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Abstract—Let GS be a graph obtained by adding a self-loop
to each vertex of S ⊆ V in a graph G(V,E). The signless
Laplacian matrix of a graph GS containing |S| = σ self-loops
is, Q(GS) = A(GS) + D(G), where A(GS), D(G) are the
adjacency matrix of GS and diagonal matrix of G respectively.
The signless Laplacian energy of a graph GS(n,m) containing
σ self-loops and having qi, i = 1, 2, . . . , n, as signless Laplacian
eigenvalues is defined as QE(GS) =

∣∣qi − 2m+σ
n

∣∣ . In this
paper, the signless Laplacian matrix of a graph with self-loops
is considered. Some basic spectral properties and bounds for
signless Laplacian energy are studied. The signless Laplacian
spectral properties of complete graph, complete bipartite graph,
and star graph with self-loops are also obtained. Correlation
between Signless Laplacian energy and total π−electron energy
of hetero-molecules is obtained.

Index Terms—Energy, Graph with self-loops, signless Lapla-
cian matrix.

I. INTRODUCTION

LET G(V,E) be a simple graph of order |V | = n, size
|E| = m, and let S ⊆ V with |S| = σ. The graph GS

is obtained by attaching a self-loop to each vertex of S.
Energy of a simple graph was defined in the year 1978

as sum of the absolute eigenvalues of the adjacency matrix
of a graph. Several researchers have worked on spectra of
simple graphs since it has various applications in chemical
graph theory. The adjacency matrix A(G) of the graph G
with n vertices is a square matrix of order n with elements
1, if the corresponding vertices are adjacent and it is 0, if the
corresponding vertices are non-adjacent. The diagonal matrix
D(G) of G is also a square matrix of order n whose all non-
diagonal elements are zero and the diagonal elements are the
vertex degrees of respective vertices. The Laplacian matrix
of a simple graph G is L(G) = D(G)−A(G). The signless
Laplacian matrix of G is Q(G) = D(G) + A(G). Major
studies on signless Laplacian energy and relation between
energy and signless Laplacian energy can be seen in [1], [2],
[3], [4], [5], [6].
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Recently, I. Gutman et al., [10] introduced the concept
of energy of graphs with self-loops and they conjectured
that, for a simple graph G of order n and for any subset
S of set of vertices of G with 1 ≤ |S| ≤ n − 1,
E(GS) > E(G). I. Jovanović et al., [7] have disproved this
conjecture by providing a counterexample. D. V. Anchana
et al.,[8] introduced and characterized Laplacian energy of
graphs with self-loops. A. Harshitha et al.,[9] introduced and
characterized Seidel energy of a graph with self-loops. In this
paper, the concept of signless Laplacian energy of graphs
with self-loops is considered and characterized the same.

II. PRELIMINARIES

Definition 1: [10] The adjacency matrix A(GS) of a graph
GS of order n with σ self-loops is an n × n square matrix
with elements,

(aij)S =


1 if vi and vj are adjacent,
0 if vi and vj are non-adjacent,
1 if i = j and vi ∈ S,

0 if i = j and vi ̸∈ S.
If λi, 1 ≤ i ≤ n, are the eigenvalues of the graph GS ,

then energy of GS is,

E(GS) =
n∑

i=1

∣∣∣λi −
σ

n

∣∣∣ .
Definition 2: The diagonal matrix D(GS) of a graph GS

of order n is an n× n square matrix with elements,

(dij)S =


degG vi + 2 if i = j and vi ∈ S,

degG vi if i = j and vi ̸∈ S,

0 if i ̸= j.
Definition 3: The Laplacian matrix of a graph GS is,

L(GS) = D(GS)−A(GS).
Let µi, i = 1, 2, . . . , n, be the Laplacian eigenvalues of

the graph GS . The Laplacian energy of GS is,

LE(GS) =
n∑

i=1

∣∣∣∣µi −
2m+ σ

n

∣∣∣∣ .
Definition 4: [11] The signless Laplacian matrix Q(GS)

of a graph GS is a square matrix with elements,

(qij)S =


1 if vi and vj are adjacent,
0 if vi and vj are non-adjacent,
degG vi + 1 if i = j and vi ∈ S,

degG vi if i = j and vi ̸∈ S.
Note that

Q(GS) = A(G) +D(G) + JS

= Q(G) + JS .
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Here, JS is a square matrix whose non-diagonal elements are
all zeros, diagonal elements are 1, if vi ∈ S and 0 otherwise.
Since Q(GS) is symmetrically diagonally dominant matrix,
it is positive semi-definite.

Let qi, i = 1, 2, . . . , n, be the signless Laplacian eigenval-
ues of the graph GS . Each qi is a real number since Q(GS)
is a symmetric matrix. Also

n∑
i=1

qi = 2m+ σ.

Therefore, the signless Laplacian energy of GS is defined as

QE(GS) =
n∑

i=1

∣∣∣∣qi − 2m+ σ

n

∣∣∣∣ .
Note that µi(GS) = qi − 2m+σ

n , 1 ≤ i ≤ n, is called the
auxiliary eigenvalues of the matrix Q(GS).

Remark 1: If µ1, µ2, . . . , µn are the auxiliary eigenvalues

of Q(GS), then
n∑

i=1

µi(GS) = 0.

Definition 5: The first Zagreb index of a graph G,

M1(G) =
n∑

i=1

(degG vi)
2.

Theorem 1: [12] Let X , Y , and Z be a square matrices of

order n such that X+Y = Z. Then,
n∑

i=1

si(X)+
n∑

i=1

si(Y ) ≥
n∑

i=1

si(Z), where si(M) is the singular values of the matrix

M . Equality holds if and only if there exists an orthogonal
matrix P such that PX and PY are both positive semi-
definite.

Theorem 2: If a = (a1, . . . , an) , b = (b1, . . . , bn) are
sequences of real numbers and c = (c1, . . . , cn) , d =
(d1, . . . , dn) are non-negative, then

n∑
i=1

di

n∑
i=1

cia
2
i +

n∑
i=1

ci

n∑
i=1

dib
2
i ≥ 2

n∑
i=1

ciai

n∑
i=1

dibi. (1)

If ci and di (i = 1, . . . , n) are positive, then equality holds
in 1 if and only if a = b = k where k = (k, k, . . . , k) is a
constant sequence.

III. RESULTS

Lemma 1: For a graph GS with |S| = σ self-loops,
QE(GS) = QE(G) if σ = 0 and σ = n.

Proof: If σ = 0, then GS
∼= G and QE(GS) =

n∑
i=1

∣∣qi(G)− 2m
n

∣∣ . This implies, QE(GS) = QE(G).

If σ = n, then qi = qi(G) + 1 since Q(GS) = Q(G) + In.
Therefore,

QE(GS) =
n∑

i=1

∣∣∣∣qi(G) + 1− 2m

n
− 1

∣∣∣∣
=

n∑
i=1

∣∣∣∣qi(G)− 2m

n

∣∣∣∣
= QE(G).

Remark 2: The graph GS on n vertices, m edges, and
|S| = σ self-loops is regular if and only if

• G is regular and σ is either zero or n or

• GS is obtained from a graph G by adding a self-loop to
each vertices of degree r of G, where G is a bi-regular
graph with regularities r and r + 2.

Remark 3: For a simple regular graph, E(G) = LE(G) =
QE(G). In case of the graph with self-loops, E(GS) =
LE(GS) but E(GS) need not be equal to QE(GS).

The graph GS is regular in only two cases.
Case(i): If G is a r−regular and σ is either zero or n, then

LE(GS) = LE(G) = E(G) = E(GS)

and

QE(GS) = QE(G) = E(G) = E(GS).

Case(ii): If GS is obtained from a graph G by adding a
self-loop to each vertices of degree r of G, where G is a
bi-regular graph with regularities r and r + 2. Then

L(GS) = (r + 2)I −A(GS)

and

2m = σr + (n− σ)(r + 2) = rn+ 2n− 2σ.

If qi, 1 ≤ i ≤ n are the eigenvalues of A(GS), Then,

LE(GS) =

∣∣∣∣(r + 2)− qi −
2m+ σ

n

∣∣∣∣
=

∣∣∣∣(r + 2)− qi −
rn+ 2n− 2σ + σ

n

∣∣∣∣
=
∣∣∣σ
n
− qi

∣∣∣ = E(GS).

The theorem 3 is a Nordhaus-Gaddum type inequality for
the spectral radius of signless Laplacian matrix of a graph
with σ self-loops.

Theorem 3: Let GS be a graph with σ self-loops and GS

be the complement of GS with n− σ self-loops. If ρ and ρ
are the spectral radius of GS and GS respectively, then

2n− 1 ≤ ρ+ ρ ≤
√

2n(2n− 1).

Proof: Let ρ and ρ be the spectral radius of GS and GS

respectively. Then
ρ ≥ 4m+σ

n and ρ ≥ 4m+(n−σ)
n .

By noting the fact m+m =
(
n
2

)
, we have

ρ+ ρ ≥
4
(
n
2

)
+ n

n
= 2n− 1.

Also, we have ρ ≤
√
4m+ σ and ρ ≤

√
4m+ (n− σ).

And therefore,

ρ+ ρ ≤ 2

(√
m+

σ

4
+

√
m+

(n− σ)

4

)

= 2

(√
m+

σ

4
+

√(
n

2

)
−m+

(n− σ)

4

)

= 2

(√
m+

σ

4
+

√
2n2 − n

4
−
(
m+

σ

4

))
.

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 1890-1895

 
______________________________________________________________________________________ 



But
√

m+ σ
4+
√

2n2−n
4 −

(
m+ σ

4

)
is maximum when m+

σ
4 = 2n2−n

8 . Therefore

ρ+ ρ ≤ 4

√
2n2 − n

8

=
√
2n(2n− 1).

Lemma 2: If q1, q2, . . . , qn are the signless Laplacian
eigenvalues of the graph GS(n,m) with σ, then

n∑
i=1

q2i (GS) = 2m+ σ +M1(G) + 2d.

Where, M1(G) is the first Zagreb index of G and d is the
sum of the degrees of the vertices of S.

Proof: Consider,

n∑
i=1

q2i =
n∑

i=1

(A(GS) +D(G))
2
ii

=
n∑

i=1

(A(G) +D(G) + JS)
2
ii

=
n∑

i=1

(A(G))
2
ii +

n∑
i=1

(D(G))
2
ii +

n∑
i=1

(JS)
2
ii

+
n∑

i=1

(A(G)D(G))ii +
n∑

i=1

(D(G)A(G))ii

+

n∑
i=1

(A(G)JS)ii +

n∑
i=1

(JSA(G))ii

+

n∑
i=1

(D(G)JS)ii +

n∑
i=1

(JSD(G))ii

But,
n∑

i=1

(A(G))
2
ii = 2m,

n∑
i=1

(D(G))
2
ii = M1(G),

n∑
i=1

(JS)
2
ii = σ,

n∑
i=1

(A(G)D(G))ii =
n∑

i=1

(D(G)A(G))ii =
n∑

i=1

(A(G)JS)ii

=
n∑

i=1

(JSA(G))ii = 0, and
n∑

i=1

(D(G)JS)ii =

n∑
i=1

(JSD(G))ii = d. Therefore,

n∑
i=1

q2i = 2m+ σ +M1(G) + 2d.

Lemma 3: If q1, q2, . . . , qn are the signless Laplacian
eigenvalues of the graph GS(n,m) with |S| = σ, then

n∑
i=1

∣∣∣∣qi − (2m+ σ

n

)∣∣∣∣2 = 2m+ σ +M1(G) + 2d

− (2m+ σ)2

n
.

Where, M1(G) is the first Zagreb index of G and d is the
sum of the degrees of the vertices of S.

Proof: Consider,
n∑

i=1

∣∣∣∣qi − (2m+ σ

n

)∣∣∣∣2 =
n∑

i=1

q2i +
n∑

i=1

(
2m+ σ

n

)2

− 2

(
2m+ σ

n

) n∑
i=1

qi.

But, from Lemma 2,
n∑

i=1

q2i (GS) = 2m+ σ +M1(G) + 2d.

Where, M1(G) is the first Zagreb index of a graph and d is
the sum of the degrees of the vertices of S and from remark

1,
n∑

i=1

qi = 2m+ σ. Therefore,

n∑
i=1

∣∣∣∣qi − (2m+ σ

n

)∣∣∣∣2 = 2m+ σ +M1(G) + 2d

− (2m+ σ)2

n
.

Theorem 4: Let GS(n,m) be a graph with σ self-loops.
Then,

QE(GS) ≤ E(GS) +
√
nM1(G)− 4m2.

Where M1(G) is the first Zagreb index of G.
Proof: Consider Q(GS) = A(GS) + D(G). Now

subtract
2m+ σ

n
In on both the sides, where In is the n×n

identity matrix. Now,

Q(GS)−
2m+ σ

n
In = D(G) +A(GS)−

2m+ σ

n
In.

By Theorem 1,

si

(
Q(GS)−

2m+ σ

n
In

)
≤ si(A(GS)−

σ

n
In)

+ si

(
D(G)− 2m

n
In

)
.

This implies,

QE(GS) ≤ E(GS) +
n∑

i=1

∣∣∣∣di(G)− 2m

n

∣∣∣∣ .
By Cauchy-Schwarz inequality,

n∑
i=1

∣∣∣∣di(G)− 2m

n

∣∣∣∣ ≤
√√√√n

n∑
i=1

(
di(G)− 2m

n

)2

=
√
nM1(G)− 4m2.

Therefore,

QE(GS) ≤ E(GS) +
√

nM1(G)− 4m2.

Theorem 5: Let GS(n,m) be a graph with σ self-loops
and GS be a graph obtained by attaching a self-loop to the
vertices of V \S in G. Then

QE(GS) +QE(GS) ≥ 2(n− 1).

Equality holds if GS
∼= (Kn) or GS

∼= (Kn)n.
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Proof: Consider,

Q(GS) +Q(GS) = Q((Kn)n)

. Where (Kn)n is a complete graph on n vertices
with a self-loop attached on each vertex. Now sub-
tract

(
2m+σ+2m+n−σ

n

)
In on both the sides. Noting(

2m+σ+2m+n−σ
n

)
In = nIn, we have

Q(GS)−
(
2m+ σ

n

)
In +Q(GS)−

(
2m+ n− σ

n

)
In

= Q((Kn)n)− nIn.

But
Q((Kn)n)− nIn = A(Kn).

Now by using Theorem 1, we get

QE(GS) +QE(GS) ≥ E(Kn) = 2(n− 1).

If GS
∼= Kn, then GS

∼= (Kn)n. Therefore, QE(GS) +
QE(GS) = 2(n− 1) + 0 = 2(n− 1).

If GS
∼= (Kn)n, then GS

∼= Kn. Therefore, QE(GS) +
QE(GS) = 2(n− 1) + 0 = 2(n− 1).

Theorem 6: For a graph GS(n,m) with σ self-loops,

QE(GS) ≤
√

n (2m+ σ +M1(G) + 2d)− (2m+ σ)2

n
,

where M1(G) is the first Zagreb index of G.
Proof: Consider,
n∑

i=1

n∑
j=1

(∣∣∣∣qi − 2m+ σ

n

∣∣∣∣− ∣∣∣∣qj − 2m+ σ

n

∣∣∣∣)2

≥ 0

This implies,

n

n∑
i=1

(∣∣∣∣qi − 2m+ σ

n

∣∣∣∣2
)

+ n

n∑
j=1

(∣∣∣∣qj − 2m+ σ

n

∣∣∣∣2
)

≥

2

n∑
i=1

∣∣∣∣qi − 2m+ σ

n

∣∣∣∣ n∑
j=1

∣∣∣∣qj − 2m+ σ

n

∣∣∣∣ .
=⇒ 2n

{
(2m+ σ +M1(G) + 2d)−

(
2m+ σ

n

)2
}

≥ 2(QE(GS))
2

This implies,

QE(GS) ≤
√

n (2m+ σ +M1(G) + 2d)− (2m+ σ)2

n
.

Theorem 7: Let GS be a graph on n vertices, m edges,
and σ self-loops. Then

QE(GS) ≤
2m+ n+ σ +M1(G) + 2d− (2m+σ)2

n

2
.

Where, M1(G) is the first Zagreb index of G and d is the
sum of the degrees of the vertices of S.

Proof: By substituting ai =
∣∣qi − 2m+σ

n

∣∣, bi = ci =
di = 1 in equation 1, we get

n∑
i=1

1
n∑

i=1

∣∣∣∣qi − 2m+ σ

n

∣∣∣∣2 + n∑
i=1

1
n∑

i=1

1

≥ 2
n∑

i=1

∣∣∣∣qi − 2m+ σ

n

∣∣∣∣ n∑
i=1

1.

But from Lemma 3,
n∑

i=1

∣∣∣∣qi − (2m+ σ

n

)∣∣∣∣2 = 2m+ σ +M1(G) + 2d

− (2m+ σ)2

n
.

Therefore,

E(GS) ≤
n

(
2m+ σ +M1(G) + 2d− (2m+ σ)2

n

)
+ n2

2n

=
2m+ n+ σ +M1(G) + 2d− (2m+ σ)2

n
2

Theorem 8: Let (Kn)S be a complete graph with σ self-
loops. Then characteristic polynomial of Q((Kn)S) is,

Ch(Q((Kn)S)) = (q − n+ 1)σ−1(q − n+ 2)n−σ−1

q2 + (3− 3n)q + 2n2 − 4n+ 2− σ.

Proof: The signless Laplacian matrix of (Kn)S
with σ self-loops is given by, Q((Kn)S) =(
(nI + J)σ×σ Jσ×n−σ

Jn−σ×σ ((n− 1)I + J)n−σ×n−σ

)
.

Where, I and J are identity matrix and all one matrix. By
elementary row and column operation, det(Q((Kn)S)− qI)
is reduced to

(n− q)σ−1(n− 2− q)n−σ−1

∣∣∣∣n− 1− q 1
σ 2n− 2− q

∣∣∣∣ .
On reduction, one can get the characteristic polynomial of

Q((Kn)S) as,

Ch(Q((Kn)S)) = (q − n+ 1)σ−1(q − n+ 2)n−σ−1

q2 + (3− 3n)q + 2n2 − 4n+ 2− σ.

Theorem 9: Let (Km,n)S be a complete bipartite graph
with σ1 + σ2 self-loops and m + n = p. Let V1 and V2

be partition of (Km,n)S and S1 ∈ V1 and S2 ∈ V2 with
|S1| = σ1 and |S2| = σ2. Then the characteristic polynomial
of signless Laplacian matrix of (Km,n)S is,
(q − n − 1)σ1−1(q − m − 1)σ2−1(q − n)m−σ1−1(q −
m)n−σ2−1(σ1(σ2 + n(q − m − 1)) − (q − n − 1)(mσ2 −
(q −m− 1)(q −m− n)q)).

Proof: The signless Laplacian matrix of
(Km,n)S with σ1 + σ2 self-loops is, Q((Km,n)S) =

(n + 1)Iσ1 0σ1×m−σ1
Jσ1×σ2

Jσ1×n−σ2
0m−σ1×σ1

nIm−σ1
Jm−σ1×σ2

Jm−σ1×n−σ2
Jσ2×σ1

Jσ2×m−σ1
(m + 1)Iσ2

0σ2×n−σ1
Jn−σ2×σ1

Jn−σ2×m−σ1
0n−σ2×σ1

mIn−σ2

 .

By elementary row and column operation,
det(Q((Km,n)S)− qI) is reduced to

(n + 1 − q)σ1−1(m + 1 − q)σ2−1(n − q)m−σ1−1(m −

q)n−σ2−1

∣∣∣∣∣∣∣∣
m+ 1− q 1 0 0

0 m− q σ1 m
0 0 n+ 1− q 1
σ2 n 0 n− q

∣∣∣∣∣∣∣∣ .
By expanding the determinant, the characteristic polyno-

mial of Q((Km,n)S) is,
(q − n − 1)σ1−1(q − m − 1)σ2−1(q − n)m−σ1−1(q −
m)n−σ2−1(σ1(σ2 + n(q − m − 1)) − (q − n − 1)(mσ2 −
(q −m− 1)(q −m− n)q)).
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Corollary 1: The characteristic polynomial of signless
Laplacian matrix of star graph (Sn+1)S with σ self-loops
is (i)

1) (q− 2)σ−1(q− 1)(q− 1)n−σ(q3 − nq2 − 4q2 +2nq+
5q − σ − 1), if the vertex of degree n in Sn+1 has a
self-loop.

2) (q−2)σ−1(q−1)(q−1)n−σ−1(q3−nq2−3q2+2nq+
2q − σ), if the vertex of degree n in Sn+1 does not
have a self-loop.

Proof: Let (Sn+1)S be a star graph with σ self-loops.
Let v be the vertex of degree n in Sn+1. (i)

1) Suppose v has a self-loop. Then the characteristic
polynomial of Q((Sn+1)S) is obtained by substituting
m = 1, σ1 = 1, σ2 = σ − 1 in Theorem 9.

2) Suppose v does not have a self-loop. Then the char-
acteristic polynomial of Q((Sn+1)S) is obtained by
substituting m = 1, σ1 = 0, σ2 = σ in Theorem 9.

IV. CHEMICAL APPLICABILITY OF SIGNLESS
LAPLACIAN ENERGY OF A GRAPH WITH SELF-LOOPS

In this section, Signless Laplacian energy of the hetero-
molecules listed in 1 is calculated and compared with the
total π−electron energy of those hetero-molecules, where
each hetero-atom is replaced by a self-loop. For hetero-
molecules, the total π−electron energy is calculated for
different values of h and k, where h is the Coulomb term of
the hetero-atom and k is the resonance integral of the carbon-
hetero-atom bond. One can refer [14] for more information
regarding total π−electron energy of hetero-molecules. In
this study, the comparison between two energies are done for
h = k = 1, h = 2, k = 1 and obtained a strong correlation
with correlation coefficient 0.99 and 0.95 respectively.

Figure 1. Hetero-molecules.

Figure 2. Scatter plot of Signless Laplacian energy of a graph with self-
loops and total π−electron energy of hetero-molecules for h = k = 1.

Figure 3. Scatter plot of Signless Laplacian energy of a graph with self-
loops and total π−electron energy of hetero-molecules for h = 2 and
k = 1.

V. CONCLUSION

The signless Laplacian energy of a graph with self-loops
is introduced and studied some basic properties. Few bounds
for the same is obtained in terms of various graph parameters
such as number of vertices, edges, first Zagreb index, and
number of self-loops. A Nordhaus-Gaddum type inequality
for signless Laplacian spectral radius is obtained and signless
Laplacian spectral properties of complete and complete bi-
partite graph is also obtained. As an application, correlation
between Signless Laplacian energy and total π−electron
energy of hetero-molecules is obtained.
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