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Abstract—Given the rapid global environmental changes,
issues related to sustainability and pollution effects have
attracted considerable attention from a wide range of
stakeholders. Effectively mitigating and balancing the impacts
arising from various factors remains a critical focus in the
field of sustainability and environmental impact assessment. In
this context, the present study proposes several examination
frameworks aimed at reducing and balancing the effects
of multiple environmental factors across different goals.
These frameworks are then analyzed using a set of axioms
to assess both their mathematical validity and practical
applicability through a structured axiomatic approach. To
refine the assessment of the relative contributions and
impacts of different stakeholders and their operating grades,
two weighted examination mechanisms, along with their
respective characterizations, are introduced. Additionally, the
paper explores further interpretations of these axioms and
the corresponding axiomatic procedures, providing a deeper
understanding of their potential applications in sustainability
and pollution control research.

Index Terms—Sustainability, effect, examining method,
multiple goal processes, axiomatic procedure.

I. INTRODUCTION

In recent years, sustainability-related challenges have
gained significant attention due to the accelerating impacts
of climate change, depletion of natural resources, and other
environmental suppressors. This has led to a growing body
of research focusing on issues such as resource allocation,
pollution reduction, and climate change mitigation. The
environmental effects resulting from the advancement of
human civilization have become an undeniable reality,
with some consequences even being irreversible. As such,
minimizing the environmental impacts caused by various
factors has become a central concern in sustainability-related
research.

Addressing these impacts often requires a holistic
approach that considers multiple dimensions simultaneously,
which may occasionally be at odds. For instance, achieving
optimal pollution reduction using certain measures or
technologies, while simultaneously conserving energy,
minimizing resource consumption, and avoiding the
generation of secondary pollutants or waste, necessitates
a balanced, multi-faceted approach. In the field of
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mathematics, multi-objective optimization or equilibrium
models are employed to balance these diverse goals within
operational systems.

Under conventional transferable-utility (TU) conditions,
participators are typically classified as either fully engaged
or entirely uninvolved with others in the system. However,
in most real-world scenarios, the grade of participator
engagement is not clear-cut and remains difficult to
determine. Within the framework of multi-choice TU
processes, participators can interact across an infinite range
of engagement grades. Various examination methods for
multi-choice TU games have been explored in diverse
contexts, including studies by Calvo and Santos [3], Chen
et al. [6], Cheng et al. [4], Li et al. [19], Liao [21], [22],
Liao et al. [23], Hwang and Liao [11], [12], Huang et al.
[14], Huang et al. [15], Klijn et al. [16], Nouweland et al.
[30], Uapipatanakul et al. [35], Wei et al. [36], among others.

Consistency is a crucial property in examining methods
used within axiomatic approaches for traditional processes.
It ensures that a value remains invariant when certain
participators’ payoffs are fixed. This principle posits that
any recommendations made for a given problem should align
with those made in subproblems where specific participators’
payoffs are predefined. Consistency has been defined in
various ways depending on how the payoffs of participators
who ”exit the bargaining” are treated. This property has
been extensively studied in the context of reduced processes,
such as bargaining and cost allocation issues. Utilizing single
contributions, the pseudo equal allocation of non-separable
costs (PEANSC, Hsieh and Liao [9]), and the normalized
index have been proposed as methods for traditional TU
processes. Hsieh and Liao [9] demonstrated an extension of
the complement-reduction due to Moulin [27], illustrating
that PEANSC offers a fair approach for distributing utilities.

The results presented in this context lead to the following
important question:

• Can the single index and its associated outcomes be
expanded to better address sustainability challenges in
multi-objective processes?

This study aims to establish the necessary mathematical
foundations for evaluating multiple goals optimally in
the context of sustainability-related issues. Specifically,
we examine multi-choice behaviors and their implications
within multi-objective frameworks. Based on traditional and
multi-choice TU process models, we introduce the concept
of multiple goal TU processes. In Section 2, we present
two new examination frameworks: the minimal examination
of non-separable effects (MENE) and the normalized single
effect examination (NSEE).

The MENE examination involves participators receiving
minimal single effects from operational coalitions and
subsequently evaluating remaining effects equally.
Conversely, the NSEE assesses effects proportionally

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 1851-1859

 
______________________________________________________________________________________ 



by applying minimal single effects across all participators
in the coalition. These examinations extend the concept of
marginal effects to accommodate multi-choice behavior and
multiple goal processes.

To substantiate these examinations, we introduce an
extended reduction and associated properties of consistency,
which are examined in Sections 3 and 4:

• The MENE is the only examination method that
satisfies the properties of multiple goal standardness for
processes and multiple goal consistency.

• The MENE is the only examination method that satisfies
the properties of multiple goal efficiency, multiple goal
covariance, multiple goal symmetry, and multiple goal
consistency.

• Although the NSEE does not satisfy multiple goal
bilateral consistency, it maintains the properties of
normalized-standardness of processes and specific
consistency.

Building on the MENE framework, each participator
initially receives minimal single effects from operational
coalitions, followed by equal examination of any additional
fixed effects (e.g., the cost of shared facilities) among the
relevant participators. However, variations in participator
engagement grades and operational grades can lead to
changes across different scenarios.

In practical applications, the MENE approach may appear
unrealistic due to disparities in participator size or bargaining
power. Asymmetries may arise when modeling differences
in bargaining capabilities among participators and their
respective operating grades. To address these challenges,
we propose alternative examination methods in which any
additional fixed effect is distributed proportionally among
participators and their operating grades based on their
respective weights.

To reduce discrimination and mitigate the relative effects
caused by participators and their operating grades, we
introduce weighting functions for both participators and
operating grades. This leads to two weighted extensions of
the MENE and associated axiomatic processes, as discussed
in Section 5. Throughout the study, further interpretations
and discussions regarding these axioms and axiomatic
procedures are presented to deepen understanding of their
implications for sustainability and pollution control research.

II. PRELIMINARIES

Let UVP denote the universal collection of participators.
For each participator i ∈ UVP and g̃i ∈ N, we define
G̃i = {0, · · · g̃i} as the operating grade space of participator
i, with G̃+

i = G̃i \ {0} indicating active participation,
and 0 indicating non-participation. Let P ⊆ UVP and
G̃P =

∏
i∈P G̃i denote the Cartesian product set of operating

grade spaces for participators in P. For any K ⊆ P, a
participator coalition K ⊆ P corresponds canonically to the
multi-choice coalition g̃K ∈ G̃P, where g̃Ki = 1 if i ∈ K
and g̃Ki = 0 if i ∈ P \ K. Let 0P represent the zero vector
in RP. For m ∈ N, 0m denotes the zero vector in Rm, and
Nm = {1, 2, · · · ,m}.

A multi-choice transferable-utility (TU) process is
characterized as a triple (P, g̃, e), where P denotes a
non-empty and finite set of participators, g̃ = (g̃i)i∈P ∈ G̃P

represents the vector indicating the highest operating grades
for each participator, and e : G̃P → R is a function
satisfying e(0P) = 0, assigning the worth that participators
can obtain if operating at corresponding operating grades
µ = (µi)i∈P ∈ G̃P. A multiple goal multi-choice TU
process is defined as a triple (P, g̃, Em), where m ∈ N,
Em = (et)t∈Nm

, and (P, g̃, et) represents a multi-choice TU
process for all t ∈ Nm. The class encompassing all multiple
goal multi-choice TU processes is denoted as MCP.

An examination is defined as a mapping η that assigns to
each (P, g̃, Em) ∈ MCP an element

η
(
P, g̃, Em

)
=

(
ηt
(
P, g̃, Em

))
t∈Nm

,

where ηt
(
P, g̃, Em

)
=

(
ηti
(
P, g̃, Em

))
i∈P ∈ RP and

ηti
(
P, g̃, Em

)
represents the payoff of participator i when

i engages in
(
P, g̃, et

)
. For (P, g̃, Em) ∈ MCP, H ⊆ P, and

µ ∈ RP, NE(µ) = {i ∈ P|µi ̸= 0} is defined to denote
the set of participators with non-zero operating grades, and
µH ∈ RH represents the restriction of µ to H. For a given
i ∈ P, the notation µ−i is introduced to denote µP\{i}, and
α = (µ−i, t) ∈ RP is defined by α−i = µ−i and αi = t.

Next, we provide two generalized examinations under
multiple goal processes.

Definition 1:
1) The minimal examination of non-separable effects

(MENE), θ, is defined by

θti(P, g̃, Em)
= θti(P, g̃, Em) + 1

|P| ·
[
et(g̃)−

∑
k∈P

θtk(P, g̃, Em)
]

for all (P, g̃, Em) ∈ MCP, for all t ∈ Nm

and for all i ∈ P. The quantity θti(P, g̃, Em) =
minj∈G̃i+ e

t(0−i, j) represents the minimal single
effect experienced by participator i in the process
(P, g̃, et). For the remainder of this study, we
will focus specifically on bounded multi-choice
transferable-utility (TU) processes, defined as those
processes (P, g̃, et) where a constant Mt ∈ R exists
such that et(µ) ≤ Mt for all µ ∈ G̃P. This
condition ensures that θi(P, g̃, et) is well-defined and
meaningful within the given framework. Within the
context of the θ framework, each participator first
receives their minimal single effects. After this initial
allocation, the remaining effects are distributed equally
among all participators, ensuring a balanced and
equitable examination of the environmental impacts.
This approach is particularly relevant in sustainability
and pollution control efforts, where minimizing single
and collective impacts across various stakeholders is
essential.

2) The normalized single effect examination (NSEE),
∆, is defined by

∆t
i(P, g̃, E

m) =
et(g̃)∑

k∈P
θtk(P, g̃, Em)

· θti(P, g̃, Em)

for all (P, g̃, Em) ∈ MCP∗, for all t ∈ Nm and
for all i ∈ P, where MCP∗ = {(P, g̃, Em) ∈
MCP |

∑
i∈P

θti(P, g̃, Em) ̸= 0 for all t ∈ Nm}. Within
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the framework of ∆, all participators allocate
the overall effect of the multi-choice coalition
proportionally, based on the minimal single effects of
each participator. This approach ensures a fair and
balanced distribution of the environmental impacts,
which is crucial in sustainability and pollution
control assessments where the equitable sharing of
responsibility is essential for effective mitigation
strategies.

In this section, we provide a concise application of
multiple goal multi-choice TU processes in the context of
”management.” These types of problems can be formalized
as follows: Consider a set P = {1, 2, · · · , n} representing
all participators in a comprehensive management system
(P, g̃, Em). The function et serves as an effect function,
assigning a value to each grade vector µ = (µi)i∈P ∈ G̃P,
which reflects the benefits that participators can achieve when
each participator i adopts an operational strategy µi ∈ G̃i

within the sub-management system (P, g̃, et).
In this conceptualization, the overarching management

system (P, g̃, Em) can be viewed as a multiple goal
multi-choice TU process, where et represents each
characteristic function and G̃i denotes the set of all
operational strategies available to participator i. In the
following sections, we aim to demonstrate that both the
MENE and the NSEE can provide ”optimal examination
mechanisms” for all participators, ensuring that the system
maximizes benefits derived from each combination of
operational strategies across multiple goal processes, thereby
enhancing the effectiveness of management strategies in
sustainability and pollution control contexts.

III. AXIOMATIC RESULTS FOR THE MENE

In order to to analyze the rationality for the MENE, an
extended reduction and some axioms are applied to present
some axiomatic procedures. An examination η satisfies
multiple goal efficiency (MGEFF) if for all (P, g̃, Em) ∈
MCP and for all t ∈ Nm,

∑
i∈P η

t
i(P, g̃, Em) = et(g̃).

An examination η satisfies multiple goal standardness for
processes (MCSP) if η(P, g̃, Em) = θ(P, g̃, Em) for all
(P, g̃, Em) ∈ MCP with |P| ≤ 2. An examination η satisfies
multiple goal symmetry (MGSYT) if ηi(P, g̃, Em) =
ηk(P, g̃, Em) for all (P, g̃, Em) ∈ MCP with θti(P, g̃, Em) =
θtk(P, g̃, Em) for some i, k ∈ P and for all t ∈ Nm.
An examination η satisfies multiple goal covariance
(MGCVA) if η(P, g̃, Em) = η(P, g̃, Qm) + (yt)t∈Nm

for
all (P, g̃, Em), (P, g̃, Qm) ∈ MCP with et(µ) = qt(µ) +∑

i∈NE(µ) y
t
i for some Ht ∈ RP, for all t ∈ Nm and for all

µ ∈ G̃P.
Property MGEFF requires that all participators

comprehensively allocate the total effect. Property MCSP
extends the two-person standardness axiom introduced by
Hart and Mas-Colell [8]. Property MGSYT asserts that the
output should remain unchanged when the minimal single
effects are identical. Property MGCVA can be viewed as a
weaker version of additivity. According to Definition 1, it
is clear that the MENE satisfies the properties of MGEFF,
MCSP, MGSYT, and MGCVA.

Moulin [27] introduced the concept of reduced processes,
wherein each coalition within a subgroup can only achieve

payoffs for its members if these payoffs align with the initial
payoffs of ”all” members outside the subgroup. Later, Hsieh
and Liao [9] proposed an extended analogue of Moulin’s
reduction to characterize the PEANSC. A natural extension
of Moulin’s reduction to multiple goal multi-choice TU
processes can be formulated as follows.

Let (P, g̃, Em) ∈ MCP, H ⊆ P and η be an examination.
The reduced process (H, g̃H, E

m
H,η

) is defined by Em
H,η

=

(etH,η
)t∈Nm

and for all µ ∈ G̃H,

et
H,η

(µ)

=


0 µ = 0H,
et(µ) |H| ≥ 2, |NE(µ)| = 1,

et
(
µ, g̃P\H

)
−

∑
i∈P\H

ηti(P, g̃, E
m) otherwise.

An examination η adheres to the principle of multiple goal
consistency (MGCIY) if ηti(H, g̃H, E

m
H,η

) = ηti(P, g̃, Em) for
all (P, g̃, Em) ∈ MCP, for all t ∈ Nm, for all H ⊆ P with
|H| = 2, and for all i ∈ H.

Lemma 1: The MENE θ satisfies MGCIY.
Proof: Let (P, g̃, Em) ∈ MCP, H ⊆ P and t ∈ Nm.

Assume that |P| ≥ 2 and |H| = 2. Therefore,

θti(H, g̃H, E
m
H,θ

)

= θti(H, g̃H, E
m
H,θ

)

+ 1
|H| ·

[
etH,θ

(g̃H)−
∑
k∈H

θtk(H, g̃H, E
m
H,θ

)
] (1)

for all i ∈ H and for all t ∈ Nm. Furthermore,

θti(H, g̃H, E
m
H,θ

)

= min
j∈G̃+

i

etH,θ
(0H\{i}, j)

= min
j∈G̃+

i

et(0−i, j)

= θti(P, g̃, Em).

(2)

By equations (1), (2) and definitions of etH,θ
and θ,

θti(H, g̃H, E
m
H,θ

)

= θti(P, g̃, Em) + 1
|H| ·

[
etH,θ

(g̃H)−
∑
k∈H

θtk(P, g̃, Em)
]

= θti(P, g̃, Em) + 1
|H| ·

[
et(g̃)−

∑
k∈P\H

θtk(P, g̃, Em)

−
∑
k∈H

θtk(P, g̃, Em)
]

= θti(P, g̃, Em) + 1
|H| ·

[ ∑
k∈H

θtk(P, g̃, Em)

−
∑
k∈H

θtk(P, g̃, Em)
]

(
by MGEFF of θ

)
= θti(P, g̃, Em) + 1

|H| ·
[
|H|
|P| ·

[
et(g̃)

−
∑
k∈P

θtk(P, g̃, Em)
]]

= θti(P, g̃, Em) + 1
|P| ·

[
et(g̃)−

∑
k∈P

θtk(P, g̃, Em)
]

= θti(P, g̃, Em)

for all i ∈ H and for all t ∈ Nm. So, the MENE satisfies
MGCIY.

Next, we characterize the MENE by means of multiple
goal consistency.

Theorem 1: The MENE is the only examination satisfying
MCSP and MGCIY.
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Proof: By Lemma 1, θ satisfies MGCIY. Clearly, θ
satisfies MCSP.

To prove uniqueness, suppose η satisfies MCSP and
MGCIY. By MCSP and MGCIY of η, it is easy to derive that
η also satisfies MGEFF, hence we omit it. Let (P, g̃, Em) ∈
MCP. By MCSP of η, η(P, g̃, Em) = θ(P, g̃, Em) if |P| ≤ 2.
The case |P| > 2: Let i ∈ P, t ∈ Nm and H = {i, k} for
some k ∈ P \ {i}.

ηti(P, g̃, Em)− ηtk(P, g̃, Em)
= ηti(H, g̃H, E

m
H,η

)− ηtk(H, g̃H, E
m
H,η

)(
by MGCIY of η

)
= θti(H, g̃H, E

m
H,η

)− θtk(H, g̃H, E
m
H,η

)(
by MCSP of η

)
= θti(H, g̃H, E

m
H,η

)− θtk(H, g̃H, E
m
H,η

)

= min
j∈G̃+

i

etH,η
(0H\{i}, j)− min

j∈G̃+
k

etH,η
(0H\{k}, j)

= min
j∈G̃+

i

et(0−i, j)− min
j∈G̃+

k

et(0−k, j)

= θti(P, g̃, Em)− θtk(P, g̃, Em)

= θti(P, g̃, Em)− θtk(P, g̃, Em).

Thus,
ηti(P, g̃, Em)− ηtk(P, g̃, Em)

= θti(P, g̃, Em)− θtk(P, g̃, Em).

By MGEFF of η and θ,

|P| · ηti(P, g̃, Em)− et(g̃)
=

∑
k∈P

[ηti(P, g̃, Em)− ηtk(P, g̃, Em)]

=
∑
k∈P

[θti(P, g̃, Em)− θtk(P, g̃, Em)]

= |P| · θti(P, g̃, Em)− et(g̃).

Hence, ηti(P, g̃, Em) = θti(P, g̃, Em) for all i ∈ P and for all
t ∈ Nm.

Next, we characterize the MENE by means of related
properties of MGEFF, MGSYT, MGCVA and MGCIY.

Lemma 2: If an examination η satisfies MGEFF, MGSYT
and MGCVA, then η satisfies MCSP.

Proof: Assume that an examination η satisfies MGEFF,
MGSYT and MGCVA. Let (P, g̃, Em) ∈ MCP. The
proof is completed by MGEFF of η if |P| = 1. Let
(P, g̃, Em) ∈ MCP with P = {i, k} for some i ̸= k. We
define a process (P, g̃, Qm) to be that qt(µ) = et(µ) −∑

i∈NE(µ) θ
t
i(P, g̃, Em) for all µ ∈ G̃P and for all t ∈ Nm.

By definition of Qm,

θti(P, g̃, Qm)
= min

j∈G̃+
i

qt(j, 0)

= min
j∈G̃+

i

{et(j, 0)− θti(P, g̃, Em)}

= min
j∈G̃+

i

{et(j, 0)} − θti(P, g̃, Em)

= θti(P, g̃, Em)− θti(P, g̃, Em)
= 0.

Similarly, θtk(P, g̃, Qm) = 0. Therefore,
θti(P, g̃, Qm) = θtk(P, g̃, Qm). By MGSYT of η,
ηti(P, g̃, Qm) = ηtk(P, g̃, Qm). By MGEFF of η,

qt(g̃) = ηti(P, g̃, Qm) + ηtk(P, g̃, Qm) = 2 · ηti(P, g̃, Qm).

Therefore,

ηti(P, g̃, Qm)

= qt(g̃)
2

= 1
2 ·

[
et(g̃)− θi(P, g̃, Em)− θk(P, g̃, Em)

]
.

By MGCVA of η,

ηti(P, g̃, Em)
= θti(P, g̃, Em) + 1

2 ·
[
et(g̃)− θti(P, g̃, Em)

−θtk(P, g̃, Em)
]

= θti(P, g̃, Em).

Similarly, ηtk(P, g̃, Em) = θtk(P, g̃, Em). Hence, η satisfies
MCSP.

Theorem 2: On MCP, the MENE is the only examination
satisfying MGEFF, MGSYT, MGCVA and MGCIY.

Proof: By Definition 1, θ satisfies MGEFF, MGSYT and
MGCVA. The remaining proofs follow from Theorem 1 and
Lemmas 1, 2.

The following examples demonstrate the logical
independence of each axiom employed in Theorems 1
and 2 with respect to the other axioms.

Example 1: Define an examination η by for all
(P, g̃, Em) ∈ MCP, for all t ∈ Nm and for all i ∈ P,

ηti(P, g̃, Em) =

{
θti(P, g̃, Em) if |P| ≤ 2,
0 otherwise.

Clearly, η satisfies MCSP, but it does not satisfy MGCIY.
Example 2: Define an examination η to be that

ηti(P, g̃, Em) = θti(P, g̃, Em)

for all (P, g̃, Em) ∈ MCP, for all t ∈ Nm and for all i ∈ P.
Clearly, η satisfies MGSYT, MGCVA and MGCIY, but it
does not satisfy MGEFF and MCSP.

Example 3: Define an examination η to be that

ηti(P, g̃, Em) =
et(g̃)

|P|

for all (P, g̃, Em) ∈ MCP, for all t ∈ Nm and for all i ∈ P.
Clearly, η satisfies MGEFF, MGSYT and MGCIY, but it does
not satisfy MGCVA.

Example 4: Define an examination η by for all
(P, g̃, Em) ∈ MCP, for all t ∈ Nm and for all i ∈ P,

ηti(P, g̃, Em) =
[
et(g̃)− et(g̃−i, 0)

]
+ 1

|P| ·
[
et(g̃)

−
∑
k∈P

[
et(g̃)− et(g̃−k, 0)

]]
.

Clearly, η satisfies MGEFF, MGCVA and MGCIY, but it does
not satisfy MGSYT.

Example 5: Define an examination η by for all
(P, g̃, Em) ∈ MCP, for all t ∈ Nm and for all i ∈ P,

ηti(P, g̃, Em)

= θti(P, g̃, Em) + wt(i)∑
k∈P

wt(k) ·
[
et(g̃)−

∑
k∈P

θtk(P, g̃, Em)
]
,

where for all (P, g̃, Em) ∈ MCP, wt : P → R+ is defined
by wt(i) = wt(k) if θti(P, g̃, Em) = θtk(P, g̃, Em). Define an
examination ψ by for all (P, g̃, Em) ∈ MCP, for all t ∈ Nm

and for all i ∈ P,

ψt
i(P, g̃, Em) =

{
θti(P, g̃, Em) if |P| ≤ 2,
ηti(P, g̃, Em) otherwise.
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Clearly, ψ satisfies MGEFF, MGSYT and MGCVA, but it
does not satisfy MGCIY.

IV. THE AXIOMATIC RESULTS FOR THE NSEE

Similar to Theorem 1, we seek to characterize the
NSEE through the framework of multiple goal consistency.
However, it becomes evident that (H, g̃H, E

m
H,η

) does not
exist when

∑
i∈H θ

t
i(P, g̃, Em) = 0. To address this,

we introduce the concept of specific consistency (SPCIY)
as follows: An examination η satisfies specific bilateral
consistency (SPCIY) if (H, g̃H, E

m
H,η

) ∈ MCP∗ for some
(P, g̃, Em) ∈ MCP and some H ⊆ P with |H| = 2, such
that ηti(H, g̃H, E

m
H,η

) = ηti(P, g̃, Em) for all t ∈ Nm and for
all i ∈ H.

Lemma 3: The NSEE satisfies SPCIY on MCP∗.
Proof: Let (P, g̃, Em) ∈ MCP∗. If |P| ≤ 2, then the

proof is completed. Assume that |P| ≥ 3 and H ⊆ P with
|H| = 2. Similar to equation (2),

θti(H, g̃H, E
m
H,∆

) = θti(P, g̃, Em). (3)

for all i ∈ H and for all t ∈ Nm. Define that Ct =
et(g̃)∑

p∈P
θt
P
(P,g̃,Em)

. For all i ∈ H and for all t ∈ Nm,

∆t
i(H, g̃H, E

m
H,∆

)

=
etH,∆

(g̃H)∑
k∈H

θt
k(H,g̃H,E

m
H,∆

)
· θti(H, g̃H, Em

H,∆
)

=

et(g̃)−
∑

H∈P\H
∆t

H
(P,g̃,Em)∑

k∈H
θt
k(P,g̃,Em)

· θti(P, g̃, Em)(
by equation (3) and definition of Em

H,∆

)
=

∑
H∈H

∆t
H
(P,g̃,Em)∑

k∈H
θt
k(P,g̃,Em)

· θti(P, g̃, Em)(
by MGEFF of ∆

)
= Ct · θti(P, g̃, Em)(

by Definition 1
)

= ∆t
i(P, g̃, Em).(

by Definition 1
)

(4)

By equations (3), (4), the examination ∆ satisfies SPCIY.
An examination η satisfies normalized-standardness

under processes (NSP) if η(P, g̃, d) = ∆(P, g̃, d) for all
(P, g̃, d) ∈ MCP, |P| ≤ 2.

Theorem 3: On MCP∗, the examination ∆ is the only
examination satisfying NSP and SPCIY.

Proof: By Lemma 3, ∆ satisfies SPCIY. Clearly, ∆
satisfies NSP.

To prove uniqueness, suppose η satisfies SPCIY and NSP
on MCP∗. By NSP and SPCIY of η, it is easy to derive that
η also satisfies MGEFF, hence we omit it. Let (P, g̃, Em) ∈
MCP∗. We will complete the proof by induction on |P|. If
|P| ≤ 2, it is trivial that η(P, g̃, Em) = θ(P, g̃, Em) by NSP.
Assume that it holds if |P| ≤ p−1, p ≤ 3. The case |P| = p:
Let i, j ∈ P with i ̸= j and t ∈ Nm. By Definition 1,
θtk(P, g̃, Em) = et(g̃)∑

H∈P
θt
H
(P,g̃,Em)

· θtk(P, g̃, Em) for all k ∈ P.

Assume that µt
k =

θt
k(P,g̃,E

m)∑
H∈P

θt
H
(P,g̃,Em)

for all k ∈ P. Therefore,

ηti(P, g̃, Em)
= ηti

(
P \ {j}, g̃P\{j}, Dm

P\{j},η

)(
by SPCIY of η

)
= θti

(
P \ {j}, g̃P\{j}, Dm

P\{j},η

)(
by NSP of η

)
=

vt
P\{j},η(g̃P\{j})∑

k∈P\{j}
θt
k

(
P\{j},g̃P\{j},Dm

P\{j},η

)
·θti

(
P \ {j}, g̃P\{j}, Dm

P\{j},η

)
=

et(g̃)−ηt
i(P,g̃,E

m)∑
k∈P\{j}

θt
k(P,g̃,Em)

· θti(P, g̃, Em)(
by equation (2)

)
=

et(g̃)−ηt
i(P,g̃,E

m)

−θt
j(P,g̃,Em)+

∑
k∈P

θt
k(P,g̃,Em)

· θti(P, g̃, Em).

(5)

By equation (5),

ηti(P, g̃, Em) · [1− µt
j ] = [et(g̃)− ηtj(P, g̃, Em)] · µt

j

=⇒
∑
i∈P

ηti(P, g̃, Em) · [1− µt
j ]

= [et(g̃)− ηtj(P, g̃, Em)] ·
∑
i∈P

µt
j

=⇒ et(g̃) · [1− µt
j ] = [et(g̃)− ηtj(P, g̃, Em)] · 1(

by MGEFF of η
)

=⇒ et(g̃)− et(g̃) · µt
j = et(g̃)− ηtj(P, g̃, Em)

=⇒ θtj(P, g̃, Em) = ηtj(P, g̃, Em).

The proof is completed.
The following examples demonstrate the logical

independence of each axiom employed in Theorem 3
with respect to the other axioms.

Example 6: Define an examination η to be that for all
(P, g̃, Em) ∈ MCP∗, for all t ∈ Nm and for all i ∈ P,

ηti(P, g̃, Em) = 0.

Clearly, η satisfies SPCIY, but it does not satisfy NSP.
Example 7: Define an examination η to be that for all

(P, g̃, Em) ∈ MCP∗, for all t ∈ Nm and for all i ∈ P,

ηti(P, g̃, Em) =

{
∆t

i(P, g̃, Em) , if |P| ≤ 2,
0 , otherwise.

Clearly, η satisfies NSP, but it does not satisfy SPCIY.
Remark 1: It is easy to show that the NSEE satisfies

MGEFF, MGSYT and NSP, but it does not satisfy MGCVA.

V. TWO WEIGHTED EXTENSIONS

In various contexts, participators and their operational
grades may be assigned distinct weights. These weights act
as a-priori measures of importance, reflecting factors beyond
those captured by the characteristic function. For example,
when evaluating costs across investment projects, the weights
may correspond to the profitability of each project. Similarly,
in the distribution of travel costs among institutions visited,
as discussed by Shapley [33], the weights could represent
the duration of stay at each institution.

Let β : UVP → R+ be a positive function; β is referred
to as a weight function for participators. Similarly, let γ :
G̃UVP → R+ be a positive function; γ is referred to as a
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weight function for grades. Using these two types of weight
functions, two weighted revisions of the MENE are defined
as follows.

Definition 2:

• The 1-weighted minimal examination of
non-separable effects (1-WMENE), ∆β , is defined by
for all (P, g̃, Em) ∈ MCP, for all weight function for
participators β, for all t ∈ Nm and for all participator
i ∈ P,

∆β,t
i (P, g̃, Em) = θti(P, g̃, Em) + β(i)∑

k∈P
β(k) ·

[
et(g̃)

−
∑
k∈P

θtk(P, g̃, Em)
]
.

(6)
• The 2-weighted minimal examination of

non-separable effects (2-WMENE), ∆γ , is defined by
for all (P, g̃, Em) ∈ MCP, for all weight function for
participators γ, for all t ∈ Nm and for all participator
i ∈ P,

∆γ,t
i (P, g̃, Em) = θγ,ti (P, g̃, Em) + 1

|P| ·
[
et(g̃)

−
∑
k∈P

θγ,tk (P, g̃, Em)
]
,

(7)
where θγ,ti (P, g̃, Em) = min

j∈G̃+
i

γ(j) · et(0−i, j).

An examination η is deemed to satisfy 1-weighted
standardness for processes (1WSP) if η(P, g̃, Em) =
∆β(P, g̃, Em) holds for all (P, g̃, Em) ∈ MCP with |P| ≤ 2
and for every weight function for participators β. Similarly,
an examination η fulfills 2-weighted standardness for
processes (2WSP) if η(P, g̃, Em) = ∆γ(P, g̃, Em) for all
(P, g̃, Em) ∈ MCP with |P| ≤ 2 and for every weight
function associated with grades γ. Following the approaches
used in the proofs of Lemma 1 and Theorem 1, we propose
analogous results for Lemma 1 and Theorem 1.

Lemma 4: The 1-WMENE ∆β and the 2-WMENE ∆γ

satisfy MGEFF simultaneously.

Proof: Let (P, g̃, Em) ∈ MCP, β be a weight function
for participators, γ be a weight function for grades and t ∈
Nm.

∑
i∈P

∆β,t
i (P, g̃, Em)

=
∑
i∈P

[
θti(P, g̃, Em)

+ β(i)∑
k∈P

β(k) ·
[
et(g̃)−

∑
k∈P

θtk(P, g̃, Em)
]]

=
∑
i∈P

θti(P, g̃, Em)

+

∑
i∈P

β(i)∑
k∈P

β(k) ·
[
et(g̃)−

∑
k∈P

θtk(P, g̃, Em)
]

=
∑
i∈P

θti(P, g̃, Em) + et(g̃)−
∑
k∈P

θtk(P, g̃, Em)

= et(g̃).

So, the 1-WMENE satisfies MGEFF. Further,∑
i∈P

∆γ,t
i (P, g̃, Em)

=
∑
i∈P

[
θγ,ti (P, g̃, Em)

+ 1
|P| ·

[
et(g̃)−

∑
k∈P

θγ,tk (P, g̃, Em)
]]

=
∑
i∈P

θγ,ti (P, g̃, Em)

+ |P|
|P| ·

[
et(g̃)−

∑
k∈P

θγ,tk (P, g̃, Em)
]

=
∑
i∈P

θγ,ti (P, g̃, Em) + et(g̃)−
∑
k∈P

θγ,tk (P, g̃, Em)

= et(g̃).

So, the 2-WMENE satisfies MGEFF.
Lemma 5: The 1-WMENE ∆β and the 2-WMENE ∆γ

satisfy MGCIY simultaneously.
Proof: Let (P, g̃, Em) ∈ MCP, H ⊆ P, β be a weight

function for participators, γ be a weight function for grades
and t ∈ Nm. Assume that |P| ≥ 2 and |H| = 2. Therefore,

∆β,t
i (H, g̃H, E

m
H,∆β )

= θti(H, g̃H, E
m
H,∆β )

+ β(i)∑
k∈H

β(k)

[
etH,∆β (g̃H)−

∑
k∈H

θtk(H, g̃H, E
m
H,∆β )

]
(8)

for all i ∈ H and for all t ∈ Nm. Furthermore,

θti(H, g̃H, E
m
H,∆β )

= min
j∈G̃+

i

etH,∆β (0H\{i}, j)

= min
j∈G̃+

i

et(0−i, j)

= θti(P, g̃, Em).

(9)

By equations (8), (9) and definitions of etH,∆β and ∆β ,

∆β,t
i (H, g̃H, E

m
H,∆β )

= θti(P, g̃, Em)

+ β(i)∑
k∈H

β(k)

[
etH,∆β (g̃H)−

∑
k∈H

θtk(P, g̃, Em)
]

= θti(P, g̃, Em)

+ β(i)∑
k∈H

β(k)

[
et(g̃)−

∑
k∈P\H

∆β,t
k (P, g̃, Em)

−
∑
k∈H

θtk(P, g̃, Em)
]

= θti(P, g̃, Em) + β(i)∑
k∈H

β(k)

[ ∑
k∈H

∆β,t
k (P, g̃, Em)

−
∑
k∈H

θtk(P, g̃, Em)
]

(
by MGEFF of θ

)
= θti(P, g̃, Em) + β(i)∑

k∈H
β(k)

[ ∑
k∈H

β(k)∑
b∈P

β(b)

[
et(g̃)

−
∑
b∈P

θtb(P, g̃, Em)
]]

= θti(P, g̃, Em) + β(i)∑
b∈P

β(b)

[
et(g̃)−

∑
b∈P

θtb(P, g̃, Em)
]

= ∆β,t
i (P, g̃, Em)

for all i ∈ H, for all weight function for participators β and
for all t ∈ Nm. So, the 1-WMENE satisfies MGCIY. Further,
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assume that |P| ≥ 2 and |H| = 2. Therefore,

∆γ,t
i (H, g̃H, E

m
H,∆γ )

= θγ,ti (H, g̃H, E
m
H,∆γ )

+ 1
|H|

[
etH,∆γ (g̃H)−

∑
k∈H

θγ,tk (H, g̃H, E
m
H,∆γ )

] (10)

for all i ∈ H and for all t ∈ Nm. Furthermore,

θγ,ti (H, g̃H, E
m
H,∆γ )

= min
j∈G̃+

i

γ(j)etH,∆γ (0H\{i}, j)

= min
j∈G̃+

i

γ(j)et(0−i, j)

= θγ,ti (P, g̃, Em).

(11)

By equations (10), (11) and definitions of etH,∆γ and ∆γ ,

∆γ,t
i (H, g̃H, E

m
H,∆γ )

= θγ,ti (P, g̃, Em)

+ 1
|H|

[
etH,∆γ (g̃H)−

∑
k∈H

θγ,tk (P, g̃, Em)
]

= θγ,ti (P, g̃, Em)

+ 1
|H|

[
et(g̃)−

∑
k∈P\H

∆γ,t
k (P, g̃, Em)

−
∑
k∈H

θγ,tk (P, g̃, Em)
]

= θγ,ti (P, g̃, Em) + 1
|H|

[ ∑
k∈H

∆γ,t
k (P, g̃, Em)

−
∑
k∈H

θγ,tk (P, g̃, Em)
]

(
by MGEFF of θ

)
= θγ,ti (P, g̃, Em) + 1

|H|

[
|H|
|P|

[
et(g̃)

−
∑
b∈P

θγ,tb (P, g̃, Em)
]]

= θγ,ti (P, g̃, Em) + 1
|P|

[
et(g̃)−

∑
b∈P

θγ,tb (P, g̃, Em)
]

= ∆γ,t
i (P, g̃, Em)

for all i ∈ H, for all weight function for grades γ and for all
t ∈ Nm. So, the 2-WMENE satisfies MGCIY.

Remark 2: By Definition 2, it is easy to show that
the 1-WMENE does not satisfy MGSYT. Similarly, the
2-WMENE violates MGSYT and MGCVA.

Theorem 4:

• On MCP, the 1-WMENE ∆β is the only examination
satisfying 1WSP and MGCIY.

• On MCP, the 2-WMENE ∆γ is the only examination
satisfying 2WSP and MGCIY.

Proof: By Lemma 5, ∆β and ∆γ satisfy MGCIY
simultaneously. Clearly, ∆β and ∆γ satisfy 1WSP and 2WSP
respectively.

To prove the uniqueness of result 1, suppose η satisfies
1WSP and MGCIY. By 1WSP and MGCIY of η, it is easy
to derive that η also satisfies MGEFF, hence we omit it.
Let (P, g̃, Em) ∈ MCP and β be a weight function for
participators. By 1WSP of η, η(P, g̃, Em) = ∆β(P, g̃, Em)
if |P| ≤ 2. The case |P| > 2: Let i ∈ P, t ∈ Nm and

H = {i, k} for some k ∈ P \ {i}.

ηti(P, g̃, Em)−∆β,t
i (P, g̃, Em)

= ηti(H, g̃H, E
m
H,η

)−∆β,t
i (H, g̃H, E

m
H,∆β )(

by MGCIY of η and ∆β
)

= ∆β,t
i (H, g̃H, E

m
H,η

)−∆β,t
i (H, g̃H, E

m
H,∆β )(

by 1WSP of η
)

= β(i)∑
b∈H

β(b)

[
etH,η

(g̃H)− etH,∆β (g̃H)
]

(
similar to equation (9)

)
= β(i)∑

b∈H
β(b)

[
ηti(P, g̃, Em) + ηtk(P, g̃, Em)

−∆β,t
i (P, g̃, Em)−∆β,t

k (P, g̃, Em)
]
.

Thus,

β(k)
[
ηti(P, g̃, Em)−∆β,t

i (P, g̃, Em)
]

= β(i)
[
ηtk(P, g̃, Em)−∆β,t

k (P, g̃, Em)
]
.

By MGEFF of η and ∆β ,∑
k∈P

β(k)

β(i) ·
[
ηti(P, g̃, Em)−∆β,t

i (P, g̃, Em)
]

=
∑
k∈P

[ηtk(P, g̃, Em)−∆β,t
k (P, g̃, Em)]

= et(g̃)− et(g̃)
= 0.

Hence, ηti(P, g̃, Em) = ∆β,t
i (P, g̃, Em) for all i ∈ P, for all

weight function for participators β and for all t ∈ Nm. To
prove the uniqueness of result 2, suppose η satisfies 2WSP
and MGCIY. By 2WSP and MGCIY of η, it is easy to
derive that η also satisfies MGEFF, hence we omit it. Let
(P, g̃, Em) ∈ MCP and γ be a weight function for grades.
By 2WSP of η, η(P, g̃, Em) = ∆γ(P, g̃, Em) if |P| ≤ 2. The
case |P| > 2: Let i ∈ P, t ∈ Nm and H = {i, k} for some
k ∈ P \ {i}.

ηti(P, g̃, Em)−∆γ,t
i (P, g̃, Em)

= ηti(H, g̃H, E
m
H,η

)−∆γ,t
i (H, g̃H, E

m
H,∆γ )(

by MGCIY of η and ∆γ
)

= ∆γ,t
i (H, g̃H, E

m
H,η

)−∆γ,t
i (H, g̃H, E

m
H,∆γ )(

by 2WSP of η
)

= 1
|H|

[
etH,η

(g̃H)− etH,∆γ (g̃H)
](

similar to equation (11)
)

= 1
2

[
ηti(P, g̃, Em) + ηtk(P, g̃, Em)

−∆γ,t
i (P, g̃, Em)−∆γ,t

k (P, g̃, Em)
]
.

Thus, [
ηti(P, g̃, Em)−∆γ,t

i (P, g̃, Em)
]

=
[
ηtk(P, g̃, Em)−∆γ,t

k (P, g̃, Em)
]
.

By MGEFF of η and ∆γ ,

|P| ·
[
ηti(P, g̃, Em)−∆γ,t

i (P, g̃, Em)
]

=
∑
k∈P

[ηtk(P, g̃, Em)−∆γ,t
k (P, g̃, Em)]

= et(g̃)− et(g̃)
= 0.

Hence, ηti(P, g̃, Em) = ∆γ,t
i (P, g̃, Em) for all i ∈ P, for all

weight function for grades γ and for all t ∈ Nm.
The following examples demonstrate the logical

independence of each axiom employed in Theorem 4
with respect to the other axioms.
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Example 8: Define an examination η by for all
(P, g̃, Em) ∈ MCP, for all t ∈ Nm, for all weight
function γ and for all i ∈ P, ηti(P, g̃, Em) = 0. Clearly, η
satisfies MGCIY, but it does not satisfy 1WSP and 2WSP.

Example 9: Define an examination η by for all
(P, g̃, Em) ∈ MCP, for all t ∈ Nm, for all weight
function for participators d and for all i ∈ P,

ηti(P, g̃, Em) =

{
∆β,t

i (P, g̃, Em) if |P| ≤ 2,
0 otherwise.

Clearly, η satisfies 1WSP, but it does not satisfy MGCIY.
Example 10: Define an examination η by for all

(P, g̃, Em) ∈ MCP, for all t ∈ Nm, for all weight function
for grades γ and for all i ∈ P,

ηti(P, g̃, Em) =

{
∆γ,t

i (P, g̃, Em) if |P| ≤ 2,
0 otherwise.

Clearly, η satisfies 2WSP, but it does not satisfy MGCIY.

VI. APPLICATION AND COMPARISON OF MULTI-GOAL
TRANSFERABLE UTILITY MODELS IN POLLUTION

CONTROL

This paper presents a structured approach to pollution
control and sustainability efforts under multi-goal
transferable utility frameworks. Specifically, it explores
the application of the minimal examination of non-separable
effects, the normalized single effect examination, and its
weighted extensions to a practical pollution control scenario.
The proposed methods are then compared with classical
cooperative game theory methods such as the Shapley
Value and the Nucleolus. Finally, a numerical example is
provided to illustrate the effectiveness of these methods in
a real-world context.

A. System Description

We consider an industrial pollution control system where
multiple industries contribute to environmental damage and
must take measures to reduce their impact. The system
operates under a multi-goal TU framework, targeting:

• Goal 1: Reducing carbon emissions.
• Goal 2: Minimizing water pollution.
• Goal 3: Controlling hazardous waste production.
• Goal 4: Ensuring cost efficiency.
Each participant has an operational grade, representing

its level of commitment to environmental goals. The total
sustainability effort is modeled by multi-choice TU process.

B. Application of the proposed examinations and related
comparisons

1) The minimal examination of non-separable effects
(MENE)

• Assigns minimal contributions to participants.
• Distributes remaining costs equally.
• Ensures fairness but ignores proportional

responsibility.
2) The normalized single effect examination (NSEE)

• Allocates costs based on minimal effects.
• Favors high-impact contributors.
• Can be unfair to smaller players.

3) The 1-WMENE
• Introduces weights based on economic influence.
• Prioritizes major industries or government-backed

efforts.
• Can introduce bias favoring larger industries.

4) The 2-WMENE
• Adjusts weights based on sustainability grades.
• Rewards proactive environmental efforts.
• Encourages investment in green technologies.

In the following, some comparisons with traditional
methods are provided

Method Fairness Efficiency Stability
The MENE High Moderate Strong
The NSEE Moderate High Moderate
The 1-WMENE High High Strong
The 2-WMENE High High Moderate
The Shapley Value Moderate Moderate Strong
The Nucleolus High Moderate Strong

C. Numerical Example

We consider three industries with different sustainability
commitments.

TABLE I
INDUSTRY POLLUTION REDUCTION CONTRIBUTIONS

Industry CO2 Water Waste Operational
Reduction Reduction Reduction Grade

A 100 tons 30 mg/L 20 kg 2
B 200 tons 50 mg/L 40 kg 3
C 50 tons 20 mg/L 10 kg 1

Total mitigation cost: Etotal = $600, 000

• The MENE: Equal allocation after minimal effects.

CA = 180, 000, CB = 300, 000, CC = 120, 000

• The NSEE: Proportional cost-sharing.

CA = 150, 000, CB = 350, 000, CC = 100, 000

• The 1-WMENE: Economic weight-based allocation.

CA = 160, 000, CB = 320, 000, CC = 120, 000

• The 2-WMENE: Sustainability weight-based
allocation.

CA = 140, 000, CB = 330, 000, CC = 130, 000

For government policy, the numerical results highlight the
2-WMENE is the preferred method as it rewards proactive
sustainability efforts. For market-driven approaches, the
NSEE or the 1-WMENE may be better suited to balance
economic and environmental priorities.

VII. CONCLUSIONS

In numerous processes, each participator is afforded the
flexibility to operate across an infinite range of grades (or
implement decisions and strategies). With growing emphasis
on sustainability, participators are increasingly required
to address multiple objectives efficiently, particularly in
operational processes linked to environmental monitoring
and mitigation. Consequently, this study simultaneously
examines multi-choice statuses and multiple goal processes,
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which are crucial for addressing sustainable pollution
detection and mitigation challenges.

Weights naturally play an integral role within the
framework of effect examination, especially in scenarios
involving sustainable resource allocation and impact
assessments. For instance, when evaluating the effectiveness
of pollution mitigation strategies, weights could be associated
with the environmental impact reduction achieved by each
strategy. Thus, this study also investigates generalized
concepts for weighted examination.

Differing from prior studies into traditional TU processes
and multi-choice TU processes, this paper introduces several
novel contributions:

• This study simultaneously addresses multi-choice
behavior and multiple goal processes, proposing
a framework for multiple goal multi-choice
transferable-utility processes tailored to
sustainability-driven applications.

• By applying minimal single effects under the
simultaneous consideration of multi-choice behavior
and multiple goal processes, we propose the MENE,
the NSEE, and related axiomatic procedures, which
can be utilized to examine the efficiency of pollution
mitigation measures.

• To reduce disparities and mitigate biases caused by
participators and its operational grades, we introduce
two weighted extensions of the MENE and related
axiomatic results. These extensions offer practical
applications for equitable examination in sustainable
systems.

• All examinations and related results are initially
presented within the frameworks of traditional
transferable-utility processes and multi-choice
transferable-utility processes, providing a foundation
for broader applications in sustainable contexts.

Building on the findings of this study, an intriguing
future direction involves extending traditional examinations
to incorporate minimal single effects within the framework
of multiple goal multi-choice setting. Such an extension
holds significant potential for advancing sustainable pollution
detection and mitigation. This line of investigation is left for
future exploration by interested researchers.
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