-YOLO suitable for implementation in intricate contexts 

with constrained resources. DRL-YOLO's robust adaptability 

to intricate scenarios facilitates precise target recognition in 

real-time detection.  The forthcoming research may 

investigate multimodal learning approaches to integrate 

many input sources, such as visuals and sounds, for the 

identification of small targets, given the complexities of real 

application contexts.  DRL-YOLO is anticipated to enhance 

accuracy and robustness in outcome detection while 

augmenting the model's adaptability in intricate contexts.  

Considering DRL-YOLO's proficiency in achieving an ideal 

equilibrium between accuracy and computing complexity in 

intricate contexts, the small target detection methodology 

may be applicable across a broader spectrum of real-world 

scenarios in the future.  It can be utilized in ambiguous 

conditions, such as inclement weather, to identify 

automobiles on dusty roads, among other applications.  This 

will augment the critical function of small target-detection 

technologies in ambiguous environments for social and 

economic advancement. 
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