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Abstract—The reliance on large labeled datasets for training
deep Convolutional Neural Networks (CNNs) restricts their
use in scenarios where labeled data are limited. In response,
few-shot learning (FSL) enables knowledge transfer and the
learning of new categories using very few labeled samples.
This paper proposes a Transductive Dual Label Propagation
Network (TDLPN) to address label scarcity and the propagation
of label information. The TDLPN combines a Label Propagation
Algorithm (LPA) with a Graph Neural Network (GNN). The
LPA captures global relationships, while the GNN aggregates
local neighborhood information and introduces momentum
coefficients to enhance the label propagation process. Further-
more, a dot product attention method is used to build an
attention-weighted graph that accurately depicts the relation-
ships between input samples, and label predictions are derived
from these data. According to the experimental findings, the
TDLPN’s accuracy increases by 2.7% and 4.46 %, respectively,
on the minilmageNet dataset’s 5-way S5-shot and 5-way 1-
shot tasks. Furthermore, this paper explores experimental
methods optimized for single-shot label propagation on the
minilmageNet, tieredlmageNet, and CUB-200-2011 datasets,
showcasing the improvement in few-shot classification perfor-
mance and confirming that the TDLPN model exhibits strong
generalization ability across diverse few-shot classification tasks.

Index Terms—Transductive learning, Few-shot learning, La-
bel propagation, Graph neural networks, Attention-weighted
graphs.

I. INTRODUCTION

N numerous computer vision applications, including im-

age classification [1] [2], semantic segmentation [3] [4],
object detection [5] [6], and image caption generation [7],
deep CNNs have demonstrated impressive success. But CNN
training usually requires a lot of labeled data, like hundreds
of samples for each category. For some rare categories, data
collection and labeling are practically impossible, and this
process is frequently both expensive and time-consuming.
This issue has grown to be a significant barrier preventing
deep learning methods from being widely used in practical
applications. As a solution, FSL has received extensive
research attention. Few-shot learning involves using a small
number of labeled samples (e.g., only 1-5 samples per
category) to achieve effective recognition of new categories
by transferring knowledge from the base category with
abundant samples. These methods typically leverage metric
relationships between labeled and unlabeled data for image
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classification. For instance, twin networks use weighted dis-
tances to determine the distances between positive and neg-
ative samples, enabling training to compare similarities [8];
matching networks learn the relationships between labeled
and unlabeled sample sets using shared weighted metrics [9];
and prototype networks use distance computation in the
metric space to sort samples [10], showing that these methods
work well for classifying with few samples.

Many research groups are currently using FSL methods.
Due to their superior performance in direct push learning set-
tings, GNN-based few-shot learning techniques are becoming
more and more popular. Because GNN can rapidly collect
information through the graph structures they construct using
a small number of support set and query set instances, few-
shot learning works well with them. This is achieved by
passing messages, which rapidly gather information. These
approaches use GNN as the core module for label propaga-
tion [11] and leverage the graph structure for node label pre-
diction [12] or edge label prediction [13]. Stated otherwise,
the GNN serves as a classifier in this context, converting the
feature-embedding network’s output into category labels. The
GNN parameters and feature embedding network parameters
are considered of as two parts of the same model that are
co-learned and optimized together in an outer loop.

The Transductive Propagation Network (TPN) [14] faces
several issues when dealing with changes in graph structure.
It is highly dependent on graph structure, and may not effec-
tively propagate label information when the topology of the
graph changes. The TPN depends on the label information of
the labeled nodes to propagate in sparse labeling scenarios;
the classification accuracy may be decreased if the label
information of unlabeled nodes is not fully utilized. This is
primarily due to the fact that the one-time label propagation
mechanism of TPN fails to fully leverage the migration
potential of the graph structure across tasks, thereby limiting
its generalization ability. To address these issues, this study
proposes a new few-shot classification method, the Trans-
ductive Dual Label Propagation Network (TDLPN). A graph
is first constructed to represent the node and edge features
of the input samples and to reveal the relationship between
all input samples. To get their respective predictions, this
graph is given into the label propagation algorithm and the
graph neural network. This approach fully utilizes the graph
structure information by integrating the Graph Attention
Network (GAT) and the Label Propagation Algorithm (LPA),
which improves the accuracy and efficiency of few-shot
classification. In tests, the TDLPN model improves accuracy
by 4.46% and 2.7% on the 5-way 1-shot and 5-way 5-shot
tasks on the minilmageNet dataset.

The main contributions of this paper include:

1) A TDLPN few-shot classification method that com-

bines GNN and LPA is proposed. The method uses
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LPA and GAT to gather global information about
the sample points and local neighborhood information
about each node, respectively. In this way, the approach
can completely utilize the label information of both
labeled and unlabeled nodes, as well as capture the
global structure of the data and thelocal relationships.

2) The momentum coefficient is introduced to optimize
the label propagation algorithm. As a result, the mo-
mentum term helps make the process of updating
labels smoother and less prone to oscillations and
instability, thereby speeding up the convergence of
label propagation.

3) An attention-weighted graph is constructed using the
attention weights obtained from the dot product atten-
tion mechanism as the edges of the graph. Since atten-
tion weights accurately capture the interrelationships
between the input samples, the labeling information is
propagated more effectively.

II. RELATED WORK
A. Metric learning with few-shot learning

In the context of few-shot learning, metric learning meth-
ods emphasize the importance of learning similarity clas-
sifiers over the feature space [15]. They achieve this by
employing a cross-task neural network backbone design and
concentrating on learning high-quality, transferable features.
Using learnt embeddings from a limited number of labeled
samples (the support set), the Matching Network (MN) uses
an end-to-end trainable nearest neighbor method to predict
the class of unlabeled data (the query set). By creating
a prototype representation for every category to facilitate
classification, the Prototypical Network (PN) expands on
this idea. Relation Networks use a basic neural network
to learn a nonlinear distance metric rather than depending
on conventional fixed linear distance metrics like cosine
or Euclidean distance. End-to-end networks are typically
trained with small amounts of training data in these methods.
The idea is that the features learned during training can
accurately represent the new test categories. By teaching a
neural network to use a nonlinear distance metric and then
combining it with Euclidean distance to calculate similarity
and build the adjacency matrix, it is feasible to obtain a
more accurate image of how similar two sets of data are,
particularly in high-dimensional areas.

B. Graph-based learning with few-shot learning

In the research field of FSL, graph-based methods are often
regarded as a special branch of metric learning. The reason
for this is that most of these methods depend on Radial Basis
Function (RBF)-based adjacency matrices to create graphs
that facilitate for labels or features to spread. For instance,
by creating affinity matrices between the support set and un-
labeled data, Satorras et al. [16] were able to effectively prop-
agate labels. In order to regularize the feature representation.
To regularize the feature representation, wDAEGNN [17]
used graph neural networks (GNNs) to generate classification
weights and combined them with denoising autoencoders
(DAESs). In addition, embedding propagation methods propa-
gate not only the labels but also the embeddings themselves
to reduce intra-class distance and thus improve classification

accuracy [18]. Graph Convolutional Networks (GCNs) have
been utilized to instantiate set-to-set functions, which have
also been employed for embedding adaptation [19].

C. Transductive learning and semi-supervised few-shot
learning

One of the most common paradigms in few-shot learning
is the inductive setting. In this mode, the learning or fine-
tuning process of the model is limited to determining the
labels of query samples based only on the samples in the
support set. In contrast, the direct inference setting diverges
from the inductive approach by enabling the model to access
all query samples for classification, including those devoid of
explicit labels. In certain studies, query samples and entropy
minimization techniques are fine-tuned using query samples
to enhance the model’s certainty of prediction. In addition,
techniques such as label propagation and embedding propa-
gation are used for representation learning, which is similar
to their application in meta-learning.

In semi-supervised few-shot learning, unlabeled data is
supplied alongside a labeled support set. Although the distri-
bution of this data is thought to be comparable to that of the
target category, it might also include some irrelevant samples.
The LST [20] study employs self-labeling and soft attention
to process unlabeled samples concurrently and intermittently.
Subsequently, labeled and self-labeled data are amalgamated
to fine-tune the model. The LST method is similar to the
approach adopted by Ren et al. [21], who utilized K-means
iterations initiated by a prototype network to update category
prototypes and mitigate the impact of samples that might
not belong to the target category during the processing of
unlabeled data. Simon et al. [22] also employed unlabeled
samples and soft label propagation techniques. Additionally,
Saito et al. [23] explored the challenge of semi-supervised,
few-shot domain adaptation. In other studies [24], graph neu-
ral networks were applied to semi-supervised FSL settings to
facilitate information sharing between labeled and unlabeled
samples, with a graph construction network used in TPN
to predict task-specific graphs for propagating labels in a
semi-supervised FSL task. Finally, Liu et al. [25] pointed
out the bias between the prototype representation and the
ideal representation and proposed a simple strategy based on
intra-class and inter-class assumptions to correct this bias.

III. METHODOLOGY
A. Problem definition

Few-shot classification focuses on building classifiers
when only limited training samples are available for each
class. A typical few-shot task 7" includes a support set S
(labeled input-label examples) and a query set () (unlabeled
samples used for evaluation). When the support set .S con-
tains K labeled samples for each of IV different categories,
this situation is called an N-way K-shot classification prob-
lem.

Meta-learning has recently emerged as a widely used
approach for addressing few-shot classification challenges.
Few-shot learning can use the compact support set of a
task alone to train classifiers to assign a class label to
each sample in the query set. However, the small number
of labeled support samples makes it impossible to train
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models that accurately reflect differences between and within
classes, which usually leads to poor classification perfor-
mance. Meta-learning solves this problem by transferring
relocatable knowledge from the explicit training set. This
allows models to learn faster with few shots on the support
set, leading to better classification of the query set.

In this paper, we adopt scenario training as an efficient
method for meta-learning. The core idea of scenario training
is to sample training tasks (i.e., scenarios) from a relatively
large labeled training dataset that mimics the few-shot learn-
ing environment of the test task. Since the distribution of the
training tasks is considered to be similar to that of the test
task, the performance on the test task can be improved by
ensuring that the model performs well on the training tasks.

Specifically, the training and testing tasks in scenario
training are constructed as N-way K-shot problems:

r=5suQ D

where: T' denotes the task, S = {(z,%:)} 5% and Q =
{(ws,y0) } ?VK;;(TH are the support and validation sets, re-
spectively, N denotes the number of categories, K indicates
the count of instances per category, T' the number of query
samples. z;,y; € {C1,---,Cn} C C, are the i-th input data
and its label, respectively, and C' is the set of all classes
in the training or test dataset. While train and test tasks
are sampled from the same distribution, their label sets do
not overlap Cipin N Ciex = . The support set S in each
scenario acts as the labeled training set on which the model
is trained with the aim of minimizing the prediction loss on
the validation set ). The model is trained on the training set
S and the validation set (). This training process is repeated
until the model converges. When some of the IV x K support
instances lack labels, the task is termed semi-supervised few-
shot learning.

B. Models

TDLPN contains four key components, as shown in Fig-
ure 1. First, by employing feature embedding, the model
becomes more effective in capturing and representing in-
put information. Secondly, the graph construction module
effectively utilizes the data’s flow structure by generating
node and edge features, ultimately generating an attention-
weighted graph through a point-by-attention mechanism.
After that, the graph construction is applied to both GAT
and LPA to propagate labels from the support set S to the
query set Q. Finally, a bilevel optimization [26] algorithm
is used in the loss generation phase to compute the cross-
entropy loss between the propagated labels and the true labels
on the query set () and to optimize all the parameters in the
joint training framework. This integrated approach not only
improves the accuracy of the model in dealing with complex
data structures but also enhances its generalization ability in
few-shot learning tasks.

1) Feature embedding: In this module, Conv4 and
ResNet12 networks are adopted in this paper to extract the
input x; features, respectively:

Uy = fga (xh (P) (2)

where ¢ denotes the parameters of the network. The node
features in the support set and query set are extracted by the
same embedding.

2) Diagram construction: In this research, we suggest
a trainable approach to generate edge features instead of
using a fixed similarity measure such as K-nearest neighbors
with a Gaussian kernel. According to research [27], the self-
attention mechanism uses the attention value to determine
how different parts of the input are related, even when
the distance is taken into account. Inspired by this, to
efficiently build neighborhood graphs in the framework of
meta-learning, this paper constructs graphs based on the
support and query sets. In this module, CNN is used to
generate a feature representation unique to each sample. The
edge weights of each sample are computed through a multi-
plicative dot product attention mechanism, which is uniquely
determined for each sample and obtained through contextual
training. This method can adapt to different task requirements
and optimize the performance of few-shot learning. With
the introduction of the multiplicative dot product attention
mechanism, edge weights are computed by first applying a
linear transformation to each node:

where W is the linear transformation matrix and x; is the
eigen representation of node i.

Also, using the multi-head mechanism, unions are per-
formed in h different representation subspaces to minimize
random errors. Compute the multi-head dot product attention

score:
(h(k) : h(k))
PG N A 4)
1] \/ﬂ
where d;, indicates the feature dimension of the k attention
head, hl(-k) denotes the feature performance of node i at the
k attention head, and - denotes the dot product.

Normalize the attention scores to obtain the edge weights
of each attention head, splice the edge weights of all attention
heads, and obtain the final edge weight matrix W through a
linear transformation:

exp (eg))
Siew () ®)
W;; = Concat (oz(l) o ,al(-h)) wo

(k) _ (k) _
a;; = softmax (e»j ) =

7

ij g J

where W70 is the linear transformation matrix used to inte-
grate the results of the multi-head attention.

In Figure 2, the suggested graph creation module is
displayed. This construction no longer relies solely on the
traditional method of matching and comparing between the
support set and the query set. Instead, it reveals the deep
relationships between the entire input data through an output
graph that depicts in depth the comprehensive connections
between the support set and the samples in the query set.
Such a graph structure, as important as prior information,
utilizes the correlation between the samples to effectively
facilitate the feature extraction and aggregation process, pro-
viding a more global perspective and support for subsequent
training.
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Fig. 1. TDLPN model architecture diagram
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Fig. 2. Diagram construction module

In the training phase, the scenario training method is used
to construct the graphs, where the size of the graphs flexibly
varies according to the number of randomly selected samples
in the support set and query set. The graphs created for each
scenario are separate from each other. This method effec-
tively reduces the amount of computation needed to process
all the samples, making the graph construction process more
targeted and efficient.

3) Double labeling propagation: A semi-supervised
learning strategy is used after the graph structure of the
input image data is learned. This is done with a graph at-
tention network and a label propagation algorithm that sends
label information between labeled and unlabeled connected
neighbors. This approach enables the model to learn rapidly
even in the absence of many labels by using structural links
between unlabeled data. Additionally, it enhances the model’s
capacity to adjust to fresh data.

1) Graph Attention Networks

A graph-structured graph attention network approach is
used to predict the labels of the query set Q. Each node in the
network is given a varied weight depending on how important
its neighbors are, according to a self-attention process. With
weights established by the attention mechanism, each node’s
features are updated as a weighted sum of the features of its
nearby nodes.The nodes are then subjected to a self-attention
operation in order to acquire a shared attention mechanism
for the purpose of computing the attention coefficients:

€ij = a (Wh“ Whj) 7j € N; (6)

where a is a learnable attention mechanism, W is the feature
transformation weight matrix, h; and h; are the feature
vectors of the node and node respectively, j € IN;,jis the
neighbor node of the nodeiin the graph. All nodes j and

FC layerl
FC layer2

Dual Label Propagation

Dod-product Attention
—

Mamul SoftMax

1BOU0D)
Teaury

e;; are normalized using the softmax function to get the
final attention weights, which make it simple to compare
the coefficients across various nodes:

h; =0 Z ClijWhj (7)

JEN;

In order to improve the stability of the self-attention
learning process, this paper employs a multi-head attention
mechanism. It does this by running K separate attention
mechanisms at the same time, each of which performs
the same transformation, and then combining their output
features to make the final output feature representation:

k
M=o 2303 aytwhn, ®)

k=1j€N,

where WF is the weight matrix of the corresponding input
linear transformation, and afj is the normalized attention
coefficient calculated by the k attention mechanism.

2) Label propagation

The labels of the query set Q are predicted using a graph-
structured label propagation technique. Define F as a set of
(N x K + T) x N matrices containing non-negative elements.
In the labeling matrix Y, the functional form of Y is:

1 eSS, y=j
1 R ©)
0  otherwise

The unknown labels of S U U instances in the iterative
graph structure update serve as the basis for label propaga-
tion. The original formula for label propagation is:

F=(I-aS)™'Y (10)
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The formula in the iterative label propagation process is:

F(t+1)=aSF{t)+ (1 - )Y (11)

Add the momentum coefficient © to equation (12) to get
the formula:

Fit+1)=pFt)+ T —p)(aSF#t)+ (I -a)Y) (12)

where I is a unit matrix, F'(¢) representing the predicted label
distribution at time t, S denotes a normalization matrix over
W, a € (0,1) is a trade-off factor to balance the importance
of the information in the propagation process and the original
label information, and g is a momentum factor. With the
introduction of the momentum coefficient p, the new label
propagation algorithm can converge to a steady state more
quickly, thus improving the efficiency and accuracy of label
propagation.

C. Model Optimization

1) Model Loss: Label propagation in few-shot learning
can leverage unlabeled data to improve classification per-
formance by conveying label information through the graph
structure, which helps to learn more generalized feature
representations. However, it relies on the quality of graph
construction and is sensitive to noisy labels. Graph Attention
Networks (GATs) are able to dynamically focus on important
neighboring nodes through an attention mechanism to en-
hance feature representation. Thus, the use of unlabeled data
improves generalization ability through label propagation
while capturing complex node relationships through GAT,
resulting in better performance in few-shot learning tasks.
Model combination can be realized by assigning higher
weights to the corresponding model predictions. The com-
bined prediction formula is:

__exp(fh) )P exp (f2) &
Siep(0:)” XL exp(6)

where y® is the prediction of the label propagation, y<
is the prediction of the graph attention network, #; and
0, are learnable weights to control the contribution of the
two models in the final prediction. #;andf; can be chosen
based on their performance on the validation set, and more
specifically, this objective can be expressed as the following
two-layer optimization problem:

13)

min Lva (¢ (01,02) , 05 (01,02),01,02) st op, 06

1,02
= arg min Ly (¢B,¢a,01,02)
P3,Pa

(14
where L4 and L4, represent the cross-entropy loss on
the validation and training sets, respectively, and are used to
measure the accuracy of the model in predicting labels on
both datasets.

2) Alternate optimization: In order to reduce the compu-
tational cost and storage requirements, this thesis employs an
alternating optimization strategy that first fixes 6; and 65, by
optimizing ¢p and g to minimize the loss on the training
set. Then fixes g and @G, and optimizes 6; and 65 to
achieve the best results on the validation set. This alternating

approach effectively balances computational efficiency and
resource consumption. In order to further accelerate the
optimization process, a mechanism to dynamically adjust the
learning rate is introduced so that the model automatically
adjusts the step size according to the gradient changes in
different iterations to achieve faster convergence.

In this paper, instead of computing g and g during the
upper-level optimization process, we fix 6, and #; and update
the model parameters g and g in the t-step by:

()ptBJ'_l = b — aBV up Ligain (90337 ‘Pth 01, 92) (15)
(,02_1 = (ptG — @V Liain (QQth Sath 01792)

where p} and ¢ are the model parameters after updating ¢
steps. ag and g are the learning rates of g and ¢g.

To further speed up the optimization process, this paper
introduces a one-step approximation method to compute the
upper layer parameters ¢; and 65 gradient updates:

elf+1 = elf — a9V, Lya (90£7 (pg,@’ﬂ 95)

(16)
05t = 05 — oV, Loa (05,05, 0%,05)

where i and ol denote the stopping gradient, and «vy is
the learning rate of 6, and 6.

IV. EXPERIMENTS
A. Datasets

The experimental phase made use of three well-known
FSL quasi-datasets: minilmageNet, tieredlmageNet, and
CUB-200-2011. Each of the 100 classes that make up mini-
ImageNet’s composition has 600 images. According to the
criteria [28], the photos are separated into 20 test classes,
16 validation classes, and 64 training classes. A broader
subset of ImageNet ILSVRC-12, TieredImageNet comprises
779,165 images in 608 categories, which are further subdi-
vided into 160 test classes, 97 validation classes, and 351
training classes. With 11,778 photos of 200 bird species
split into 100 training classes, 50 validation classes, and 50
test classes, CUB-200-2011 is a fine-grained categorization
dataset in contrast to the other two. The fact that every image
in the collection has been normalized to 84 x 84 size is
notable.

B. Setup

Like many other CNN-based image recognition tasks,
the FSL model requires a feature embedding network. The
effectiveness of this network is greatly influenced by its
backbone. Two popular backbones, Conv-4 and ResNet-12,
were utilized in the trials to allow for a fair comparison
with earlier methods. The final output feature dimension of
the Conv-4 backbone, which consists of four convolutional
blocks, is 64. The majority of the most advanced models
employ the ResNet-12 backbone. With an output feature
dimension of 640, it is composed of four residual blocks.
The Adam optimizer is used in all trials, with an initial
learning rate of 1073 and « set to 0.99 for label propagation.
The learning rate was halved for every 10,000 training
sets in the minilmageNet and CUB-200-2011 datasets, and
halved for every 25,000 training sets in the tieredlmageNet
dataset. Because tieredlmageNet has more categories and
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more samples in each category, it takes longer training cycles
to accomplish the learning effect. For this reason, the learning
rate is decreased at bigger intervals. Until the validation loss
achieves an equilibrium state, the training process continues.

C. Results of the experiment

1) Key results: This paper presents a comparative analysis
between the proposed approach and other state-of-the-art
models. The include graph-based models like TPN [14],
DPGN [13], BGNN [12], EGNN [24], HGNN [28], and non-
graph-based approaches, including RelationNet [15], Match-
ingNet [9], ProtoNet [10], MAML [29], MetaGAN [30],
SNAIL [31], Meta-Transfer [32], TapNet [33], Closer-
Look [34], FEAT [35], E3BM [36], and MetaOptNet [37].

Tables I to III illustrate the effectiveness of the one-shot
label propagation network (TPN), which has been broadly
recognized in the field. From Table I, it can be seen that
TPN achieves 59.46% and 75.65% accuracy in the 5-way 1-
shot and 5-way 5-shot settings on the minilmageNet dataset,
respectively. However, TPN still has drawbacks when han-
dling sparsely labeled data, despite its strong performance
in graph structure analysis. The TDLPN is proposed in this
work as a solution to these issues. By facilitating the model’s
ability to adjust to modifications in the graph’s structure, it
raises classification accuracy.

On the same dataset, TDLPN improves its performance
to 63.92% and 78.35% in the 5-way 1-shot and 5-way 5-
shot settings, respectively, which are 4.46% and 2.7% higher
compared to TPN. This significant improvement is due to
the fact that the TDLPN’s graph structure understanding
and label propagation algorithms have been enhanced. This
makes them more reliable when labels are scarce.After
extensive analysis, it is evident that the enhanced model’s
greater ability to adapt to changes in graph structure is
what caused the results to significantly improve. This makes
the classification more accurate when labels are scarce. In
particular, the model fully utilizes the GAT and the LPA
by combining the graph’s local and global information. The
GAT aggregates the local neighbor information for each node
and expands the sensory field through multi-layer stacking,
whereas the LPA captures the global relationships between
sample points. This design allows the model to learn and
adapt better when dealing with complex graph structures,
thus demonstrating higher accuracy and generalization ability
in few-shot learning tasks.

In both 5-way I-shot and 5-way 5-shot settings, the
enhanced technique outperforms existing graph-based and
non-graph-based few-shot methods in terms of accuracy on
the minilmageNet dataset. Except for the method proposed
in this paper, the method with the best results in both 1-shot
and 5-shot is HGNN, with a result of 72.48%, which is still
about 2% lower than the TDLPN in this paper. Furthermore,
the approach suggested in this research continues to produce
good results on the CUB-200-2011 dataset and the tieredIm-
ageNet dataset.

2) Semi-supervised few-shot classification: In this study,
the minilmageNet dataset is divided into groups with differ-
ent ratios of labeled and unlabeled samples. This is done to
compare four methods: GNN [24], EGNN [24], TPN [14],
and EGNN(T) [24]. The findings of the comparison, which

TABLE 1
ACCURACY OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT TASKS ON
MINIIMAGENET DATASET

Method Backbone Sway-1shot Sway-Sshot
MatchingNet [9] Conv4 43.56+0.84 55.31+0.73
ProtoNet [10] Conv4 49.4240.78 68.2040.66
MAML [29] Conv4 48.70+1.84 55.31+0.73
TPN [14] Conv4 55.514+0.86 69.8610.65
DPGN [13] Conv4 53.2240.31 65.3440.29
BGNN [12] Conv4 52.35+0.42 67.35+0.35
EGNN [24] Conv4 51.6540.55 66.851+0.49
HGNN [28] Conv4 55.6340.20 72.4840.16
TDLPN (ours) Conv4 57.34+0.25 74.28+0.22
MetaGAN [30] ResNet12 52.714+0.64 68.631+0.67
SNAIL [31] ResNet12 55.7140.99 68.8840.92
Meta-Transfer [32] ResNet12 61.20+1.80 75.53+0.80
TPN [14] ResNet12 59.46+n/a 75.65+£n/a
TapNet [33] ResNet12 61.6540.15 76.3640.10
TDLPN (ours) ResNet12 63.921+0.32 78.35+0.15
TABLE II

ACCURACY OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT TASKS ON THE
TIEREDIMAGENET DATASET

Method Backbone Sway-1shot Sway-Sshot
MatchingNet [9] Conv4 54.0240.00 70.1140.00
ProtoNet [10] Conv4 50.8940.21 69.26+0.18
MAML [29] Conv4 51.67+1.81 70.30+0.08
TPN [14] Conv4 57.534+0.96 72.85+0.74
DPGN [13] Conv4 53.9940.31 69.86+0.28
BGNN [12] Conv4 49.41+0.43 65.271+0.35
EGNN [24] Conv4 47.401+0.43 62.66+0.57
HGNN [28] Conv4 56.054+0.21 72.8240.18
TDLPN (ours) Conv4 59.66+0.13 76.28+0.21
TPN [14] ResNet12 59.914+0.94 73.3040.75
TapNet [33] ResNet12 63.08+0.15 80.2640.12
Meta-Transfer [32] ResNet12 65.62+1.80 80.61+£0.90
MetaOptNet [37] ResNet12 65.81+0.74 81.75£0.53
ProtoNet [10] ResNet12 69.631+0.53 84.8240.36
E3BM [36] ResNet12 70.00+n/a 85.00+n/a
TDLPN (ours) ResNet12 71.841+0.16 85.64+0.12

is conducted in an environment with little labeled data, are
displayed in Figure 3. These methods have demonstrated
significant efficacy or introduced novel learning mechanisms
in previous studies and were thus chosen to show the
variation in their performance with different ratios of labeled
to unlabeled samples. The support samples in each category
are divided into labeled and unlabeled parts according to the
semi-supervised scenarios where the proportion of labeled
samples is set to 0.2, 0.4, and 0.6.

By meticulously analyzing the similarity distribution
among all samples, this study reveals the efficiency of
information transfer in semi-supervised learning, especially
when labeled data are scarce. During the experiments, it is
first observed that the performance of all models generally
decreases as the proportion of labeled samples decreases.
This finding aligns with expectations, since less labeled
information may make it difficult for classifiers to accurately
establish boundaries between categories. However, TDLPN
helps mitigate this downward trend by effectively extracting
and utilizing the structured information embedded in un-
labeled samples. In comparison to a number of alternative
approaches, the findings shown in Figure 3 confirm that the
approach suggested in this research can maintain high classi-
fication accuracy in resource-constrained circumstances. This
not only demonstrates the robustness of the method but
also highlights its potential application in the field of semi-
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TABLE III
ACCURACY OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT TASKS ON THE
CUB-200-2011 DATASET

Method Backbone Sway-1shot Sway-5shot
MatchingNet [9] Conv4 61.16+0.89 72.86£0.70
ProtoNet [10] Conv4 51.31+0.91 70.774+0.69
MAML [29] Conv4 55.92+0.95 72.09£0.76
RelationNet [15] Conv4 62.45+0.98 76.11+£0.69
CloserLook [34] Conv4 60.5340.83 79.3440.61
TDLPN (ours) Conv4 65.35+0.56 81.47+0.51
FEAT [35] ResNet12 68.87+0.22 82.90+£0.15
TDLPN (ours) ResNet12 76.54-+0.46 88.06+0.39

supervised few-shot learning.

Specifically, compared with methods such as TPN and
EGNN, TDLPN utilizes labeled support samples and can
accurately establish the similarity distribution among all sam-
ples, which in turn facilitates the deep connection between
labeled and query samples and enables the efficient transfer
of information from labeled samples to query samples. The
proposed method outperforms the existing few-shot semi-
supervised methods, as shown in Figure 3. The findings
also demonstrate that, despite a decline in the labeling ratio,
it successfully capitalizes on the link between labeled and
unlabeled data.
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Fig. 3. MinilmageNet results in semi-supervised scenarios

3) High-way few-shot classification: In addition, the per-
formance of TDLPN in high-category few-shot scenarios
was evaluated on the minilmageNet dataset. As shown in
Figure 4, TDLPN not only outperforms powerful graph-
based methods, but also significantly outperforms non-
graph methods such as MAML [29], RelationNet [15], and
MetaOpt [37]. As the number of few-shot tasks increases,
LPA captures global information about the graph, GAT can
aggregate local information, and TDLPN continues to extract
more detailed information for queries by combining both.

4) Model complexity analysis: Assessing a deep learning
model’s complexity is one of the most crucial methods to
determine how effective it is. This is usually measured by
counting the number of floating-point operations (FLOPs),
the number of parameters (Params), and the memory foot-
print (Memory). In this paper, we experimentally compare
the complexity of GNN, DN4, DPGN, and TDLPN models.
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Fig. 4. High-way few-shot classification accuracy on minilmageNet

Table IV displays the experimental results. Compared with
other methods, although the number of parameters and
memory usage of TDLPN are relatively high, its FLOPs
are significantly lower than those of DN4, indicating that
TDLPN still has an advantage in computational efficiency
despite its increased complexity.

TABLE IV
MODEL COMPLEXITY ANALYSIS

Method Params /105 FLOPs /10° Memory/GB
GNN 1.62 0.19 1.3
DN4 0.12 8.89 34
DPGN 5.79 1.41 1.8
TDLPN (ours) 16.11 2.88 7.74

D. Ablation experiments

1) Impact of Different Modules on Model Classification
Performance: To evaluate the impact of LPA and GAT
fusion on the model, training is conducted after removing
LPA and GAT, and the experimental results are shown in
Table V, demonstrating the effect of LPA and GAT fusion
on the classification performance. It can be observed that
there is a slight decrease in performance after removing
LPA, whereas the removal of GAT has a relatively greater
impact, especially in the 5-way 1-shot setting. Specifically,
on the minilmageNet dataset, the 5-way 1-shot accuracy
after removing LPA is 52.31%, while the accuracy after
removing GAT is 52.21%, showing only a small difference.
However, the 5-way 5-shot accuracy after removing GAT
drops significantly to 67.03%, while it remains at 68.18%
after removing LPA.

A similar trend is observed on the tieredlmageNet and
CUB-200-2011 datasets. The 1-shot and 5-shot accuracies
after removing LPA are 55.23% and 70.43%, respectively,
while the accuracies after removing GAT are 42.37% and
62.54%, respectively. The findings of this experiment demon-
strate that the incorporation of GAT enhances the overall
efficacy of the model, particularly in the context of the tiered-
ImageNet dataset. The elimination of GAT has a substantial
impact on classification accuracy.
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TABLE V
ACCURACY OF GAT AND LPA MODULE FOR 5-WAY 1-SHOT AND 5-WAY 5-SHOT TASKS ON MINIIMAGENET AND TIEREDIMAGENET AND
CUB-200-2011 DATASETS

Method minilmageNet tieredImageNet CUB-200-2011
LPA GAT 5-way 1-shot 5-way S-shot 5-way 1-shot 5-way S-shot S-way 1-shot 5-way S-shot
v 52.31+£n/a 68.18+n/a 55.23+n/a 70.43£n/a 59.36£0.16 75.67£0.25
v 52.21£0.20 67.03£0.17 42.3740.20 62.54=+0.19 61.54+0.42 77.23£0.39
v v 57.34+0.25 74.28+0.22 59.66+0.13 76.28+0.21 65.35+0.56 81.47+0.51
TABLE VI

ACCURACY OF OPTIMIZED AND UNOPTIMIZED LPA FOR 5-WAY 1-SHOT AND 5-WAY 5-SHOT TASKS ON MINIIMAGENET AND TIEREDIMAGENET AND
CUB-200-2011 DATASETS

Method minilmageNet tieredImageNet CUB-200-2011

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Unoptimized LPA 56.801+0.27 72.14+0.19 57.92+0.11 74.64+0.16 64.98+0.17 79.24+0.31
Optimized LPA 57.3440.25 74.28+0.22 59.66+0.13 76.28+0.21 65.35+0.56 81.4740.51

These results demonstrate that the synergistic effect of
both GAT and LPA in TDLPN is crucial for the few-
shot learning task, and together they improve the model’s
classification performance across different datasets.

2) Effect of Optimizing the Label Propagation Algorithm:
More ablation tests will be conducted on the label prop-
agation algorithm to analyze the impact of incorporating
a momentum-optimized label propagation algorithm versus
an unoptimized one. The experimental results are shown
in Table VI, where the accuracy of the unoptimized label
propagation algorithm is 56.80% in the 5-way 1-shot task
on the minilmageNet dataset, whereas the accuracy with
momentum optimization improves to 57.34%. Similarly, in
the 5-way 5-shot task, the accuracy of the unoptimized LPA
was 72.14%, while the optimized LPA improves to 74.28%.
The optimized LPA demonstrates enhanced performance in
both the 1-shot and 5-shot tasks. The optimized LPA on
the tieredlmageNet and CUB-200-2011 datasets also exhibits
improved performance, indicating that the momentum-based
optimization method can significantly enhance classification
accuracy in cases of label sparsity. This outcome further
demonstrates how well the optimization technique works to
enhance the model’s capacity to adjust to modifications in
the graph topology.
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Fig. 5. Loss convergence plot for training 400 epochs on minilmageNet
dataset

The momentum-based LPA significantly accelerates loss
convergence and suppresses fluctuations during training,
compared to the vanilla LPA. As shown in Fig. 5, the opti-
mized LPA enables faster and smoother model convergence

by introducing a momentum term, which stabilizes the label
update process and reduces oscillations. This enhancement
improves the overall efficiency and stability of the label
propagation algorithm.

V. CONCLUSION

This study explores the challenges faced by deep con-
volutional neural networks, which require a lot of labeled
data to train in a resource-constrained labeling environment.
In order to tackle this issue, the proposed TDLPN model
integrates the label propagation algorithm and the graph
attention mechanism to accurately construct a graph structure
that reflects the interrelationships among input samples by
optimizing the attention intensity parameter. In this way,
it enables efficient label prediction. The TDLPN model
outperforms the single-label propagation method on the mini-
ImageNet, tieredImageNet, and CUB-200-2011 datasets, as
demonstrated by experiments. This result not only confirms
the applicability and robustness of the proposed method
across different datasets but also highlights its excellent
generalization ability in handling diverse few-shot classi-
fication tasks. The TDLPN model provides an effective
solution for applying deep learning models in label resource-
constrained conditions, proving the enormous potential of
attention mechanisms and graph structures in few-shot learn-
ing.
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