

Abstract—Based on 600-day chloride penetration data from a

coastal site, this study develops a deep learning model for
predicting chloride transport in coastal concrete structures.
The long short-term memory (LSTM) model was optimized
using the Bayesian optimization algorithm (BOA). Results show
that the training root mean square error (RMSE) generally
decreases with increases in the number of LSTM layers, initial
learning rate, and learning rate drop period, while a higher
dropout rate increases RMSE. The impact of mini-batch size is
irregular and negligible. The Bayesian-optimized LSTM
(BO-LSTM) model outperforms the standard LSTM,
convolutional neural networks (CNN), and gated recurrent unit
(GRU) models in predicting chloride profiles, achieving a R² of
0.9743 on the validation set. The model accurately predicts
chloride profiles for 600-day exposure and reliably forecasts
720-day profiles. Further analysis of influence of the age factor
(m) on durability reveals that incorporating time-dependent
chloride diffusion characteristics is critical for accurate
assessments. Corrosion initiation times calculated using m
values from measured and predicted data (62.6 and 49.2 years,
respectively) align more closely with the 50-year design life than
predictions ignoring time dependency. This study demonstrates
the potential of deep learning for evaluating concrete durability
under chloride-induced corrosion.

Index Terms—Concrete durability, Chloride, Long
Short-Term Memory network, Bayesian optimization,
corrosion initiation time

I. INTRODUCTION
n coastal and inland saline soil environments, chloride

ion penetration is a primary cause of durability degradation
in concrete structures due to reinforcement corrosion [1].
Understanding the time-dependent transport mechanisms of
chloride ions in concrete is critical for predicting corrosion
initiation, delaying concrete cover cracking, and enhancing
durability in marine environments [2–4].
Extensive experimental and theoretical research on
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chloride-induced concrete corrosion has been conducted over
decades [1–4]. With the accumulation of experimental data,
machine learning has gained prominence in this field [5–9].
However, traditional machine learning often faces a trade-off:
oversimplification with basic functions or over-fitting with
complex models [9]. Deep learning overcomes these
limitations by leveraging multiple hidden layers to capture
intricate nonlinear relationships [9, 10].
Recent advances in deep learning have expanded its

applications in civil engineering [11–16], yet studies on
concrete durability under chloride exposure remain limited.
Wu et al. [14] compared deep learning models (LSTM, CNN,
GRU, Bi-LSTM) with traditional methods (BP, SVM) for
predicting time-dependent chloride transport, demonstrating
superior performance of LSTM-based approaches.
Hosseinzadeh et al. [15] developed a deep learning
framework to predict chloride migration coefficients and
compressive strength using 1,100 experimental data points,
achieving >0.85 accuracy via a Python web interface. Shin et
al. [16] proposed a CNN-based regression model to estimate
chloride diffusion coefficients by analyzing concrete surface
images.
The performance of deep learning models heavily depends

on hyperparameter settings, making hyperparameter
optimization (HPO) crucial for accuracy [17–21]. Xiao [20]
achieved >90% accuracy in post-disaster bridge detection
using Bayesian optimization (BO) for deep learning
parameter tuning. Chou et al. [21] improved recognition
accuracy by 1.2% for concrete beam deflection via the
Jellyfish search optimization algorithm.
Despite these advances, existing research exhibits two key

gaps: overreliance on CNN-based image analysis for chloride
durability studies, with limited exploration of time-series
regression [11–16]. HPO applications predominantly focused
on traditional machine learning, neglecting deep learning
models [20, 21].
Given the time-dependent and nonlinear nature of chloride

penetration, deep learning-based time-series prediction offers
significant potential. Furthermore, integrating model
predictions with the age factor (m) — a key parameter for
chloride transport characterization — can improve durability
assessments.
To address these challenges, this study introduces a

Bayesian optimized LSTM (BO-LSTM) framework for
predicting chloride penetration profiles and assessing
concrete durability. Our approach diverges fundamentally
from prior works in three aspects. By integrating Bayesian
optimization (BOA) with LSTM, we resolve the empirical
trial-and-error dilemma in hyperparameter selection (e.g.,
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LSTM layer, dropout rate), achieving a 54.5% reduction in
validation RMSE compared to baseline LSTM. Leveraging
600-day field data from Zhoushan coastal zone, the
BO-LSTM captures nonlinear time decay of chloride
diffusion coefficients (m = 0.39), enabling reliable 720-day
forecasts (R2 =0.9382) that align with Fick diffusion theory.
Through Monte Carlo simulations (10 million iterations), we
quantify the impact of m on corrosion initiation time,
demonstrating that conventional deterministic methods
underestimate service life by 67% (16.5 vs. 49.2 years). This
research bridges the gap between deep learning and practical
durability engineering, providing a data-driven framework
for optimizing concrete mix design and maintenance
strategies in marine environments.

II. THEORETICAL BACKGROUND
A. LSTM Model
LSTM neural network is a variant of the recurrent neural

network (RNN) [22]. Traditional RNNs suffer from the
vanishing gradient problem, which hinders long-term
memory in the network. LSTM overcomes this by using an
unique architecture that effectively manages gradient flow
and maintains long-term dependencies.
LSTMs achieve this through memory cells equipped with

three specialized "gate" structures: the forget gate, input gate,
and output gate. These gates are designed to "remember"
important information and "forget" irrelevant information,
enabling LSTMs to handle long sequence data [22, 23].
The forget gate ft decides how much of the previous cell

state Ct-1 should be retained. If ft = 1, the information will be
retained; if ft= 0, it will be forgotten. The function governing
ft is:

  1,t f t t ff W h x b  
(1)

where σ is the sigmoid activation function; Wf is the weight
matrix for the forget gate; xt is the current input; ht-1 is the
previous hidden state, and bf is the bias.
The input gate it selects which new information to store in

the cell state. It is calculated as:
  1,t i t t ii W h x b  

(2)

The candidate values for updating the cell state
~

tC are
determined by:

  
~

1tanh ,t c t t cC W h x b  (3)
where Wi and bi are the weight matrix and bias for the input
gate; Wc and bc are the weight matrix and bias for the
candidate state; and tanh is the activation function used for
candidate values.
The output gate ot controls the output of the memory cell,

combining the current input, previous output, and candidate
state:

  1,t o t t oo W h x b  
(4)

The final output is:
tanh( )t t th o C (5)

whereWo and bo are the weight matrix and bias for the output
gate.
These gates allow the LSTM model to filter out irrelevant

information and manage long-term dependencies effectively,
making it suitable for processing extended time series data.
B. Bayesian Optimization Algorithm
Bayesian optimization is a strategy for estimating the

maximum value of an unknown function based on sampled
data. It is particularly effective in solving sequential
decision-making problems, helping identify the next
evaluation point to achieve optimality efficiently [18, 19].
This method is particularly suitable for optimizing costly and
complex functions, such as hyper-parameters in machine
learning models.
For the LSTM model, hyper-parameter optimization can

be framed as [18]:
 argminbest xx f x (6)

where x is a multi-dimensional decision vector within the
decision space Ω, defined by LSTM's preset parameters. xbest
is the optimal set of parameters; and f(·) represents the
optimization objective function. If the goal is maximized, the
problem can be converted by considering -f(x).
Bayesian optimization often employs Gaussian processes

to model the objective function. For a given parameter x, the
function f(x) can evaluate LSTM model characteristics. To
comply with Gaussian process conditions, observation noise
is introduced:

y= f(x)+ε (7)
where ε～N(0, σ²) represents observation error.
The observed function value y, with normal distribution

noise, can ensure that evaluation of each parameter setting is
independent and follows a Gaussian process. Thus, f(x) can
be predicted using a probabilistic model [19].

      ~ , , 'f x GP m x k x x (8)
where, GP represents Gaussian distribution; m (x) is the mean

value function    m x E f x    ; and k (x, x') is the
covariance

function            , ' ' 'k x x E f x m x f x m x     .
The Gaussian process provides a prediction equation for

the probabilistic proxy model:
      2| , , ,p f X y x N x x  (9)

where,   12
*
Tx K I y 


     is the mean value of

prediction results;   12 2
** *

Tx K K I K 


      is the
covariance of prediction results;

      * 1 2, , , , , , nK k x x k x x k x x  ,  ** ,K k x x ; x is
the prediction input; X represents the observation point

set 1 2, , , nx x x ; f represents the objective function result set
      1 2, , , nf x f x f x ; and Σ represents the covariance

matrix  , ,i j i jk x x  ; and y is the observation value

set 1 2, , , ny y y .
The acquisition function determines new sampling points

by comparing expectations of their improvement over current
samples. The Expected Improvement (EI) function is used
[18]:

    *max 0,n nEI x E f f x    (10)
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where f*n is the historical optimal value after n samples, and
I(x)≥0

The objective is to select x to maximize the expected
improvement EI(x). Since the new function value is unknown,
the expectation can be estimated from historical observations
y, leading to:

     
     

 
n n

n n

x x
EI x x x

x x
  

 
    

        
    (11)

where △ n(x) = f*n-μ(x); φ (•) is the cumulative distribution
function; and φ(•) is the probability density function of the
standard normal distribution.
The maximization of EI(x) typically involves first- or

second-order optimization algorithms to identify new
"potential" evaluation points.
C. Prediction of Chloride Profiles Using Bayesian Optimized
LSTM Model
Chloride penetration in concrete exhibits time-dependent

and nonlinear behavior, making it well-suited for
LSTM-based time series prediction. The proposed
framework integrates a Bayesian-optimized LSTM model
composed of four components: input layer, hidden layer,
Bayesian optimization module, and output layer.
Input layer: this layer preprocesses raw data to meet

network requirements, including: splitting data into training
and validation sets; normalizing features to prevent gradient
divergence during training.
Hidden layer: the core component consists of LSTM cells

forming a recurrent neural network. By default, an LSTM
layer with 128 units is employed and trained via the Adam
optimizer. Increasing the number of units may improve
accuracy but risks overfitting, necessitating Bayesian
optimization for balance.
Bayesian optimization module: this module optimizes five

hyperparameters: LSTM layer, dropout rate, initial learning
rate, learning rate drop period, and mini-batch size. The
objective is to minimize training root mean square error
(RMSE), where Bayesian optimization iteratively selects
hyperparameter combinations to maximize model efficiency
and generalizability.
Output layer: model performance is evaluated using four

metrics: coefficient of determination (R2), RMSE, mean
absolute error (MAE), and mean absolute percentage error
(MAPE).

These metrics are calculated as follows [22, 23]:

 

 

2'

2 0
2

0

R 1

n

i i
i
n

i
i

y y

y y






 






(12)

'

1

1MAE
n

i i
i
y y

n 

 
(13)

'

1

1MAPE
n

i i

i i

y y
n y


 

(14)

 2'

1

1 n

i i
i

RMSE y y
n 

 
(15)

where, n is the number of samples; yi’ is the predicted value
of neural network; and yi is the measured value.
This approach ensures that the LSTM model accurately

predicts chloride profiles while effectively handling both the

temporal and nonlinear nature of the data.

III. RESULTS AND DISCUSSION

A. Overview of Chloride Corrosion Testing and Data
Collection
The chloride corrosion test was conducted in the tidal zone

of a coastal wharf in Dinghai New City, Zhoushan, China.
The location has an average annual temperature of 20°C and
a humidity of 79%. The site was submerged in seawater for
approximately 4.5 hours daily. Analysis of on-site water
samples revealed a free chloride ion content of about 1.3%
[14].
Cylindrical concrete samples (Ø100 mm × 50 mm) were

prepared using P•O32.5 R cement with a water-cement ratio
of 0.45 and six samples per group. These samples were
exposed to corrosion for periods of 120, 240, 360, 480, and
600 days. After each exposure period, samples were ground
in 2 mm increments from the surface inward to measure free
chloride ion content. The averaged results are shown in Fig.
1.
The experiment yielded a total of 300 data points. The first

240 data points corresponded to 120, 240, 360, and 480 days
of exposure. Of these, 90% were allocated to training the
LSTM model, and the remaining 10% were used for
validation. The trained model was then used to predict the
chloride concentration profiles at 600 days, which were
compared with actual measurements to validate the model's
effectiveness.
Given the consistent water-cement ratio, fixed 120-day

sampling interval, and uniform sample size, chloride
concentration was the sole input and output variable in this
time series prediction experiment.

Fig. 1 Chloride content data from field test

B. Hyperparameter Optimization
1) Bayesian Hyperparameter Optimization
To achieve accurate chloride concentration profile

predictions, this study employs BO for intelligent parameter
tuning. The number of LSTM layers was set between 32 and
512, adjusted in increments of 32 units based on the training
set size. The initial learning rate ranged from 0.0005 to 0.01,
modified in increments of 0.0005 units, while the learning
rate drop period spanned from 10 to 300, adjusted in
increments of 10 units. To prevent over-fitting in large neural
networks, a dropout layer was incorporated, with the dropout
probability ranging from 0.05 to 0.5 in increments of 0.05.
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Research indicates that the convergence rate and accuracy of
LSTM are sensitive to the mini-batch size setting [19],
requiring its optimization within the range of 32 to 320,
adjusted in increments of 32 units.
Applying Bayesian global optimization to these five

parameters resulted in 960,000 possible combinations (16 ×
20 × 30 × 10 × 10), which significantly impacted
computational efficiency. Therefore, we first analyzed the
influence of each parameter on the model's training RMSE to
reduce the number of parameters subject to global
optimization. This preliminary analysis enabled
identification of optimal parameter values prior to Bayesian
global optimization. Fig. 2 illustrates the impact of these five
parameters on training RMSE after 30 BO iterations.

0 100 200 300 400 500 600
LSTM layer

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Tr
ai
ni
ng

R
M
SE

(a)

0 0.1 0.2 0.3 0.4 0.5
Dropout rate

0.28

0.29

0.30

0.31

0.32

Tr
ai
ni
ng

R
M
SE

(b)

0 0.002 0.004 0.006 0.008 0.010
Initial learning rate

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai
ni
ng

R
M
SE

(c)

0 50 100 150 200 250 300
Learning rate drop period

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai
ni
ng

R
M
SE

(d)

0 50 100 150 200 250 300 350
Mini-batch size

0.324

0.326

0.328

0.330

0.332

0.334

0.336

Tr
ai
ni
ng

R
M
SE

(e)
Fig.2 Influence of model parameters on training RMSE

Fig. 2 demonstrates that increasing the number of LSTM
layers, initial learning rate, and learning rate drop period
generally reduces training RMSE, whereas a higher dropout
rate increases it. The influence of mini-batch size on training
RMSE is minimal and irregular, varying from 0.3257 to
0.3354 as it ranges from 32 to 320. Consequently, the effect
of mini-batch size can be ignored during hyperparameter
optimization, and a default value of 128 is used. When the
number of LSTM layers is small, increasing them effectively
reduces training RMSE. Beyond 128 layers, the reduction in
RMSE diminishes. Previous studies have shown that
excessively large LSTM layers may cause over-fitting [18,
19], leading to the selection of 500 layers for this study. For
the learning rate drop period, values above 80 results in
RMSE fluctuations; thus, with 500 LSTM layers, a drop
period of 100 is appropriate. The dropout rate and initial
learning rate were set to 0.05 and 0.01, respectively, based on
Figs. 3(b) and (c). These adjustments reduced Bayesian
optimization iterations from 960,000 to 150. However, this
analysis focuses on single-parameter optimization, and
interactions between parameters in global optimization may
yield different effects. Fig. 3 presents the impact on training
RMSE after 250 BO iterations with global optimization of
dropout probability and initial learning rate.

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 1797-1805

 
______________________________________________________________________________________ 



(a)

(b)

(c)
Fig.3 Influence of dropout layer and initial learning rate on Training

RMSE

Analyses of Figs. 2 and 3 reveal that the effects of dropout
probability and initial learning rate on training RMSE align
with results from individual optimizations even during global
optimization. Specifically, a higher initial learning rate and a
lower dropout probability contribute to reduced training
RMSE. This validates that the proposed simplified Bayesian
single-parameter optimization method is reasonable and

effective, significantly improving optimization efficiency.
The parameter settings for the BO-LSTM model are

detailed in Table I. To assess the predictive accuracy of the
BO-LSTM model, a comparative analysis with the standard
LSTM model was conducted, with both models' parameters
provided in Table I.

TABLE Ⅰ
LSTM MODEL PARAMETERS

LSTM
layer

Dropout
layer

Initial learning
rate

Mini-batch
size

BO-LSTM 500 0.05 0.01 128
LSTM 128 0.2 0.001 128
GRU 128 0.2 0.001 128
CNN (3,64) 0.2 0.001 128

After 500 iterations, Table II presents the evaluation
metrics for the LSTM and BO-LSTM models using
validation data.

TABLE Ⅱ
EVALUATION INDICATOR
R2 RMSE MAE MAPE

BO-LSTM 0.9743 0.0402 0.0309 5.8776%
LSTM 0.9372 0.0668 0.0536 13.6668%
GRU 0.9684 0.0477 0.0358 7.3283%
CNN -0.3522 0.3104 0.2539 60.6480%

Table II compares the performance of four predictive
models: LSTM, GRU, CNN, and BO-LSTM. While the
LSTM model demonstrates strong performance, it is slightly
inferior to the BO-LSTM model. Specifically, although the
LSTM achieves a high R² value, its RMSE and MAE are
higher than those of BO-LSTM, and its MAPE is
significantly larger. This indicates that the LSTM model
generates larger prediction errors at specific points. Although
LSTM is effective in capturing long-term dependencies, its
complex architecture with more parameters may result in
over-fitting or under-fitting, particularly with limited data or
insufficient feature diversity [9, 10].
The GRU model demonstrates performance comparable to

BO-LSTM. This phenomenon can be explained by GRU’s
simplified architecture: unlike LSTM’s three-gate
mechanism (forget gate, input gate, and output gate), GRU
manages information flow solely through a reset gate and an
update gate. This structural difference reduces GRU’s
parameter count by approximately 33%, granting it
significant advantages in scenarios with limited data volume
(300 samples) or low feature complexity [14]. However,
GRU’s limitations become evident in long-term dependency
modeling: the absence of an independent "forget gate" may
impair its ability to precisely capture complex nonlinear
temporal patterns, such as the exponential decay of chloride
diffusion coefficients over time. Consequently, GRU is better
suited for short-term predictions or feature-simple tasks,
while LSTM excels in handling complex temporal
sequences.
In contrast, the CNN model performs poorly, as evidenced

by a negative R² value. This suggests that the CNN's
predictions are less accurate than a simple mean-based
baseline. The high RMSE and MAE, combined with an
exceptionally high MAPE, indicate substantial errors across
most observations. Although CNNs are proficient at
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extracting local spatial features and can identify local
temporal patterns through convolutional kernels, they fail to
capture long-term dependencies in datasets with complex
temporal structures [14–16].
Overall, the BO-LSTM model outperforms all other

models across all metrics. Its R² value approaches 1,
indicating excellent data fit. Additionally, its lower RMSE
and MAE reflect minimal prediction errors, while a moderate
MAPE suggests consistent relative accuracy. The integration
of Bayesian optimization enables selection of optimal
hyperparameters, ensuring the model achieves the best
possible configuration. This optimization significantly
improves predictive performance.
2) Sensitivity Analysis
While methods such as SHapley Additive exPlanations

and Local Interpretative Model-agnostic Explanations are
widely used to enhance the interpret-ability of deep learning
models by analyzing input data [8], this study focuses
exclusively on exposure time variations and thus omits
interpret-ability analysis. To investigate the effects of model
parameters on predictions, a sensitivity analysis was
conducted on the number of LSTM layers, dropout
probability, and initial learning rate. Each parameter was
reduced by 50%, and changes in evaluation metrics were
quantified (detailed in Table I). These changes were
normalized and visualized in Fig. 4.
For the BO-LSTM model, optimization preferred a higher

number of LSTM layers. Reducing the layer count from 500
to 250 significantly degraded prediction accuracy. This
sensitivity arises from the hierarchical modeling capability of
deep LSTM networks, which capture both long-term
dependencies (e.g., the exponential decay of chloride
diffusion coefficient) and local nonlinearities (e.g., abrupt
changes in surface chloride concentration) through chained
gated units. Bayesian optimization mitigates over-fitting
risks by dynamically adjusting the dropout probability (0.05)
and initial learning rate (0.01), ensuring the model adheres to
physical laws while suppressing noise. This mechanism
aligns with the time-dependent diffusion framework of Fick’s
law, validating the physical consistency of deep LSTM in
durability assessment. Furthermore, Fig. 4 emphasizes the
dominance of LSTM layer count in prediction accuracy,
necessitating joint optimization of dropout probability and
initial learning rate with layer count rather than isolated
adjustments.

Fig. 4 Sensitivity analysis of model input parameter

3) Impact of Data Preprocessing
This study revealed that data preprocessing methods

significantly affect model prediction accuracy. Previous
research demonstrates that effective preprocessing enhances
the performance and robustness of LSTM models [15, 19]. In
the initial stage, the measured chloride ion concentration was
directly employed as both the input and the output, and the
evaluation metrics are presented in Table II. In an alternative
approach, corrosion depth and exposure time were used as
the inputs, while chloride ion concentration is used as the
output. Results for the latter approach (using the same model
parameters from Table I) are shown in Table III.
A comparison of Tables II and III shows that using

multiple input parameters led to a decline in all four
evaluation metrics. This decline may stem from the complex
nonlinear relationships between the inputs and output, which
cannot by fully captured by the LSTM model. Specifically,
chloride ion concentration non-linearly decreases with
increasing corrosion depth and increases with extended
exposure time [2–4]. When both parameters are used as the
inputs, the combined nonlinear relationship becomes more
intricate, further challenging the LSTM's modeling capability
and resulting in reduced performance.

TABLE Ⅲ
EVALUATION INDICATOR

Model R2 RMSE MAE MAPE

BO-LSTM-Data 0.9041 0.0837 0.0617 11.9598%

LSTM-Data 0.8825 0.0922 0.0746 15.8448%

BO-CNN-LSTM-Data 0.9331 0.0693 0.0476 10.1322%

CNN-LSTM-Data 0.9100 0.0806 0.0581 11.1340%

To improve accuracy, a hybrid CNN-LSTM model was
implemented, where the CNN extracts local spatial features
and the LSTM captures temporal dependencies [23]. As
shown in Table III, this hybrid model outperforms the
standalone LSTM across all evaluation metrics. However,
compared to the results in Table II (using direct chloride
concentration as input-output), its accuracy remains lower.
This suggests that using measured chloride concentration
directly can capture time-series trends in a more effective
way. The strong input-output correlation simplifies the
LSTM's learning process, leading to higher prediction
accuracy.
C. Prediction of Chloride Transport in Concrete
Using the trained BO-LSTM model, this study predicted

chloride concentration profiles for concrete exposed to
chloride environments over 600 days. The predicted values
closely match the measured data (correlation coefficient =
0.9811), with evaluation metrics RMSE = 0.0646, MAE =
0.0476, MAPE = 9.24%, and R² = 0.9382 (Fig. 5). These
results demonstrate that the BO-LSTM model achieves
reliable short-term predictions of chloride penetration in
concrete.
Using 300 field test samples for training and validation, the

BO-LSTM model was extended to predict chloride profiles
for 720 days of exposure (Fig. 6). The predicted profiles
show a gradual increase in chloride concentration over time,
consistent with the accumulation mechanism of chloride ions
in concrete.
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Fig. 5 Chloride profiles predicted by BO-LSTM

Fig. 6 Chloride profiles of concrete from 120d to 720d

When the experimental data was fitted to Fick's second law,
the apparent chloride diffusion coefficients were determined
to be 1.805, 1.578, 1.24, 1.064, 0.8196, and 0.6511 × 10⁻¹²
m²/s. These calculated values lie within the typical range of
10⁻¹¹ to 10⁻¹⁴ m²/s as reported in previous research [24],
which validates their reliability. The decline in the diffusion
coefficient over time, as observed, can be attributed to the
pore - filling effects resulting from the continuous cement
hydration process [25–27]. The time-dependent chloride
diffusion coefficient is modeled by Eq. (16) [28]:

  0
0

mtD t D
t

   
  （16）

where D(t) and D0 are the chloride diffusion coefficients at
times t and t0, respectively.
Using the 600 - day data, the value of m was fitted to be

0.48. When the 720 - day predictions were taken into account,
m was adjusted to 0.39. This adjusted value is in line with the
literature values ranging from 0.2 to 0.55 [27 – 31]. The
decrease and subsequent stabilization of m over time are
consistent with the well - established trends reported in the
relevant literature [28, 29].
D. Durability Implications of m
To assess the impact of m on concrete durability, corrosion

initiation time was evaluated using Fick's second law,
considering concrete cover depth d, surface chloride

concentration Cs, and critical chloride concentration Ccr.
While Eq. (17) provides a basic estimation, it neglects
time-dependent diffusion characteristics. Substituting Eq. (16)
into Fick's law yields Eq. (18), but literature recommends Eq.
(19) for improved accuracy [25]:
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               (19)
Table IV lists the parameters derived from field data and

specifications [32]. Substituting these into Eqs. (17)–(19),
corrosion initiation times were calculated (Fig. 7). Eq. (17)
predicts an unrealistic 40.73 years, while Eq. (18)
overestimates due to its use of an instantaneous diffusion
coefficient. Even Eq. (19) overestimates, highlighting the
limitations of deterministic approaches that ignore parameter
variability [31–33].

TABLE Ⅳ
CALCULATION PARAMETERS FOR CORROSION INITIATION

TIME
m Cs d D0 t0 car

Tested 0.48 1.45% 50 0.8196×10-12 600d 0.4%

BO-LSTM 0.39 1.45% 50 0.8196×10-12 600d 0.4%

Fig. 7 Corrosion initiation time /years

To address this, a probabilistic approach was adopted,
assuming normally distributed parameters (coefficient of
variation = 0.1). AMonte Carlo simulation with 107 iterations
(Fig. 8) shows that corrosion initiation time reaches 62.6
years for m = 0.48 and 49.2 years for m = 0.39, closely
matching the 50-year design lifespan. Without
time-dependent considerations, the initiation time is only
16.5 years, underscoring the critical role of m.
In conclusion, incorporating time-dependent chloride

diffusion characteristics is essential for durability assessment.
The BO-LSTM model enables reliable adjustments to
durability predictions, providing a robust tool for coastal
concrete structures.
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Fig.8 Cumulative probability for corrosion

IV. CONCLUSION
This study developed a BO-LSTM model to predict

chloride transport in coastal concrete structures, yielding the
following key findings:
1) Bayesian optimization effectively enhanced the prediction
accuracy through the precise fine - tuning of crucial
hyperparameters. During the process, as the number of
LSTM layers, the initial learning rate, and the learning rate
drop periods increased, the root mean square error (RMSE)
of the training decreased. In contrast, an increase in the
dropout rate led to an elevation in the RMSE.
2) The BO-LSTM model outperformed standalone LSTM,

GRU, and CNN models in chloride profile prediction. For the
validation set, the BO-LSTMmodel achieved an R² of 0.9743,
RMSE of 0.0402, MAE of 0.0309, and MAPE of 5.88%,
demonstrating high accuracy and reliability.
3) The model accurately predicted 600-day chloride

profiles, showing a correlation coefficient of 0.9811 between
predictions and measurements. For 720-day exposure, the
predicted gradual chloride accumulation aligns with known
concrete corrosion mechanisms.
4) The age factor derived from measured (m = 0.48) and

predicted (m = 0.39) data significantly impacts corrosion
initiation time. By employing these values of m, the
calculated corrosion initiation times, which are 62.6 years
and 49.2 years respectively, are in close agreement with the
50 - year design lifespan. This stands in contrast to the
predictions made when the time-dependent diffusion
characteristics are ignored.
These findings highlight the importance of integrating

Bayesian optimization and time-dependent diffusion
characteristics in durability assessments, providing a robust
framework for evaluating concrete structures in chloride-rich
environments.

REFERENCES
[1] J. Z. Zhang, J. Zhao, Y. R. Zhang, Y. H. Gao, and Y. Y. Zheng,

"Instantaneous chloride diffusion coefficient and its time dependency
of concrete exposed to a marine tidal environment," Construction and
Building Materials, vol. 167, pp. 225-234, 2018.

[2] D. S. Chen, W. H. Guo, B. A. Wu, and J. Shi, "Service life prediction
and time-variant reliability of reinforced concrete structures in harsh
marine environment considering multiple factors: A case study for
Qingdao Bay Bridge," Engineering Failure Analysis, vol. 154, 107671,
2023.

[3] Y. Zhang, X. Y. Zhou, J. Zhao, H. X. Zhuang, Y. H. Gao, and Y.R.
Zhang, "Time dependency and similarity of decay process of chloride
diffusion in concrete under simulated marine tidal environment,"
Construction and Building Materials, vol. 205, pp. 332-343, 2019.

[4] L. J. Wu, W. Li, and X.N. Yu, "Time-dependent chloride penetration in
concrete in marine environments," Construction and Building
Materials, vol. 152, pp. 406-413, 2017.

[5] W. Z. Taffese, and L. Espinosa-Leal, "Prediction of chloride resistance
level of concrete using machine learning for durability and service life
assessment of building structures," Journal of Building Engineering,
vol. 60, 2022.

[6] V. Q. Tran, "Machine learning approach for investigating chloride
diffusion coefficient of concrete containing supplementary
cementitious materials," Construction and BuildingMaterials, vol. 328,
2022.

[7] R. Cai, T. H. Han, W. Y. Liao, J. Huang, D. W. Li, A. Kumar, and H. Y.
Ma, "Prediction of surface chloride concentration of marine concrete
using ensemble machine learning," Cement and Concrete Research,
vol. 136, 2020.

[8] W. Z. Taffese, and L. Espinosa-Leal, "Unveiling non-steady chloride
migration insights through explainable machine learning," Journal of
Building Engineering, vol. 82, 2024.

[9] S. Q. Wang, P. Xia, K. Y. Chen, F. Y. Gong, H. L. Wang, Q. H. Wang,
Y. X. Zhao, and W. L. Jin. "Prediction and Optimization Model of
Sustainable Concrete Properties Using Machine Learning, Deep
Learning and Swarm Intelligence: A Review," Journal of Building
Engineering vol. 80, 2023.

[10] B. B. Guo, J. Chu, Z. D. Zhang, Y. Wang, and D. T. Niu. "Effect of
External Loads on Chloride Ingress into Concrete: A State-of-the-Art
Review," Construction and Building Materials vol. 450, 2024.

[11] F. M. Deng, Y. G. He, S. X. Zhou, Y. Yu, H. G. Cheng and X. Wu,
"Compressive strength prediction of recycled concrete based on deep
learning," Construction and Building Materials, vol. 175, pp. 562-569,
2018.

[12] S. X. Zhou, W. Sheng, Z. P. Wang, W. Yao, H. W. Huang, Y. Q. Wei,
and R. G. Li, "Quick image analysis of concrete pore structure based on
deep learning," Construction and Building Materials, vol. 208, pp.
144-157, 2019.

[13] Y. Song, Z. L. Huang, C. Y. Shen, H. Shi and D. A. Lange, "Deep
learning-based automated image segmentation for concrete
petrographic analysis," Cement and Concrete Research, vol. 135,
2020.

[14] L. J. Wu, W. Q. Wang, and C. C. Jiang. "Deep Learning-Based
Prediction for Time-Dependent Chloride Penetration in Concrete
Exposed to Coastal Environment," Heliyon, vol. 9, no. 6, 2023.

[15] M. Hosseinzadeh, H. Samadvand, A. Hosseinzadeh, S. S. Mousavi,
and M. Dehestani. "Concrete Strength and Durability Prediction
through Deep Learning and Artificial Neural Networks.", Frontiers of
Structural and Civil Engineering, vol. 18, no. 10, pp. 1540-1555, 2024.

[16] H. K. Shin, H. Kim, and S. H. Lee. "Convolutional Neural
Network-Based Regression for Predicting the Chloride Ion Diffusion
Coefficient of Concrete," CMC-Computers Materials & Continua, vol.
70, no. 3, pp. 5059-5071, 2022.

[17] F. F. Abdelkader, H. Tarik, E. H. Ibtissam, and M. Tawfik, "Particle
Swarm Algorithm Setting using Deep Reinforcement Learning in the
Artificial Neural Network Optimization Learning Process," IAENG
International Journal of Computer Science, vol. 51, no. 8, pp.
1195-1208, 2024.

[18] D. Soydaner, "A comparison of optimization algorithms for deep
learning," International Journal of Pattern Recognition and Artificial
Intelligence, vol. 34, no. 13, 2020.

[19] R. Y. Sun, "Optimization for deep learning: An overview," Journal of
the Operations Research Society of China, vol. 8, no. 2, pp. 249-294,
2020.

[20] X. Liang, "Image-based post-disaster inspection of reinforced concrete
bridge systems using deep learning with Bayesian optimization,"
Computer-Aided Civil and Infrastructure Engineering, vol. 34, no. 5,
pp. 415-430, 2019.

[21] J. S. Chou, M. A. Karundeng, D. N. Truong and M. Y. Cheng,
"Identifying deflections of reinforced concrete beams under seismic
loads by bio-inspired optimization of deep residual learning,"
Structural Control and Health Monitoring, vol. 29, no. 4, 2022.

[22] Z. Y. Xu, J. Zhang, J. Y. Wang and Z. M. Xu, "Prediction research of
financial time series based on deep learning," Soft Computing, vol. 24,
no. 11, pp. 8295-8312, 2020.

[23] T. Le, M. T. Vo, B. Vo, E. Hwang, S. Rho and S. W. Baik, "Improving
electric energy consumption prediction using CNN and Bi-LSTM,"
Applied Sciences, vol. 9, no. 20, 2019.

[24] G. de Vera, M. A. Climent, E. Viqueira, C. Antón and M. P. López,
"Chloride penetration prediction in concrete through an empirical

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 1797-1805

 
______________________________________________________________________________________ 



model based on constant flux diffusion," Journal of Materials in Civil
Engineering, vol. 27, no. 8, 2015.

[25] S. W. Pack, M. S. Jung, H. W. Song, S. H. Kim and K. Y. Ann,
"Prediction of time-dependent chloride transport in concrete structures
exposed to a marine environment," Cement and Concrete Research,
vol. 40, no. 2, pp. 302-312, 2010.

[26] Y. M. Sun, M. T. Liang and T. P. Chang, "Time/depth dependent
diffusion and chemical reaction model of chloride transportation in
concrete," Applied Mathematical Modelling, vol. 36, no. 3, pp.
1114-1122, 2012.

[27] Q. X. Xiong, Q. F. Liu, X. J. Zhang and C. Chen, "Chloride diffusion
prediction in concrete through mathematical models based on
time-dependent diffusion coefficient and surface chloride
concentration," Journal of Materials in Civil Engineering, vol. 34, no.
11, 2022.

[28] L. J. Wu, X. Gao and Y. F. Xia, "Randomness and time-varying
characteristics of chloride ion transport in existing harbor concrete
structures," Construction and Building Materials, vol. 412, 2024.

[29] K. F. Li, D. D. Zhang, Q. W. Li and Z. H. Fan, "Durability for concrete
structures in marine environments of HZM project: Design, assessment
and beyond," Cement and Concrete Research, vol. 115, pp. 545-558,
2019.

[30] U. M. Angst, "Predicting the time to corrosion initiation in reinforced
concrete structures exposed to chlorides," Cement and Concrete
Research, vol. 115, pp. 559-567, 2019.

[31] P. F. Marques, A. Costa and F. Lanata, "Service life of RC structures:
chloride induced corrosion: prescriptive versus performance-based
methodologies," Materials and Structures, vol. 45, no. 1-2, pp.
277-296, 2012.

[32] GB/T50476-2019, "Standard for design of concrete structure
durability" [S]. Beijing: China Architecture & Building Press, 2019. (in
Chinese)

[33] J. L. Wang, L. F. Yang, J. H. Huang and B. Yu, "Service life prediction
model for marine concrete structures considering structural shape and
time-dependent behaviour," Ocean Engineering, vol. 285, Part 1,
115276, 2023.

[34] Q. D. Nguyen and A. Castel, "Long-term durability of underground
reinforced concrete pipes in natural chloride and carbonation
environments," Construction and Building Materials, vol. 394, 132230,
2023.

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 1797-1805

 
______________________________________________________________________________________ 


	I.INTRODUCTION
	II.THEORETICAL BACKGROUND
	III.RESULTS AND DISCUSSION
	IV.CONCLUSION
	REFERENCES



