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Abstract—In this study, a hybrid vehicle utilization model is
proposed to optimize the pickup and delivery problem with time
windows under multiple distribution centres (MDC-EFPDPTW)
by complementing the advantages of electric and fuel vehicles
in response to the high cost and range limitation problems
in the development of electric truck technology. A hybrid
meta-heuristic algorithm (ALNCO) combining Adaptive Large
Neighbourhood Search (ALNS) and Ant Colony Optimisation
(ACO) is used to achieve a dynamic balance between local and
global search to solve the path problem in the hybrid vehicle
mode. Comparative analyses with traditional vehicle modes
and mainstream algorithms show that the method has obvious
advantages in improving transport efficiency and reducing costs.
The study provides a basis for the technological progress and
policy formulation of electric trucks and provides new ideas and
tools for the green transformation of the transport industry.

Index Terms—Combinatorial optimization, Electric trucks,
Mixed vehicle routing mode, Multiple distribution centers,
Green transport transition.

I. INTRODUCTION

FUELED by global trade and technological advance-
ments, the logistics industry has proliferated, becom-

ing vital to the global supply chain. China’s e-commerce
boom has significantly boosted the expansion of the ex-
press delivery and logistics sectors, where road transport
remains dominant, especially for urban and inter-regional
deliveries. Despite the industry’s contribution to economic
growth, transportation costs still account for a large share
of logistics expenses, and road transport generates con-
siderable greenhouse gas emissions, posing environmental
challenges [1],[2].The logistics industry must enhance ef-
ficiency through technological innovation and management
optimization to tackle high costs and environmental impacts.
Vehicle routing optimization is a widely applied management
strategy, with many variants developed for different scenar-
ios. A notable variant for urban distribution is the pick-up
and delivery problem with time windows (PDPTW), which
focuses on optimizing routes for multiple tasks with time
constraints [3], [4].In addition to optimization algorithms,
deploying heterogeneous vehicle fleets, including electric and
traditional fuel trucks, offers further potential for cost and
emissions reductions. Although electric trucks are preferred
due to regulatory, financial, and environmental benefits,
limitations such as range, charging speed, and infrastructure
pose challenges for widespread adoption [5].
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As logistics demand grows and urban areas expand, distri-
bution vehicles must cover longer distances, increasing costs.
Mixed fleets of electric and fuel trucks may provide an effec-
tive solution. Close cooperation between distribution centres
allows for more flexible transport planning, optimizing routes
and vehicle utilization while integrating electric and fuel
trucks [6],[7]. This paper proposes a new model for path
optimization in mixed fleets under time constraints, building
on existing research in vehicle routing problems. The study
explores the synergies and challenges between electric and
fuel trucks within a sustainable logistics system, offering
insights into their future development.

The main contributions of this research are:
(1) This study proposes a hybrid fleet path optimization

model under multiple distribution centers that combine the
use of electric and fuel vehicles to solve the time window
constraint problem.

(2) The optimization objective function integrates life
cycle cost and carbon emission factors, providing a vehi-
cle selection scheme that balances economic efficiency and
environmental protection.

(3) A virtual charging station model is introduced, which
is designed for electric vehicles, restricts fuel vehicle use,
and improves charging infrastructure utilization efficiency.

(4) A hybrid meta-heuristic algorithm (ALNCO) com-
bining ALNS and ACO is proposed. Its performance is
compared and analyzed with the exact solver and other
mainstream algorithms (e.g., GTS and ALNS).

The paper is organized as follows: Section 2 reviews
relevant literature. Section 3 presents the formulation of
the mixed fleet vehicle routing problem. Section 4 dis-
cusses the ALNCO-based algorithm. Section 5 compares
the algorithm’s performance, and Section 6 concludes with
contributions and future research directions.

II. LITERATURE REVIEW

In response to the growing demand for logistics and
environmental sustainability, vehicle route optimization for
pick-up and delivery has attracted significant attention. Ex-
isting research primarily focuses on optimizing the delivery
routes of traditional fuel trucks and optimizing short-distance
delivery routes of electric trucks [8],[9]. Wang et al.[10]
and Louati et al.[11] explored optimizing delivery routes for
both homogeneous and heterogeneous fleets of fuel vehicles
in multi-distribution centres using domain search, column
generation, and mixed-integer linear programming methods.
Their research highlights significant cost reduction insights
in real-world logistics applications, with the potential to
improve operational efficiency in various contexts. Polat et
al.[12]and Wang et al.[13] took a multi-objective approach,
addressing the complex trade-offs between cost, timeliness,
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and service quality. Their work on synchronous delivery
and collection with time windows showcases the impor-
tance of balancing multiple factors in logistics optimization.
These studies provide critical insights into the flexibility
and adaptability required for modern logistics systems, espe-
cially as the demand for efficiency and customer satisfaction
grows. Focusing on electric trucks, Goeke[14] introduced the
Granular Tabu Search algorithm, demonstrating how electric
vehicles could improve delivery efficiency and environmental
impact, particularly in dense urban settings. Zhang et al.[15]
extended this work by incorporating a mutation operator in
a multi-objective ant colony optimization algorithm, seek-
ing to minimize operational costs and maximize customer
satisfaction. These studies highlight the growing potential
for electric trucks in urban logistics, especially as cities
increasingly prioritize green transportation initiatives. Phuc
et al.[16] and Kececi et al.[17] further explored the practical
challenges of optimizing heterogeneous fleets, emphasizing
the importance of balancing algorithm complexity with real-
world applicability, particularly under strict time windows.

Real-time optimization has become crucial in logistics,
particularly with increasing urban congestion and unpre-
dictable road conditions. Kumar et al.[18] proposed a low-
complexity real-time traffic information sharing framework
that uses roadside units (RSUs) and central servers to dy-
namically re-plan routes, adapting quickly to road congestion
and accidents. Wu et al.[19], on the other hand, introduced an
innovative neighbourhood comprehensive learning particle
swarm optimization (N-CLPSO) algorithm, which enhances
route planning in highly uncertain environments by combin-
ing local exploration with global search strategies.

In the Green Vehicle Routing Problems (GVRP) field,
researchers have made significant advances in understanding
the integration of electric vehicles (EVs) with traditional
fuel vehicles in heterogeneous fleet configurations. Sassi et
al.[20] and Ying et al.[21] developed models addressing
the unique challenges posed by charging infrastructure and
carbon emissions. Their findings suggest that the co-existence
of electric and traditional vehicles can significantly reduce
total transportation costs and carbon footprints. However,
limited range and uneven distribution of charging stations
remain critical obstacles for large-scale deployment [22].
Zhao et al.[23] built on these models, introducing soft time
windows to accommodate charging times, highlighting how
strategic planning for charging can reduce overall emissions.
Recent research by Celebi[24] and Amiri et al.[25] has also
focused on charging infrastructure’s role in enhancing elec-
tric vehicles’ viability in logistics. Celebi[24] emphasized
that optimizing charging strategies is essential for expanding
electric vehicle usage and ensuring their seamless integra-
tion into mixed fleets. Amiri et al.[25] real-world study
from Canada underscores the practical benefits of improving
charging facilities, showing how infrastructure upgrades can
reduce costs and emissions, making electric vehicles more
attractive for logistics companies in regions with growing
environmental regulations.

Research on vehicle routing in multi-distribution cen-
tres has explored how collaborative logistics strategies can
drive efficiency and sustainability. Shi et al.[26] emphasized
the critical role of collaboration among multiple carriers,
showing how shared distribution resources can reduce op-

erational costs and promote environmental sustainability.
This is particularly important in the context of modern e-
commerce, where fast and efficient delivery is essential for
customer satisfaction.Anuar et al.[27] and Zhang et al.[28]
extended this work by addressing the dynamic nature of
vehicle routing under stochastic conditions, highlighting how
advanced optimization techniques, such as approximate dy-
namic programming and knapsack-based scheduling, can im-
prove decision-making in unpredictable environments. Their
findings suggest that flexible, real-time optimization will be
key to meeting future logistical challenges. Hou et al.[29]
presents an optimization algorithm that aims to combine
the fixed cost of the vehicle, the cost of the transport
distance, and the cost of the carbon emissions. By selecting
an ultra-efficient strategy, the algorithm can achieve a more
desirable optimization result under multiple constraints. On
the other hand,Wang et al.[30] proposed a hybrid genetic
algorithm for optimizing the time-window scheduling and
cost-scheduling problems in fresh produce delivery. The
algorithm combines the advantages of genetic algorithms
and seeks to maximize cost reduction while guaranteeing
delivery timelines. Kabadurmus et al.[31] and Ma et al.[32]
tackled the challenge of reducing carbon emissions in multi-
warehouse vehicle routing problems. By integrating green
vehicle routing strategies with heterogeneous fleets, their re-
search demonstrated how mixed-integer linear programming
(MILP) models and genetic algorithms (GAs) could optimize
both cost and emissions, offering practical solutions for the
logistics industry. These findings underscore the importance
of adopting environmentally friendly strategies in an industry
increasingly held accountable for its environmental impact.

From the reviewed literature, it is clear that further ex-
ploration is required in combining fuel-powered and electric
trucks for logistics, particularly for pick-up and delivery
operations. Most research agrees that electric vehicles are
well-suited for short-distance deliveries due to range lim-
itations, while traditional fuel trucks offer more flexibility
for longer distances. Coordinated distribution across multiple
centres, where electric and fuel trucks operate in tandem, can
lead to significant economic and environmental benefits. The
relatively low energy costs of electric trucks, combined with
the operational flexibility of fuel vehicles, make mixed fleet
strategies an attractive option for logistics companies [6].

To address these challenges, this study proposes a novel
optimization model, MDC-EFPDPTW, that incorporates real-
world operating conditions for mixed fleets, aiming to min-
imize the total cost of goods transportation. By leveraging
an improved domain search algorithm ALNCO, this model
offers an innovative solution to the complexities of collab-
orative distribution from multiple centers. The validity of
the model and algorithm proposed in this paper is analyzed
using example sets constructed by researchers such as Li et
al.[33], providing a theoretical foundation and development
suggestions for the joint application of electric and fuel-
powered trucks in the logistics and distribution field.

III. MATHEMATICAL MODELLING

A. Problem Description
Fig. 1 illustrates the path planning problem for electric and

fuel trucks under multiple distribution centres, comparing
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transportation modes before and after collaboration. Before
collaboration, each distribution centre plans vehicle paths
independently, which can result in certain centres handling
long-distance tasks, increasing overall transportation distance
and energy consumption. Independent planning lacks a global
perspective, leading to inefficient resource use, especially in
complex multi-centre networks.

In the post-collaboration scenario, vehicle scheduling is
optimized through coordination between distribution centres,
allowing transport tasks to be distributed more efficiently,
reducing the over-concentration of long-distance tasks. The
introduction of virtual charging stations ensures that EVs can
recharge effectively during transport, improving the feasibil-
ity of their task execution.

This forms the basis for the hybrid vehicle path optimiza-
tion model (MDC-EFPDPTW), which integrates traditional
fuel vehicle routing with EV-specific charging constraints and
virtual charging stations. The model provides a theoretical
framework for optimizing transport efficiency, reducing en-
ergy consumption, and lowering carbon emissions.

B. Model Construction And Assumptions
In the 𝑀𝐷𝐶 − 𝐸𝐹𝑃𝐷𝑃𝑇𝑊 model proposed in this study,

multiple symbols describe the route optimization problem
for electric and fuel trucks under a multi-depot distribution
scenario. The notations used in the model and their meanings
are shown in TABLE I. First, the set of vehicles 𝐾 = 𝐾𝑒∪𝐾𝑣
includes all electric and fuel trucks. Each vehicle has unique
attributes, including acquisition cost 𝐴𝑘 , energy consump-
tion per unit distance 𝜌𝑘 (𝑥), maximum load 𝑈𝑘 , maximum
battery capacity 𝑅𝑘 , and charging rate 𝑤. These attributes
directly influence the route planning and the calculation of
total costs.

In the route planning process, the set of nodes 𝑉′ consists
of all depots, customer locations, and charging stations.
Since the model focuses on pickup-and-delivery pairs, each
delivery task involves transporting goods from a specific
pickup point to a corresponding delivery point. Within this
framework, routes are categorized into charging and non-
charging paths. A non-charging path (𝑖, 𝑗) is characterized by
a specific distance 𝑑𝑖 𝑗 , travel time 𝑡𝑖 𝑗 , and the transportation
cost for vehicle 𝑘 . The binary variable 𝑥𝑚𝑘𝑖 𝑗 determines
whether vehicle 𝑘 travels on segment (𝑖, 𝑗). The model incor-
porates virtual charging stations to manage electric vehicles’
charging requirements efficiently. Unlike actual charging
stations, virtual charging stations are designed to simplify the
charging paths of electric vehicles and seamlessly integrate
them into the pickup-and-delivery pair framework.

Two matched special nodes represent virtual charging
stations: the entry node 𝑆′ and the exit node 𝐸′. These
nodes represent the “pickup” and “delivery” actions during
the charging process. In the route planning process, when
an electric vehicle arrives at the entry node 𝑆′, it is akin to
“picking up” the required charge, and upon leaving from the
exit node 𝐸′, the charging process is completed. The virtual
charging stations are defined by the set 𝐹′ = 𝑆′ ∪ 𝐸′, where
𝑆′ = 𝑖 + 𝑔, . . . , 𝑖 + 𝜆𝑔 and 𝐸′ = 𝑖 + 𝑔 + 𝑓 , . . . , 𝑖 + 𝜆𝑔 + 𝑓 , with
𝜆 representing the maximum number of electric vehicles that
can charge simultaneously. By matching the entry and exit
nodes, virtual charging stations simplify the route and allow

multiple electric vehicles to charge simultaneously through
replication, thereby avoiding path conflicts and minimizing
waiting times.

In route planning, there is no actual distance or time con-
sumption between a virtual charging station’s entry and exit
nodes; the charging process is treated as a “virtual path.” This
design aligns with the pickup-and-delivery pair structure of
the model, allowing the electric vehicle’s charging process to
be seamlessly integrated into route planning and preventing
the repeated path visits and charging wait issues typically
associated with traditional charging station designs.

In this model, each pickup and delivery node 𝑖 has a fixed
service time 𝑆𝑖 , a time window [𝑒𝑖 , 𝑙𝑖], and a demand 𝑞𝑖 .
The corresponding virtual charging nodes 𝑆′ and 𝐸′ also
follow similar service constraints. The service time 𝑆𝑖 for
a charging station is proportional to the number of electric
vehicles needing charging, while the demand 𝑞𝑖 for virtual
stations is zero. The cost of the path from the entry node 𝑆′ to
the exit node 𝐸′ is defined as the charging cost 𝑟𝑖𝑉𝑚𝑘𝑖 , where
𝑉𝑚𝑘𝑖 represents the amount of charge received by vehicle 𝑘
at node 𝑖. This ensures that the model accurately controls
the charging costs of electric vehicles and incorporates these
costs into the total cost calculation.

To facilitate modelling and ensure the feasibility of the
study, the following assumptions are made based on real-
world scenarios and relevant literature:

TABLE I
MODEL PARAMETERS AND VARIABLES

Variable Meaning

𝑍 Total cost
𝑘 Vehicle
𝐾𝑒 Total electric vehicle
𝐾𝑣 Total fuel vehicles
𝑚 Starting point of the distribution centre 𝑚
𝑚 + 𝑔 Terminal of the distribution centre 𝑚
𝑀 All distribution centres, 𝑀 = 1, 2, 3, 𝑚 ∈ 𝑀
𝐶 Customer point
𝐹′ Copy of charging station point
𝑁 Customer point and copy of charging station point
𝑁0 Customer point, copy of charging station point, and starting

point
𝑁𝑛+1 Customer point, copy of charging station point, and endpoint
𝑉 ′ All points
𝑃 Set of pick-up points
𝐷 Set of delivery points
𝐹′
𝑠 Front end of charging station point
𝐹′
𝐸 Rear end of charging station point
𝐴 Set of edges
𝐴𝑧 Set of non-charging arcs
𝐴 𝑓 Set of charging arcs
𝑉𝑚𝑘
𝑖 Amount of charge received by vehicle 𝑘 departing from

distribution center 𝑚 at point 𝑖
𝑟 Charging cost at the distribution center
𝑟 𝑓 Charging cost at the charging station point
𝑤 Charging rate
𝑐𝑘 Unit energy cost of vehicle 𝑘
𝜌𝑘 Unit distance energy consumption of vehicle 𝑘
𝑥𝑚𝑘
𝑖 𝑗 Whether vehicle 𝑘 departing from distribution center 𝑚

passes through segment 𝑖 𝑗
𝑦𝑚𝑘
𝑖 Battery level of vehicle 𝑘 departing from distribution center

𝑚 when leaving point 𝑖
𝑞𝑖 Demand at each pick-up and delivery point
𝑅𝑘 Maximum battery capacity of vehicle 𝑘
𝑈𝑘 Maximum load capacity of vehicle 𝑘
𝜀𝑘 Energy carbon intensity of vehicle 𝑘
𝑓 𝑘 Life cycle cost of vehicle 𝑘
𝑜𝑘 Carbon tax for vehicle 𝑘
𝜔𝑘 Greenhouse gas road emission fee for vehicle 𝑘
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Fig. 1. Optimized transportation network: a comparison of multiple distribution centres before and after cooperation

The following assumptions are made in this paper:
(1) The corresponding pick-up point must be located before

the delivery point.
(2) The corresponding charging station’s front and rear end

points must be adjacent, with the front end point positioned
first.

(3) The corresponding pick-up and delivery points must
be on the same route.

(4) Each delivery vehicle 𝑘 will start from the distribution
centre’s starting point and return to the corresponding end
point of the distribution centre after completing the delivery
task.

(5) Except for the starting and end points of the distribution
centre, all other points can only extend outward by one line
segment.

To fully address the multi-distribution centre mixed-
vehicle scheduling problem, the model introduces four key
cost components: charging cost of EVs, fuel cost of fuel
vehicles, carbon emission cost, and life cycle cost. First, EV
charging costs account for the expenditure at virtual charging
stations and distribution centres. This cost constrains EV
path selection to avoid scenarios where vehicles run out of
power mid-operation, ensuring the optimality of the route.
Second, fuel costs are a critical factor for fuel vehicles,
reflecting the distance travelled. Despite the growing use
of electric vehicles, fuel vehicles remain essential in many
scenarios, making it necessary to optimize their operating
costs.Third, carbon emission costs are introduced to measure
the environmental impact of fuel vehicles and incentivize
the use of EVs. By adding this cost, the model aligns
with green logistics goals, encouraging a shift towards more
sustainable transport solutions. Finally, the life cycle cost
ensures that long-term costs, such as vehicle acquisition and
maintenance, are appropriately apportioned to path planning.
By converting fixed costs into per-unit distance costs, the
model avoids large discrepancies between fixed and variable
costs. Drawing on the methodology in the literature Li
[34], this approach balances both short-term and long-term
expenses, ensuring that the economic efficiency of transport
operations aligns with the goals of modern green logistics.

Thus, the mathematical model MDC-EFPDPTW can be

established as follows:

min 𝑍 = 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4 (1)

𝑍1 =
∑
𝑚∈𝑀

∑
𝑘∈𝐾𝑒

∑
𝑖∈𝐹′

𝑟 𝑓𝑉
𝑚𝑘
𝑖 +∑

𝑚∈𝑀

∑
𝑘∈𝐾𝑒

∑
𝑗∈𝑁

𝑟
((
𝑅𝑘 − 𝑦𝑘𝑚+𝑔

)
𝑥𝑘𝑚 𝑗

) (2)

𝑍2 =
∑

m∈𝑀

∑
𝑘∈𝐾𝑖

∑
𝑖∈𝑁0

∑
𝑗∈𝑁𝑛+1

𝑐𝑘𝜌𝑘𝑑𝑖 𝑗𝑥
𝑚𝑘
𝑖 𝑗 (3)

𝑍3 =
∑
𝑘∈𝐾𝑣

∑
𝑚∈𝑀

∑
𝑗∈𝑁𝑛+1

(
𝜀𝑘𝑜𝑘𝜌𝑘 + 𝜔𝑘

)
𝑑𝑖 𝑗𝑥

𝑚𝑘
𝑖 𝑗 (4)

𝑍4 =
∑
𝑚∈𝑀

∑
𝑘∈𝐾

∑
𝑖∈𝑁0

∑
𝑗∈𝑁𝑛+1

𝑓 𝑘𝑑𝑖 𝑗𝑥
𝑚𝑘
𝑖 𝑗 (5)∑

𝑗∈𝑁
𝑥𝑘𝑚 𝑗 =

∑
𝑖∈𝑁

𝑥𝑘𝑖,𝑚+𝑔 ≤ 1,∀𝑘 ∈ 𝐾, 𝑚 ∈ 𝑀 (6)

𝑚𝑘∑
𝑥𝑖 𝑗

= 1,∀𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾,∀ 𝑗 ∈ 𝑁𝑛+1 (7)∑
𝑥𝑘𝑚′ 𝑗 = 0, 𝑚′ ∈ 𝑀, 𝑘 ∈ 𝐾,∀ 𝑗 ∈ 𝑉′ (8)∑

𝑗∈𝑉′
𝑥𝑘𝑖 𝑗 −

∑
𝑗∈𝑉′

𝑥𝑘𝑗,𝑖+𝑛 = 0,∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾,

𝑚 ∈ 𝑀
(9)

∑
𝑥𝑚𝑘𝑖 𝑗 ⩽ 1, (𝑖, 𝑗) ∈ 𝐴 𝑓 , 𝑘 ∈ 𝐾𝑒, 𝑚 ∈ 𝑀 (10)∑
𝑥𝑚𝑘𝑖 𝑗 = 0, (𝑖, 𝑗) ∈ 𝐴 𝑓 , 𝑘 ∈ 𝐾𝑣 , 𝑚 ∈ 𝑀 (11)

𝑒𝑖 < 𝑇
𝑚𝑘
𝑖 < 𝑙𝑖 ,∀𝑖 ∈ 𝑁 ∪ 𝐹′, 𝑘 ∈ 𝐾, 𝑚 ∈ 𝑀 (12)

𝑇𝑚𝑘𝑖 + 𝑆 𝑗 + 𝑡𝑖 𝑗 − 𝑀
(
1 − 𝑥𝑚𝑘𝑖 𝑗

)
⩽ 𝑇𝑚𝑘𝑗 ,

∀𝑖 ∈ 𝑉′,∀ 𝑗 ∈ 𝑉′, 𝑘 ∈ 𝐾, 𝑚 ∈ 𝑀, 𝑖 ≠ 𝑗
(13)

𝑆𝑖 + 𝑇𝑚𝑘𝑖 + 𝑡𝑖,𝑛+𝑖 ⩽ 𝑇𝑚𝑘𝑖+𝑛 ,∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾,
𝑚 ∈ 𝑀

(14)

𝑆𝑖 + 𝑇𝑚𝑘𝑖 + 𝑡𝑖 𝑗 ⩽ 𝑇𝑚𝑘𝑗 ,∀(𝑖, 𝑗) ∈ 𝐴 𝑓 , 𝑘 ∈ 𝐾𝑒,
𝑚 ∈ 𝑀

(15)
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𝑆𝑖 = 𝑉
𝑚𝑘
𝑖 𝑗 /𝑤,∀(𝑖, 𝑗) ∈ 𝐴 𝑓 , 𝑘 ∈ 𝐾𝑒, 𝑚 ∈ 𝑀 (16)

𝑢𝑚𝑘𝑖 + 𝑞 𝑗 − 𝑀
(
1 − 𝑥𝑚𝑘𝑖 𝑗

)
⩽ 𝑢𝑚𝑘𝑗 ,∀𝑖 ∈ 𝑉′,

𝑗 ∈ 𝑉′, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 , 𝑚 ∈ 𝑀
(17)

𝑦𝑚𝑘𝑗 ≤ 𝑦𝑚𝑘𝑖 − 𝜌𝑘𝑑𝑖 𝑗𝑥𝑘𝑖 𝑗 + 𝑅𝑘
(
1 − 𝑥𝑚𝑘𝑖 𝑗

)
,

∀(𝑖, 𝑗) ∈ 𝐴𝑧 , 𝑘 ∈ 𝐾𝑒, 𝑚 ∈ 𝑀
(18)

𝑉𝑚𝑘𝑖 𝑗 = 𝑥𝑚𝑘𝑖 𝑗
(
𝑦𝑚𝑘𝑗 − 𝑦𝑚𝑘𝑖

)
,∀(𝑖, 𝑗) ∈ 𝐴 𝑓 , 𝑘 ∈ 𝐾𝑒,

𝑚 ∈ 𝑀
(19)

𝑦𝑚𝑘𝑗 ⩽ 𝑦
𝑚𝑘
𝑖 +𝑉𝑚𝑘𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ 𝐴 𝑓 , 𝑘 ∈ 𝐾𝑒, 𝑖 ≠ 𝑗 ,

𝑚 ∈ 𝑀
(20)

𝑥𝑚𝑘𝑖 𝑗 = {0, 1},∀𝑖 ∈ 𝑉′,∀ 𝑗 ∈ 𝑉′, 𝑖 ≠ 𝑗 ,∀𝑘 ∈ 𝐾,
𝑚 ∈ 𝑀

(21)

𝑅𝑘 ⩾ 𝑦𝑚𝑘𝑖 ≥ 0, 𝑖 ∈ 𝑉′,∀𝑘 ∈ 𝐾𝑒, 𝑚 ∈ 𝑀 (22)

𝑅𝑘 ⩾ 𝑉𝑚𝑘𝑖 ⩾ 0,∀𝑖 ∈ 𝐹′,∀𝑘 ∈ 𝐾𝑒, 𝑚 ∈ 𝑀 (23)

𝑈𝑘 ⩾ 𝑢𝑚𝑘𝑖 ⩾ 0, 𝑖 ∈ 𝑉′, 𝑚 ∈ 𝑀 (24)

𝑑𝑖 𝑗 ⩾ 0,∀𝑖 ∈ 𝑉′, 𝑗 ∈ 𝑉′, 𝑖 ≠ 𝑗 (25)

Equation (1) represents the objective function, which is
composed of the electricity cost 𝑍1 for electric trucks, the
fuel cost 𝑍2 for fuel trucks, the carbon emission cost 𝑍3, and
the entire life cycle cost 𝑍4 for both electric and fuel trucks.
Equation (2) calculates the electricity cost for electric trucks,
where the first term represents the total cost of charging
vehicle 𝑘 at all charging stations, calculated as the amount
of charge required multiplied by the unit charging cost,
and the second term represents the cost of fully charging
vehicle 𝑘 at the distribution centre when it departs from
centre 𝑚, ensuring that the vehicle is fully charged for the
next delivery, with a charge level of 𝑦𝑘𝑚+𝑔 upon return.
Equation (3) represents the fuel cost for fuel trucks. Equation
(4) calculates the carbon emission cost, and Equation (5)
represents the life cycle cost for electric and fuel trucks.

Equation (6) ensures that each vehicle starts from the
distribution centre’s starting point and returns to the corre-
sponding endpoint. Equations (7) and (8) ensure that, apart
from the distribution centre’s start and end points, each point
can only extend one line segment outward, and no line
segment can extend from the endpoint. Equation (9) ensures
that the exact vehicle transports pick-up and delivery requests
on the same route. Equations (10) and (11) limit each virtual
charging station to be visited by the same electric truck
at most once and prevent visits by fuel trucks. Equations
(12) and (13) represent the time window constraints for
each point. Equation (14) requires that the front end of a
matching pick-up point precedes the front end of a delivery
point. Equations (15) and (16) ensure that the front end
of a charging arc precedes the rear end of the charging
arc. Equation (17) addresses vehicle capacity constraints,
and Equations (18) to (20) represent power constraints for
electric vehicles. Equation (21) indicates whether vehicle 𝑘
from distribution centre 𝑚 passes through line segment 𝑖 𝑗 .
Equation (22) indicates the battery level of electric vehicle 𝑘
from distribution centre 𝑚 at point 𝑖. Equation (23) represents
the amount of charge for electric vehicle 𝑘 at point 𝑖.

Equation (24) indicates the load of vehicle 𝑘 at point 𝑖, and
Equation (25) represents the distance of line segment 𝑖 𝑗 .

In vehicle path planning, uncertainties such as fluctuating
travel times, charging station availability, and variable cus-
tomer demand add complexity. While these factors are criti-
cal, addressing them would significantly increase the model’s
complexity. Thus, to maintain the solvability and practicality
of the model, we focus on deterministic optimization. Future
research will address these uncertainties by incorporating
stochastic elements into the ALNCO algorithm, enhancing
the model robustness and broadening its applicability in
practical scenarios.

IV. ALGORITHM DESIGN
This study explores a variant of the PDPTW problem

(Pickup-Delivery with Time Window problem), which be-
longs to the category of NP puzzles. In the case of hybrid
vehicle configurations, this paper classifies the problem into
two categories: fuel-powered trucks that do not need to
pass through a charging station and electric trucks that need
to pass through a charging station. Therefore, the problem
presented in this study is more challenging in terms of
complexity than the traditional PDPTW problem. In recent
years, metaheuristic algorithms have been widely used to
solve PDPTW problems. However, a literature review reveals
no research on multi-distribution point PDPTW models for
hybrid vehicle configurations. In this study, a combinatorial
metaheuristic algorithm (ALNCO) is developed based on
the latest literature to find an optimal solution for this
problem, which in turn provides a new research perspective
in this research area. This chapter first describes how to
encode customer points using pickup-delivery strategies, then
discusses the initial solution generation method, and finally,
elaborates on the design of the ALNCO algorithm, including
its key steps, main modules, and algorithmic flow, aiming to
efficiently solve the multi-delivery-point PDPTW problem
with mixed vehicle configurations.

A. Pickup-delivery Pairing Strategy
As illustrated in Fig. 2, this study’s vehicle routing model

ensures that each pair of pick-up and delivery points is
processed simultaneously and that charging stations and their
replicas are efficiently utilized.

In the model, the numbering begins by assigning collection
point numbers, starting from 0, followed by the numbering
of pick-up points, delivery points, charging stations, charging
station replicas, and distribution centre points. The model
includes three main points: customer points (pick-up and
delivery), charging stations (and replicas), and distribution
centre points. These points are integrated into a list that forms
the basis for generating a comprehensive numbering system.
The numbering system is subdivided into customer points,
charging stations, and distribution centers. Each pair of pick-
up and delivery points is assigned a matching identifier
number, ensuring that the same vehicle is always served
by the same vehicle throughout the routing process. For
example, in Fig. 2, the pair of pick-up and delivery points
with a matching identifier “A1a” is processed together by a
single vehicle. This binding strategy ensures that pick-up and
delivery pairs remain intact during each algorithm iteration,
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           Distribution Center                           Charging Station and Replication Point                  Pick-up Point                   Delivery Point

Matching Identifier 

Number: 0

20 1 3 4 65                         

                         
                       
                         

Matching Identifier 

Number: A|a

Matching Identifier 

Number: 5

Matching Identifier 

Number: B|b

Fig. 2. Example of the composition of the general route number

improving route efficiency. Furthermore, the model defines
matching identifier numbers for each charging station’s front-
end and rear-end points and replicas. This ensures that charg-
ing stations’ front-end and rear-end points are connected,
allowing electric vehicles to utilize the charging infrastruc-
ture effectively. In Fig. 2, for instance, charging stations
are represented with their respective identifiers, ensuring
continuity between the front and rear points. The total driving
route for each distribution center is represented by a list of
numbered points, where the intervals between distribution
centers represent the vehicle’s driving path. Odd-numbered
routes are assigned to electric vehicles, while even-numbered
routes are designated for fuel vehicles. Power constraint
checks are applied to electric vehicle routes, and charging
stations are inserted to ensure optimal charging infrastructure
utilisation.

B. Initial Solution
The route iteration process begins by generating vehicle

routes and ensuring optimal use of charging stations. The
initial solution is generated as follows:

Step 1: Assign each pair of pickup and delivery points
to the closest distribution center 𝑚 and assign vehicles 𝑘 to
each center based on the number of tasks at each center.

Step 2: Generate a list of routes 𝐿 containing distribution
center numbers, with odd numbers being electric and even
fuel vehicle routes. The list of pickup and delivery points 𝐻
is sorted according to the distance between the pickup and
delivery point and the distribution center 𝑚 from the nearest
to the farthest.

Step 3: Insert each pair of pickup and delivery points from
list 𝐻 into route list 𝐿 in order, ensuring that the pickup point
is before the delivery point. Customer points are inserted
according to the distance-first rule.

Step 4: Check the constraints for each request 𝑞. For
fuel vehicles, capacity and time window constraints must
be satisfied; power constraints are also checked for electric
vehicles. If all constraints are satisfied, continue processing;
otherwise, go to Step 5.

Step 5: If the insertion fails due to power constraints,
mark the sub-route as secondary and pause further insertion
operations. Place the unsatisfied request 𝑞 at the end of the
pickup and delivery point list 𝐻.

Step 6: Insert a charging station in the secondary sub-
route to satisfy the electric vehicle’s power requirement. After

inserting the charging station, return to Step 4 and recheck
all constraints for the route.

C. ALNCO
In the MDC-EFPDPTW model, the traditional ALNS local

search is limited by the delivery and charging constraints,
resulting in unstable solution quality. To solve this problem,
this paper proposes a dynamic feedback and parallel opti-
mization algorithm (ALNCO) that combines ACO through
the parallel optimization and bidirectional feedback mecha-
nism of ALNS and ACO to improve search efficiency and
solution quality. The core of the method lies in the parallel
optimization and feedback mechanism, where ALNS and
ACO share the initial solution, perform optimization, and
exchange information separately in order to achieve a close
integration of local and global search. The specific process
is shown in Algorithm 1:

The algorithm generates an initial solution via a greedy
algorithm, which serves as the starting point for both ALNS
and ACO.ALNS performs local optimization via node de-
struction and insertion operations, while ACO guides the
ant colony to perform a global search using pheromone and
heuristic information. Both are executed in parallel to ensure
that the local and global searches are synchronized to opti-
mize the local quality of the solution and extend the search
space.In order to enhance the synergy between local and
global search, the algorithm introduces a two-way feedback
mechanism: the ACO uses pheromone concentration to guide
the ALNS’s deletion operation, which preferentially removes
poor-quality paths and avoids local optimums; and the ALNS
adjusts the path selection probability of the ACO through
its optimisation experience to enhance the efficiency of the
global search.

In the feedback phase, ACO adaptively adjusts the
pheromone volatility rate according to the optimization infor-
mation provided by ALNS to maintain a high concentration
of high-quality paths; at the same time, ALNS dynamically
adjusts the destruction intensity and balances the breadth
and depth of the search. At the end of each iteration, the
algorithm compares the optimal solutions of the two and
selects the optimal solution as the initial solution of the next
round, gradually approaching the global optimal solution and
accelerating convergence.

1) ALNS Operation: Multiple executions of the ALNS
algorithm can be time-consuming, and the quality of the
solution is usually sub-optimal due to its wide local search.
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Algorithm 1 ALNCO dynamic feedback and parallel opti-
mization

1: Input: Node list, distance matrix, parameter set
2: Output: Objective function value
3: Generate an initial solution, initialize ALNS and ACO

parameters, and segment optimization table
4: Set total iterations 𝑖𝑡𝑒3 and threshold 𝑐𝑜𝑛3
5: Parallel optimization process:
6: while Current iteration < 𝑖𝑡𝑒3 and optimization improve-

ment > 𝑐𝑜𝑛3 do
7: # ALNS operations
8: for iteration 𝑖 from 1 to 𝑖𝑡𝑒1 or optimization improve-

ment > 𝑐𝑜𝑛1 do
9: Perform deletion and insertion operations

10: Update the best solution and segment optimiza-
tion table

11: Dynamically adjust the probabilities of each dele-
tion and insertion operation

12: end for
13: # ACO operations
14: for iteration 𝑖 from 1 to 𝑖𝑡𝑒2 or optimization improve-

ment > 𝑐𝑜𝑛2 do
15: Ant colony selects paths based on pheromone

concentration
16: Update the solution and pheromone concentration
17: end for
18: # Dynamic feedback and interaction
19: ACO adjusts path selection probabilities via the seg-

ment optimization table
20: ALNS pheromone concentration operation updates

the pheromone concentration
21: Adaptively adjust the ACO pheromone evaporation

rate
22: end while
23: Output the global best solution

In this paper, we increase the local search randomness by
parameter tuning and reduce the number of iterations to
shorten the running time, improving the running efficiency
and maintaining the solution quality.

ALNS consists of an outer and inner loop, with the
outer loop controlling the total number of iterations and the
inner loop dynamically adjusting the solution space through
destruction and repair operations, using the temperature
mechanism of simulated annealing (SA) to accept poorer
solutions with a certain probability. The weights of the
destruction and repair operations are updated based on the
forgetting factor 𝜆, the score 𝑆𝑤 and the frequency of use 𝑉𝑤 ,
and the operations are selected using a roulette mechanism:

𝑅𝑖+1
𝑤 = 𝑅𝑖𝑤𝜆 + (1 − 𝜆) 𝑆

𝑖
𝑤

𝑉 𝑖𝑤
(26)

The operation selection probability is:

𝑃𝑖w =
𝑅𝑖𝑤∑
𝑗∈𝑛 𝑅

𝑖
𝑗

(27)

The scoring mechanism classifies the solutions into four
categories, giving different scores based on improvement.
The simulated annealing acceptance criterion follows the

Metropolis rule, where the probability 𝑃 of accepting a worse
solution decreases as the temperature decreases, Eq:

𝑃 = exp
(
𝐶𝑖𝑢 − 𝐶𝑖𝑛

𝑇

)
(28)

The inner loop gradually decreases the temperature, and
after reaching the critical temperature, the outer loop is
incremented until the termination condition is satisfied.

In order to make the model of this paper applicable to
the ALNS algorithm, based on the research of Ropke et
al.[4], two insertion operations and four deletion operations
are set up: pheromone concentration insertion, marginal cost
insertion, Shaw deletion, pheromone concentration deletion,
marginal cost deletion and minimum service set deletion.

These operations optimize the quality of the solution
and the global search effect through different strategies.
Pheromone Concentration Insertion is based on the global
pheromone concentration fed back from the ACO and pri-
oritizes the insertion of deleted customer points in path
segments with high concentration, where higher pheromone
concentration indicates that the path performs better in the
ACO’s global search, thus improving insertion effectiveness.
Marginal cost insertion reduces the overall transportation cost
and improves efficiency by calculating the new cost of each
insertion location and selecting the location with the smallest
increase in cost. Shaw deletion considers several variables:
distance, time window, and demand. It starts deleting highly
correlated customer points from randomly selected customer
point locations to optimize the local solution while improving
the diversity of the search. Pheromone concentration deletion
prioritizes the removal of path segments with low pheromone
concentration in the ACO search, as these paths perform
poorly in the global search, and removing them helps the
algorithm to jump out of the local optimum and explore
better solutions. Marginal cost deletion allows the algorithm
to focus on reducing the overall cost and improving the
quality of the solution by removing the customer points that
contribute the least to the current solution. On the other
hand, the minimum service set deletion operation focuses
on removing vehicle tasks that serve only a few customers,
optimizing the overall transport efficiency by freeing up the
resources of these vehicles and reallocating them to more
efficient vehicles.

Take the insertion operation as an example: this operation
loops through all elements in the solution list, exploring every
possible insertion position. The specific process is illustrated
in Fig. 3.

First, a contiguous delivery area is identified, beginning
at point a and ending at point b, where b represents the
first distribution centre encountered to the right of a. Each
delivery area is then divided into a fuel vehicle operation
area and an electric vehicle operation area, based on the
type of vehicle in use. Within the designated area, attempts
are made to insert the pending pick-up and delivery points
at appropriate locations, determined by the type of vehicle
operating in that area. For electric vehicle operation areas,
charging stations are inserted at optimal locations to enhance
the efficiency of charging station utilization, taking into
account the charging requirements of the electric vehicles.

In the charging station insertion operation, the sequence
in which vehicle 𝑘 passes each customer point has already
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Fig. 3. Insert operation process

been determined, ensuring that all constraints are satisfied.
The goal now is to insert charging stations efficiently. This
process is mathematically modelled as follows:

min
𝑘

=
∑
𝑖∈𝐹

𝑟𝑖𝑉
𝑚𝑘
𝑖 + 𝑟

(
𝑅𝑘 − 𝑦𝑘𝑚+𝑔

)
(29)

0 ⩽
∑
𝑖∈𝐹

|𝑖 | ⩽
����∑𝑖 𝑗 𝐷𝑘𝑅𝑘

���� , (𝑖, 𝑗) ∈ 𝑀 (30)


𝐷
𝑓
𝑖 𝑗 ⩽

∑
𝑖∈𝑀 𝐷𝑖 𝑗𝜌

𝑘

|𝐹 | , 𝑖 𝑓
∑

𝑖 𝑗∈𝑀 𝐷𝑖 𝑗𝜌
𝑘

|𝐹 | ⩾
𝑟 𝑓
𝑟 min𝐷𝑖 𝑗 ,

𝑓 ∈ 𝐴 𝑓 , (𝑖, 𝑗) ∈ 𝑀
𝐷
𝑓
𝑖 𝑗 ⩽

𝑟 𝑓
𝑟 min𝐷𝑖 𝑗 , 𝑖 𝑓

𝑟 𝑓
𝑟 min𝐷𝑖 𝑗 ⩾

∑
𝑖∈𝑀 𝐷𝑖 𝑗𝜌

𝑘

|𝐹 | ,

𝑓 ∈ 𝐴 𝑓 , (𝑖, 𝑗) ∈ 𝑀

(31)

Equations (29), (30), and (31), along with equations (12) to
(20), form the model for the charging station insertion opera-
tion. Equation (29) addresses vehicle 𝑘 , which departs from
the distribution centre 𝑚 and visits a series of designated
customer points, with charging stations inserted at optimal
locations to minimize total cost. Equation (30) determines the
maximum number of charging stations that can be inserted by
calculating the total distance travelled by the vehicle without
visiting charging stations, taking into account the vehicle’s
power consumption per kilometre and the maximum battery
capacity. Equation (31) constrains the insertion location of
the charging station to ensure that the selected station is
both economically and operationally efficient. This involves
calculating the average distance for each route from customer
point 𝑖 to a charging station and then from the charging
station to customer point 𝑗 , as well as determining the
minimum distance for all possible routes from customer point
𝑖 to a charging station, and then from the charging station
to customer point 𝑗 . By comparing the maximum distance
values obtained from these calculations, less optimal charg-
ing stations can be excluded from consideration, reducing
computational time and improving the overall efficiency of
the process.

To further improve the ALNS performance, this paper
introduces a path segment optimization table to record the
performance of each path segment in multiple iterations and
guide the selection of subsequent operations with historical
information. The path segment score is dynamically adjusted

according to its impact on the objective function, and the
path segments with good performance will be prioritized for
subsequent operations. In each ALNS execution, the initial
score of a path segment is ℎ𝑖 𝑗 , if the operation improves the
objective function, the score increases; otherwise the score
decreases. The score update formula is:

ℎnew
𝑖 𝑗 = ℎold

𝑖 𝑗 × 𝜆 + (1 − 𝜆) × 𝑅𝑖 𝑗 (32)

Where 𝜆 is the forgetting factor and 𝑅𝑖 𝑗 denotes the
performance of the path segment in the current iteration. Path
segments with good historical performance will be preferred
through this dynamic scoring mechanism in subsequent op-
erations.

2) ACO Operation: Based on the MDC-EFPDPTW
model, this paper improves the Ant Colony Optimisation
(ACO) algorithm and introduces a path segment optimization
table ℎ𝑖 𝑗 (𝑠) to improve the algorithm performance. The table
records the performance of path segments over multiple
iterations and guides the ants in selecting the optimal path.

Equations (33) and (34) show that the pheromone concen-
tration Δ𝜏𝑖 𝑗 released by ant colony 𝐹 between path segments
𝑖 𝑗 in each iteration is obtained by accumulating pheromone
released by individual ants:

Δ𝜏 𝑓ij =
𝑄

𝐶 𝑓
ℎ𝑖 𝑗 (𝑠), 𝑓 ∈ 𝐹 (33)

Δ𝜏𝑖 𝑗 =
∑
𝑓 ∈𝐹

Δ𝜏 𝑓𝑖 𝑗 (34)

Where ℎ𝑖 𝑗 (𝑠) denotes the performance of the path segment
in historical iterations, the better the performance, the higher
the value of ℎ𝑖 𝑗 (𝑠). 𝑄 is the total cost of the worst performing
ant in the colony, and 𝐶 𝑓 is the total cost of ant 𝑓 . If the
path segment 𝑖 𝑗 is not passed by ant 𝑓 , then Δ𝜏 𝑓𝑖 𝑗 = 0.

The rule for generating a feasible ant set 𝑁 is to generate a
feasible set through two rounds of filtering as ants move from
point 𝑖 to point 𝑗 . The first round extracts the set 𝑁++ of ants
that satisfy the criteria from 𝑖 to 𝑗 from the original set 𝐹,
with 𝑗 denoting the points that have not yet been visited. The
second round of filtering checks the constraints and removes
the ants that do not satisfy them to obtain the final feasible
set 𝑁 .
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Equation (35) describes the update of the global
pheromone concentration:

𝜏𝑖 𝑗 (𝑠 + 1) = 𝜌𝜏𝑖 𝑗 (𝑠) + Δ𝜏𝑖 𝑗 (35)

Here, 𝜏𝑖 𝑗 (𝑠 + 1) is the pheromone concentration of the
path segment 𝑖 𝑗 after the 𝑠 + 1th iteration, which contains
the remaining pheromone after volatilization and the added
pheromone concentration. When 𝑠 = 0, 𝜏𝑖 𝑗 (𝑠) = 0.

The probability of an ant moving from point 𝑖 to point 𝑗
in each iteration is given by equation (36):

𝑝
𝑓
𝑖 𝑗 =

𝜏𝛼𝑖 𝑗 (𝑠)𝜂
𝛽
𝑖 𝑗 (𝑠)ℎ

𝛾
𝑖 𝑗 (𝑠)∑

𝑛∈𝑁 𝑓 𝜏𝛼𝑖 𝑗 (𝑠)𝜂
𝛽
𝑖 𝑗 (𝑠)ℎ

𝛾
𝑖 𝑗 (𝑠)

, 𝑗 ∈ 𝑁 𝑓 (36)

Where 𝑗 ∈ 𝑁 𝑓 is the accessible point of ant 𝑓 , generated
by two rounds of filtering. The first round removes path
segments with zero pheromone concentration to obtain the
initial set 𝑁𝑔; the second round checks the constraints and
removes path segments that do not meet the requirements
to obtain the final set 𝑁 𝑓 . In the equation, 𝜏𝛼𝑖 𝑗 (𝑠) is the
pheromone concentration of the ants on the path segment
𝑖 𝑗 in the 𝑠th iteration, 𝜂𝛽𝑖 𝑗 (𝑠) is the reciprocal of the distance
from the point 𝑖 to the point 𝑗 , and ℎ

𝛾
𝑖 𝑗 (𝑠) is the weights

of the optimization table of the path segments to guide the
ants to prioritize path segments that have performed well in
historical iterations.

3) Dynamic Feedback And Interaction: In the ALNCO
algorithm, the dynamic feedback and interaction mechanism
achieves the collaborative optimization between ALNS and
ACO through bidirectional information exchange. The ACO
refers to the history strategy table ℎ𝑖 𝑗 (𝑠) in path selection,
while the ALNS dynamically adjusts the local search oper-
ation based on the global information fed back by the ACO,
thus forming an effective closed-loop feedback process. The
history strategy table records the local search performance of
the path segments, which affects the pheromone volatility of
the ACO and the ALNS operation weights, thus improving
the global convergence speed and local search quality.

First, the ACO uses the history strategy table ℎ𝑖 𝑗 (𝑠)
to prioritize well-performing path segments over multiple
iterations during path selection. The ℎ𝑖 𝑗 (𝑠) records the per-
formance of path segments 𝑖 𝑗 over multiple iterations with
scores based on ALNS local search feedback. By adjusting
the path selection probability, ℎ𝑖 𝑗 (𝑠) is introduced as an addi-
tional weight 𝛾 into the classical ACO path selection formula,
which, together with the pheromone concentration 𝜏𝑖 𝑗 (𝑠) and
the heuristic information 𝜂𝑖 𝑗 (𝑠) determines the priority of
the path selection so that the ACO can better incorporate the
historical feedback information and prioritize the exploration
of efficient paths and avoid ineffective exploration of low-
quality paths.

In the ALNS operation, the pheromone concentrations fed
back by the ACO guide the deletion and repair operations.
For the deletion operation, ALNS decides the priority path
segments to be deleted based on the pheromone concentra-
tion of the path segments fed back by the ACO. Path seg-
ments with lower pheromone concentration usually perform
poorly in the global search of the ACO, and prioritizing
removing these path segments reduces the duplication of
explorations and improves the diversity of local searches.
For the repair operation, ALNS prioritizes the repair of

path segments with higher pheromone concentration, thus
improving the quality of the local solution. With the global
information guidance in ACO, ALNS can better retain the
well-performing path segments and avoid falling into local
optima.

In addition, the volatility of pheromone concentration in
ACO is also affected by the history strategy table, which
further enhances ACO’s global search capability. In each
iteration, the pheromone concentration of the path segments
not only naturally decays according to the volatility rate 𝜌,
but also adaptively adjusts according to the history strategy
table ℎ𝑖 𝑗 (𝑠). For a path segment that performs well in the
strategy table, its pheromone volatilization rate decreases,
and it is retained for a longer period, attracting more ants
to choose that path segment. On the contrary, for poorly
performing path segments, the volatilization rate increases,
and the pheromone decays rapidly, thus reducing the impact
of these path segments in subsequent iterations and avoiding
repeated exploration of invalid paths.

The following equation can describe the volatility ad-
justment mechanism: set the base volatility rate 𝜌0 and
adaptively adjust it according to the value ℎ𝑖 𝑗 (𝑠) recorded
in the historical strategy table. The adjustment formula is:

𝜌𝑖 𝑗 (𝑠 + 1) = 𝜌0 − 𝑘 × ℎ𝑖 𝑗 (𝑠) (37)

Where 𝜌𝑖 𝑗 (𝑠 + 1) denotes the actual volatility of the path
segment 𝑖 𝑗 after the 𝑠 + 1th iteration, 𝜌0 is the default base
volatility, ℎ𝑖 𝑗 (𝑠) is the performance of the path segment in
the historical strategy table, and 𝑘 is the adjustment factor.
Through this dynamic adjustment mechanism, the volatility
rate 𝜌𝑖 𝑗 (𝑠 + 1) changes adaptively based on the historical
performance of the path segment, affecting the pheromone
update process.

The updated pheromone equation is:

𝜏𝑖 𝑗 (𝑠 + 1) = 𝜌𝑖 𝑗 (𝑠 + 1)𝜏𝑖 𝑗 (𝑠) + Δ𝜏𝑖 𝑗 (𝑠) (38)

Where 𝜌𝑖 𝑗 (𝑠 + 1) is the dynamically adjusted volatility,
𝜏𝑖 𝑗 (𝑠) is the pheromone concentration of the path segment
in 𝑠 iterations, and Δ𝜏𝑖 𝑗 (𝑠) is the new pheromone released
by the ants on the path segment in the current iteration. This
adjustment mechanism allows the pheromone of the better-
performing path segments to be retained for a more extended
period, thus increasing the probability of being selected in the
subsequent iterations. In contrast, their pheromone volatiliza-
tion rate is higher for poorly performing path segments,
and their concentration decays rapidly, reducing their impact
in the global search. This adaptive adjustment mechanism
ensures that the global search capability of the ACO is max-
imized while reducing the over-exploration of sub-optimal
paths.

The dynamic feedback and interaction mechanisms enable
ALNS and ACO to form a tightly coupled optimization pro-
cess.ACO provides feedback on the global perspective of path
selection through the history strategy table and adaptively
adjusts the volatility to enhance the exploration of high-
quality paths.ALNS, on the other hand, guides the deletion
and repair operations through pheromone concentration to
optimize the local search and avoid the repetitive exploration
of low-quality paths, thus improving the overall quality of the
solution. Through this two-way feedback mechanism, ALNS
and ACO continuously optimize the algorithm parameters in
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each round of iteration to improve the efficiency and stability
of the algorithm and achieve the synergistic optimization
effect of global and local search.

V. NUMERICAL STUDY
In this chapter, a series of numerical experiments are

presented to evaluate the performance and sensitivity of the
proposed model solutions. Specifically, Section 3.1 details
the design of the benchmark test instances and the config-
uration of their parameters. Section 3.2 explores the testing
process for the models’ performance, covering both small
and large instances. In Section 3.3, the solutions for small
instances, generated using the commercial solver Gurobi, are
compared with the algorithm proposed in this study and the
GTS algorithm by Goeke[14]. Finally, Section 3.4 focuses
on the solutions for large instances, comparing the GTS
algorithm by Goeke[14], the algorithm developed in this
study, and the ALNS algorithm.

A. Parameters And Numerical Settings
All experiments in this study were conducted on a com-

puter equipped with an Intel Core i7-3650 processor, with
parallel optimization algorithms implemented. The algorithm
was developed in Python 3.9, utilizing multi-threading to im-
prove computational efficiency. The test parameters included:
max-percentages (controlling the maximum percentage of
certain operations during local search), tau (adjusting the
threshold for specific adaptive mechanisms in the algorithm),
cooling rates (adjusting the cooling rate in the simulated
annealing algorithm), reaction-factors (determining whether
to accept a new solution during local search), noise fac-
tors (introducing randomness to escape local optima and
increase solution diversity), 𝛼 (reflecting the importance of
pheromone accumulation in guiding the ant colony search),
𝛽 (reflecting the importance of heuristic information in
guiding the ant colony search), and 𝜌 (indicating the level
of pheromone retention). The parameter settings were refer-
enced from Ropke et al.[4] and further refined in this study.

The method for solving the parameter settings is referenced
from Ropke et al.[4] and has been improved upon in this
study. The initial parameter value settings and processing
procedures still follow Ropke’s method. For each optimal
parameter selection, the number of operations for each
instance is increased to generate more solutions, and the
deviation of each test instance from the known optimal
solution is calculated for each run. The parameter value
range list is then traversed, and the average and standard
deviation deviations for all runs are computed. An upper
limit is set for the standard deviation to exclude parameter
configurations with small average deviations but exhibit large
fluctuations in deviations. The optimal parameter values were
finally determined to be: 8% for max-percentages, 0.04 for
𝜏, 0.999 for cooling rates, 0.15 for reaction factors, 0.025 for
noise factors, 1 for 𝛼, 3 for 𝛽, and 0.4 for 𝜌.

The maximum number of iterations is 500, and the iter-
ation is stopped when the optimization margin is less than
0.01 for 30 consecutive accumulations. Suppose the result of
an iteration is significantly worse than the current solution. In
that case, the optimization has not progressed, the iteration is
not counted in the consecutive cumulative number of times,

and the subsequent iterations continue until the stopping
condition is met or the maximum number of iterations is
reached.

The vehicle-related parameters used in this study are
consistent with those selected in Amiri[25]. The cost of
a pure electric truck is 1.05 million yuan, while the cost
of a fuel truck is 875,000 yuan. The energy consumption
of an electric truck is 1.75 kWh/km, whereas the energy
consumption of a fuel truck is 2.5 times that of an electric
truck. The full life cycle cost 𝑓 𝑘 is derived from the full
life cycle cost formula in Li[34]. Since this study focuses
on long-distance truck delivery with a limited number of
vehicles, and the carbon emission fee is calculated separately,
only the tangible costs are considered in the full life cycle
cost. Please refer to Li[34]for further details. The 𝐶𝑂2
emission factor for fuel vehicles is 3.096 kg/l, based on
data from the United Nations Intergovernmental Panel on
Climate Change [23]. The carbon tax used in this paper is
set at 43 yuan/tonne of 𝐶𝑂2 equivalent, as reported by the
2021 International Council on Clean Transportation (ICCT)
in their report Comparative Analysis of the Total Cost of
Ownership of Heavy-Duty Trucks in China: Pure Electric,
Fuel Cell, and Diesel Trucks. The carbon intensity of diesel
during the vehicle’s use phase is 2.627 kg of 𝐶𝑂2 equivalent
per litre of diesel. The cost of greenhouse gas emissions for
a fuel truck on the road is calculated at 0.5 yuan/km. Diesel
costs 6.5 yuan/l, while electricity costs 1.04 yuan/kWh. This
study assumes an average annual mileage of 100,000 km over
the vehicle’s entire life span [6], resulting in a full life cycle
cost of 2.12 yuan/km for a fuel truck and 2.32 yuan/km for
an electric truck.

To evaluate the robustness of ALNCO’s parameter settings,
a sensitivity analysis was conducted by adjusting three key
parameters: max-percentages, cooling rates, and pheromone
retention rate (𝜌). These parameters directly influence the
efficiency of both the local and global search processes
within the ALNCO framework. The analysis was carried out
on three representative large-scale instances: lc101 (clustered
distribution), lr101 (random distribution), and lrc101 (mixed
distribution). For each instance, the parameters were varied
by ±10%, and the resulting percentage deviation in total cost
was recorded. The results are presented in Figure X.

As shown in Fig. 4, the cost deviation remained consis-
tently below 5%, demonstrating the robustness of ALNCO’s
parameter configuration. Among the tested instances, lr101
exhibited the highest sensitivity to variations in the cooling
rate, with a maximum deviation of 4.21% when the param-
eter was reduced by 10%. However, the overall impact of
parameter fluctuations was minimal, confirming that ALNCO
maintains stable performance despite moderate variations in
key parameters.

These results suggest that ALNCO demonstrates relatively
stable performance across different scenarios and parameter
configurations. While certain parameters, such as the cool-
ing rate in lr101, exhibit a higher sensitivity, the overall
cost deviation remains within an acceptable range. This
indicates that ALNCO is capable of maintaining solution
quality without extensive fine-tuning, which may enhance
its applicability in practical settings where parameter cali-
bration can be complex and time-consuming. Nevertheless,
as with any heuristic-based approach, further investigations
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Fig. 4. Cost deviation across different parameter variations

using broader instance sets could provide deeper insights
into the algorithm’s adaptability across diverse operational
environments.

B. Generation Of Benchmark Examples
In order to validate the effectiveness of ALNCO, this paper

uses a public dataset for experimental analyses. However, we
generate new instances due to the lack of internationally rec-
ognized MDC-EFPDPTW instances based on the benchmark
instances of Goeke[14] and Solomn[35]. Specifically, we
combine the research results of Li[33] and refer to the current
parameter configurations of fuel vans and pure electric vans
Zhao[23], Amiri[25], and Li[34] to design two new sets
of benchmark instances for experiments on a large instance
dataset and a small instance dataset, respectively.

The large instance dataset consists of 48 instances, each
containing 100 customer points. These instances are divided
into three categories based on the geographical distribution
of customers: random distribution (LR), cluster distribution
(LC), and mixed distribution (LRC). Each type is divided
into two categories based on vehicle load capacity: one for
vehicles with a smaller load capacity, such as LR1, and
another for vehicles with a larger load capacity, such as
LR2. Next, we will describe the MDC-EFPDPTW example
in detail.

To more accurately reflect the characteristics of multiple
product centers in real-world scenarios, such as the varying
battery capacities of different vehicles, charging demands,
and the complexity of geographical layouts, we have designed
new MDC-EFPDPTW instances. These instances provide
a more comprehensive validation of the algorithm’s appli-
cability and address the research gap in current publicly
available instances, which inadequately consider multiple
product centers and the mixed substitution problem.

With the introduction of electric vehicles, the location
of charging stations needed to be determined. The number
of charging stations was adjusted according to the number
of distribution centers based on the dataset provided by
Goeke[14]. The k-means clustering method and random
distribution were used to select specific charging station
locations. After setting the charging stations, in order to
avoid detours and time window violations caused by charging
station access and charging times, and specifically to ensure
that new customers do not become unreachable due to

time window restrictions, a method similar to the process
described in Solomn[35] was employed to generate new time
windows, ensuring the feasibility of the instances.

For the configuration of the delivery points, the principle
for selecting new delivery points is similar to that used for
charging stations, with the locations determined using k-
means clustering. Additionally, the distance between delivery
points was ensured to be greater than the shortest distance
from the original delivery point to the new one, thereby
avoiding overlap between delivery points and achieving more
balanced geographical coverage.

Regarding the setting of battery capacity, improvements
were made based on the method outlined in Schneider [36].
For the LC-type instances, the battery capacity of electric
vehicles was set to be sufficient to complete all delivery tasks
in a 100-customer example without requiring recharging. For
the LR-type instances, at least one charge is necessary to
complete all tasks. Therefore, the battery capacity was set
to the greater of the following two values: (1) the average
distance of all LC-type instances based on the best-known so-
lutions for the LC-type 100-customer instances in the Li and
Lim instance sets, or (2) 60% of the average distance of the
best-known solutions for the LR-type 100-customer instances
in the Li and Lim instance sets. The specific dataset can be
accessed at https://github.com/xirongfang/MDC-EFPDPTW.

C. Mini Benchmark Example Test
1) Example Data Description: In the small benchmark

instance, the instances are divided into two categories. In
this paper, we study the hybrid vehicle path cost optimization
problem, while Goeke studies the pure electric vehicle path
distance optimization problem. In order to ensure that the
travel time and service time in the original data remain
unchanged, we improve the original dataset to form two
types of instance datasets, A and B. Type A instances are
the improved datasets of Goeke, which contain only one
distribution center; Type B instances are improved based on
the Goeke dataset, which contains two distribution centers
in each dataset, to match the proposed MDC- EFPDPTW
model proposed in this paper .

2) Single Distribution Centre Instance Analysis: For the
quantitative analysis, we processed the small instance dataset
using the ALNCO algorithm and compared the results with
those of the commercial solver GUROBI 10.0 and Goeke’s
GTS algorithm, which are based on the MDC-EFPDPTW
problem model presented in TABLE II.

For the Class A instance (single distribution center), TA-
BLE II shows the algorithm’s results on the small benchmark
instance. In this case, 𝑘𝑣 represents the number of fuel
vehicles used, 𝑘𝑒 the number of electric vehicles, 𝑧 the total
cost, and 𝑡 the computation time (in seconds).The maximum
computation time for the commercial solver GUROBI is set
to 600 seconds, and if the optimal solution is not obtained
within this time, the best feasible solution at that time is used,
while for GTS and ALNCO, the average result of ten runs is
used as the performance metric. In addition, Gap1 represents
the percentage difference in total cost between ALNCO and
GUROBI, and Gap2 represents the percentage difference in
total cost between ALNCO and GTS.

In minor instances for a single distribution center, the
number of instances in which ALNCO agrees with the best
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TABLE II
TEST RESULTS FOR A SMALL BENCHMARK EXAMPLE UNDER A SINGLE DISTRIBUTION CENTER

Instance GUROBI GTS ALNCO

𝑘𝑒 𝑘𝑣 𝑧 𝑡 𝑘𝑒 𝑘𝑣 𝑧 𝑡 𝑘𝑒 𝑘𝑣 𝑧 𝑡 Gap1 Gap2

c101c6 1 0 919.6 0.2 1 0 919.6 5.4 1 0 919.6 3.1 0% 0%
c103c6 0 1 628.9 0.1 0 1 628.9 4.7 0 1 628.9 2.9 0% 0%
c206c6 0 1 898.4 0.1 0 1 898.4 4.9 0 1 898.4 4.1 0% 0%
c208c6 0 1 798.1 0.4 0 1 798.1 5.5 0 1 798.1 4.9 0% 0%
r104c6 0 2 508.5 0.2 0 2 508.5 18.1 0 2 508.5 5.4 0% 0%
r105c6 1 0 795.2 1.0 1 0 795.2 5.2 1 0 795.2 2.2 0% 0%
r202c6 0 1 603.3 1.0 0 1 603.3 3.9 0 1 603.3 3.8 0% 0%
r203c6 1 1 1004.7 1.2 1 1 1004.7 4.4 1 1 1004.7 7.2 0% 0%
rc105c6 1 0 1092.3 1.1 1 0 1092.3 6.5 1 0 1092.3 3.7 0% 0%
rc108c6 1 0 1144.1 0.8 1 0 1144.1 7.4 1 0 1144.1 3.3 0% 0%
rc204c6 0 1 688.8 0.7 0 1 688.8 3.3 0 1 688.8 8.1 0% 0%
rc208c6 0 1 742.3 0.9 0 1 742.3 5.2 0 1 742.3 8.6 0% 0%
c104c10 0 2 1133.1 0.1 0 2 1133.1 17.8 0 2 1133.1 7.4 0% 0%
c205c10 0 2 1122.0 0.5 0 2 1122.0 24.8 0 2 1122.0 6.0 0% 0%
r201c10 0 1 887.6 1.2 0 1 887.6 7.3 0 1 887.6 4.6 0% 0%
r203c10 1 0 1177.9 1.5 1 0 1177.9 6.6 1 0 1177.9 3.1 0% 0%
rc108c10 1 1 1684.8 1.1 1 1 1684.8 37.6 1 1 1684.8 7.4 0% 0%
rc201c10 0 2 1359.6 1.9 0 2 1359.6 8.1 0 2 1359.6 3.9 0% 0%
rc205c10 1 1 1711.8 1.0 1 0 1711.8 22.9 1 0 1711.8 5.1 0% 0%
c101c12 0 3 1175.8 0.8 0 3 1175.8 6.3 1 1 1175.8 3.0 0% 0%
c202c12 0 1 911.1 1.0 0 1 911.1 6.9 0 1 911.1 2.3 0% 0%
r102c12 1 2 1121.8 1.6 1 2 1121.8 8.7 1 2 1121.8 4.7 0% 0%
r103c12 1 1 788.8 13.4 1 1 788.8 9.6 1 1 788.8 6.2 0% 0%
rc102c12 1 2 1790.6 1.6 1 2 1790.6 23.4 1 2 1790.6 12.1 0% 0%
c103c16 0 3 1545.6 2.6 0 3 1545.6 37.3 0 3 1545.6 8.0 0% 0%
c106c16 0 3 1326.6 7.9 0 3 1326.6 46.5 0 3 1326.6 7.7 0% 0%
c202c16 0 2 1664.0 17.2 0 2 1664.0 52.8 0 2 1664.0 7.6 0% 0%
c208c16 0 2 1393.1 4.1 0 2 1393.1 46.4 0 2 1393.1 6.9 0% 0%
r105c16 0 4 1421.4 3.6 0 4 1421.4 24.1 2 0 1449.6 5.7 -2.2% -2.2%
r202c16 1 1 1551.8 5.7 1 1 1551.8 65.2 1 1 1551.8 6.2 0% 0%
r209c16 1 0 1870.8 5.9 1 0 1928.0 9.5 1 0 1870.8 6.9 0% 3.1%
rc103c16 2 0 2149.3 42.3 2 0 2141.6 35.4 2 0 2141.6 9.3 0% 0%
rc108c16 0 3 1733.4 62.0 0 3 1733.4 6.5 2 0 1744.1 9.2 0% 0%
rc202c16 1 0 1709.0 19.2 1 0 1709.0 41.7 1 0 1709.0 6.4 0% 0%
rc204c16 1 0 1737.6 49.9 1 0 1737.6 8.7 1 0 1737.6 7.2 0% 0%
r102c18 0 5 1464.0 51.2 0 5 1464.0 10.6 1 2 1424.6 7.8 2.8% 2.8%

AVE 0.5 1.4 1229.3 8.5 0.5 1.4 1230.7 17.8 0.6 1.0 1229.1 5.9 0.02% 0.1%

GUROBI solution is 34, and the number of instances in
which it agrees with GTS is 33, which suggests that the
three algorithms have comparable solution quality. Regarding
vehicle usage, ALNCO uses slightly fewer electric vehicles
than GUROBI and GTS and slightly more fuel vehicles than
GUROBI and GTS. However, the overall number of vehicles
used is lower, suggesting that ALNCO has the potential to
optimize vehicle allocation. In terms of solution time, the
average solution time of ALNCO is only 5.9 seconds, which
is significantly lower than that of GUROBI and GTS, and
the performance is stable in all instances, which indicates
that it can provide a feasible solution quickly, and provides
a good foundation for further application to more complex
problems.

3) Dual Distribution Centre Instance Analysis: For the
Class B instances (dual distribution centers), TABLE III
shows the results of testing each algorithm on small bench-
mark instances, with the parameters remaining consistent
with TABLE III.

The results show that in terms of solution quality, ALNCO

is very close to GUROBI and GTS, and in some instances,
ALNCO has a slightly lower objective value. However,
the difference is not significant; its cost-effectiveness is
more prominent. In terms of solution time, ALNCO shows
a shorter solution time in several instances, especially in
c101d12 and c208d16 instances; its solution time is signif-
icantly lower than that of the other two algorithms, which
shows the advantage of high efficiency. In terms of Gap
metrics, the gap of ALNCO is usually tiny, indicating that
its solution quality is comparable to that of other algorithms
and reflects better stability and adaptability. In terms of the
number of vehicles used, ALNCO has less fuel vehicle use
and slightly more electric vehicle use.

However, the three algorithms’ total number of vehicles
used is the same, indicating that ALNCO can effectively
control the vehicle allocation and provide a reasonable
optimization scheme. Overall, ALNCO demonstrates good
feasibility and stability in the small instance of dual distri-
bution centers and achieves a good balance between solution
efficiency and quality. Although its performance is similar to
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TABLE III
TEST RESULTS FOR A SMALL BENCHMARK EXAMPLE UNDER A DUAL DISTRIBUTION CENTER SCENARIO

Instance GUROBI GTS ALNCO

𝑘𝑒 𝑘𝑣 𝑧 𝑡 𝑘𝑒 𝑘𝑣 𝑧 𝑡 𝑘𝑒 𝑘𝑣 𝑧 𝑡 Gap1 Gap2

c101d12 1 1 1032.4 10.8 1 1 1032.4 6.3 1 1 1032.4 1.3 0% 0%
c202d12 1 0 1345.7 4.6 1 0 1345.7 8.1 1 0 1345.7 1.5 0% 0%
r102d12 1 1 881.5 8.3 1 1 881.5 7.9 1 1 881.5 1.0 0% 0%
r103d12 1 1 746.4 7.2 1 1 746.4 5.6 1 1 746.4 0.5 0% 0%
rc102d12 1 1 1649.6 600.0 0 1 1623.8 8.7 0 1 1605.7 1.4 2.7% 1.1%
c103d16 2 0 1187.5 600.0 1 1 1171.0 11.1 1 1 1171.0 1.3 1.4% 1.4%
c106d16 0 2 1314.7 67.2 0 2 1314.7 9.6 0 2 1314.7 1.5 0% 0%
c202d16 0 2 1624.6 42.3 0 2 1624.6 17.8 0 2 1624.6 1.1 0% 0%
c208d16 0 2 1263.9 32.5 0 2 1263.9 10.4 0 2 1263.9 1.0 0% 0%
r105d16 1 1 1340.1 10.5 1 1 1340.1 11.5 1 1 1340.1 1.6 0% 0%
r202d16 0 2 1626.4 600.0 0 2 1587.2 38.4 0 2 1563.5 2.4 4.0% 1.5%
r209d16 0 2 1562.3 600.0 0 2 1513.2 12.5 0 2 1513.2 1.8 3.2% 0%
rc103d16 2 0 1858.9 48.6 2 0 1858.9 19.8 2 0 1858.9 0.7 0% 0%
rc108d16 2 0 1691.3 52.7 2 0 1691.3 42.1 2 0 1691.3 1.9 0% 0%
rc202d16 1 0 1789.7 600.0 1 0 1768.3 7.6 1 0 1768.3 1.3 1.2% 0%
rc204d16 1 1 1790.8 600.0 1 1 1718.1 18.8 1 1 1718.1 0.8 4.2% 4.2%
r102d18 2 0 1403.0 52.3 2 0 1403.0 23.8 2 0 1403.0 3.2 0% 0%

AVE 0.9 0.9 1418.2 231.6 0.8 1.0 1300.9 17.0 0.8 1.0 1298.5 1.4 1.0% 0.5%

that of GUROBI and GTS in some scenarios, ALNCO still
provides short solution times and stable optimization results,
which provides a solid foundation for further expansion to
more complex instances.

In the small-scale dual-commodity center instance test,
some instances (such as rc204d16 and rc102d12) showed
obvious differences in the solutions of different algorithms.
This difference is mainly due to the increased differences
in the layout of commodity centers. The customer demand
distribution of the rc204d16 instance is more dispersed, and
the commodity window is tighter, resulting in a more com-
plex solution space. The Gurobi, GTS, and ALNCO solution
methods may differ in the excitation process due to different
exploration paths. In addition, the adaptive and perturbation
mechanism of the ALNCO algorithm can more effectively
support local optimality, thereby obtaining a flatter and more
stable solution.

4) Comparison Of Differences In Different Solution In-
stances And Computing Time Of Same Solution Instances:
Combining the results in TABLES II and III, we find that
most instances have the same final solution under the three
algorithms under a single distribution center. In contrast,
the number of instances with different solutions increases
significantly under a dual distribution center. For these
instances with different solutions, we extract the optimal
solution of each algorithm and further analyze the difference
(see TABLE IV).

TABLE IV
COMPARISON OF SOLUTION DIFFERENCES BETWEEN ALGORITHMS

Comparison Number of
Differences/Total

Maximum
Difference

Average
Difference

GTS vs Gurobi 8/53 4.2% 3.3%
ALNCO vs Gurobi 7/53 4.2% 2.2%

The results show that the number of differences between
GTS and GUROBI, as well as ALNCO and GUROBI, is not
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Fig. 5. Computation time comparison

very different; however, in terms of the maximum difference,
the maximum difference of 4.2% occurs for both GTS and
ALNCO, and both of them are found in rc204d16 instances
under dual distribution centers. Regarding the average value
of the differences, ALNCO slightly outperforms GTS, which
indicates that in most instances, ALNCO can maintain a
slight cost difference, reflecting its stability and reliability
in dealing with problems with different distribution centers.

In addition, when comparing the computation times of
the same optimal solution instances (shown in Fig. 5), it
can be seen that although none of GUROBI’s computation
times reaches the set maximum computation time, ALNCO’s
average computation time is the shortest, significantly better
than that of GUROBI and GTS, further proving its superiority
in terms of computational efficiency.

D. Large-scale Benchmarking Example Test
In order to address the problem of significant instances

of the MDC-EFPDPTW model, this study improves the
ALNS algorithm proposed by Wang et al.[10] and the GTS
algorithm by Goeke[14] to better suit the specific needs of
the model. The study compares the performance of the three
algorithms by evaluating them in terms of cost, number of
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vehicles used, and running time. Further, the stability of
the ALNCO algorithm proposed in this paper is assessed
by analyzing the convergence curves of different types of
instances.

1) Algorithm Performance Comparison: As shown in TA-
BLE V, this study systematically compares the performance
of the three algorithms, GTS, ALNS, and ALNCO, on large
benchmark instances. It focuses on evaluating their cost
performance in multi-distribution center path optimization.

Specifically, ALNCO demonstrates significant advantages
in three key metrics: minimum cost, average cost, and
standard deviation. By comparison, ALNCO outperforms in
minimum cost, with a 10.6% reduction compared to GTS and
a 14.2% reduction compared to ALNS. This result shows
that ALNCO has a significant advantage in cost optimiza-
tion and can reduce transport costs effectively. Regarding
average cost, ALNCO outperforms GTS and ALNS with
a reduction of 12.5 %and 16.7 %, respectively, reflecting
strong adaptability and stability. ALNCO also outperforms
the standard deviation, with a 31 percent reduction compared
to GTS and a 45.1 percent reduction compared to ALNS.
This suggests that ALNCO can provide more consistent
and reliable solutions, reducing the occurrence of extreme
solutions and enhancing the stability of optimization results.
ALNCO performs well in several key indicators, especially
regarding stability and adaptability, showing its strong prac-
ticality and operability in the multi-distribution center path
optimization problem.

2) Vehicle Allocation Optimization And Operational Effi-
ciency Analysis: As shown in TABLE VI, in order to further
evaluate the performance of the algorithms, this study also
compares the performance of the three algorithms, GTS,
ALNS, and ALNCO, by analyzing the four core metrics,
namely, the total number of vehicles 𝐾 , the number of
trolley use 𝑘𝑒, the number of fuel vehicle use 𝑘𝑣 , and the
running time 𝑡. The results show that ALNCO has significant
advantages in vehicle allocation optimization and improving
operational efficiency, especially in reducing fleet size and
optimizing vehicle usage structure.

Specifically, the average total vehicle size of ALNCO is
6.3, which is lower than that of GTS (7.5) and ALNS (9.1),
indicating that ALNCO can effectively reduce vehicle inputs,
optimize resource allocation, and reduce costs. In terms of
vehicle use, ALNCO improves system efficiency by reducing
the use of fuel vehicles and increasing the proportion of
trams. The experimental data show that the number of fuel
vehicles ALNCO uses in most instances is significantly lower
than that of GTS and ALNS, and the proportion of trams used
is higher, especially in the scenarios where EVs are more
applicable. The average number of trams used by ALNCO
is 3.1, higher than that of ALNS (2.6) but slightly lower
than that of GTS (3.4). In comparison, the number of fuel
vehicles used is 3.2, significantly lower than that of GTS
(4.1) and 6.4 for ALNS, further validating its advantages.
Regarding running time, ALNCO also shows a significant
advantage in computational efficiency, especially in path
optimization and vehicle scheduling, which can effectively
shorten the computation time. The experimental data show
that the computation time of ALNCO is significantly lower
than that of ALNS in most instances, and the gap with
GTS is smaller. The average running time of ALNCO is
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234.5 seconds, which is slightly higher than that of GTS
(227.6 seconds) but significantly lower than that of ALNS
(361.2 seconds), demonstrating its good balance between
computational efficiency and quality.

Furthermore, to more clearly illustrate the differences in
the usage ratios of electric and fuel vehicles under various
algorithms, we further examined the comparative vehicle
configuration ratios, as shown in TABLE VII. As evident
from the figure, the ALNCO algorithm tends to favor a higher
proportion of electric vehicles, thereby offering significant
advantages in terms of reducing overall costs and carbon
emissions.

3) Convergence Analysis And Stability Assessment: In this
section, we choose LC101, LC201, LR101, LR201, LRC101,
and LRC201 as examples to analyze the convergence of the
proposed algorithm.

Fig. 6 demonstrates the trend of the objective function
value as the number of iterations increases. The figure
shows that the ALNCO algorithm converges faster, especially
in the LC101 and LR101 instances, where the objective
function value decreases rapidly, indicating the algorithm
has a strong global search capability. This suggests that the
algorithm can quickly reduce the solution space in these
instances and find a better initial solution. As the number of
iterations increases, the convergence curves for all instances
gradually flatten out, indicating that the algorithm is starting
to shift to local search and fine-tune the solution. Eventually,
the convergence curves of all instances stabilize, indicating
that the ALNCO algorithm has successfully converged to
a stable solution. Although the convergence speed varies
from instance to instance, ALNCO consistently shows good
optimization performance, reflecting the adaptability of the
algorithm in a wide range of situations.

Overall, the ALNCO algorithm exhibits desirable conver-
gence when dealing with the MDC-EFPDPTW problem and
can find a high-quality solution within a small number of
iterations with good stability.

VI. CONCLUSION
This paper addresses a novel vehicle routing problem: the

mixed fuel and electric vehicle delivery route optimization
problem within a multi-distribution centre context. The ob-
jective is to minimize total costs while analyzing the impact
of fuel and electric vehicle selection in various transport
scenarios. This analysis provides empirical insights and

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 1919-1936

 
______________________________________________________________________________________ 



TABLE V
MULTI-DISTRIBUTION CENTER COST COMPARISON ON LARGE BENCHMARK INSTANCES

Instance GTS ALNS ALNCO

Best Avg Std Best Avg Std Best Avg Std

lc101 4672.0 5026.8 64.1 4820.2 5236.8 80.3 3863.2 4057.4 40.4
lc102 4715.7 4982.5 48.1 4869.1 5195.7 63.9 3997.8 4123.3 37.9
lc103 5025.6 5429.2 72.9 5178.3 5644.6 89.3 4120.7 4352.8 47.3
lc104 4911.2 5345.6 78.5 5025.6 5521.1 94.6 4198.7 4368.3 54.1
lc105 3862.0 4429.3 102.7 4090.1 4737.0 122.2 3302.6 3684.9 74.6
lc106 4787.1 5192.7 73.3 4781.9 5240.2 87.9 3991.7 4229.9 48.4
lc107 4191.4 4524.2 60.1 4257.7 4647.7 75.5 3616.4 3801.3 38.7
lc108 4917.3 5294.0 68.1 5002.6 5437.5 83.7 4133.3 4349.5 44.4
lc201 5300.3 5788.6 88.3 5922.4 6510.6 111.4 4672.0 4798.2 64.4
lc202 6844.1 7238.0 71.2 6931.4 7382.9 86.7 5426.6 5642.8 44.4
lc203 6639.2 7065.9 77.1 6950.2 7446.3 94.7 5617.4 5677.6 52.4
lc204 6244.5 6555.6 56.1 6226.5 6590.8 70.7 4953.8 5104.6 32.5
lc205 6257.0 6794.5 97.2 6499.3 7107.1 115.0 5477.9 5744.8 71.8
lc206 5387.5 5880.4 89.1 5519.9 6075.5 105.6 4651.8 4974.7 63.8
lc207 6648.6 7056.9 73.8 6738.3 7204.5 89.3 5490.4 5728.6 48.4
lc208 7122.8 7479.7 64.4 7310.4 7728.3 80.5 5678.4 5866.5 39.3
lr101 5063.9 5462.7 72.1 5161.0 5619.0 87.8 4819.4 5089.0 54.1
lr102 5499.3 5769.9 48.7 5565.0 5891.8 64.0 5217.6 5365.1 31.9
lr103 5534.5 5866.8 60.0 5690.7 6083.6 76.0 5485.7 5701.9 44.4
lr104 5533.8 5839.7 55.2 5512.5 5871.3 69.8 5116.5 5292.0 37.0
lr105 5353.8 5782.5 77.4 5398.3 5883.0 92.6 4900.6 5186.1 57.0
lr106 5332.3 5584.0 45.4 5423.5 5732.1 60.7 5119.0 5250.5 29.0
lr107 4978.6 5358.4 68.6 5041.5 5478.3 83.9 4727.8 4978.7 50.7
lr108 5464.6 5808.1 62.0 5690.5 6098.3 78.7 5051.9 5262.0 43.3
lr201 5523.1 5774.5 45.3 5693.4 6004.0 61.0 5111.0 5236.5 27.9
lr202 6519.1 6866.5 62.7 6688.0 7096.0 78.7 5619.3 5816.8 41.0
lr203 5776.1 6135.1 64.9 6092.0 6519.5 82.3 5362.5 5588.1 46.1
lr204 6206.8 6509.2 54.5 6630.5 7001.6 72.0 5561.8 5728.0 35.3
lr205 5977.4 6274.2 53.5 6730.2 7107.6 73.2 5761.2 5936.7 37.0
lr206 6489.3 6754.8 47.8 6445.0 6763.4 62.5 5533.4 5658.8 27.9
lr207 6028.8 6488.6 83.1 6720.5 7276.3 105.5 5716.2 6042.4 64.4
lr208 5975.2 6373.8 72.0 6175.0 6637.4 88.6 5510.1 5770.3 52.4
lrc101 5936.3 6521.2 105.8 6395.4 7071.3 127.4 5563.7 6002.7 84.9
lrc102 6309.0 6805.4 89.8 6404.6 6960.2 105.6 5830.4 6181.3 68.9
lrc103 5838.0 6276.2 79.2 6087.4 6593.9 96.6 5144.5 5426.7 56.4
lrc104 5412.0 5747.6 60.6 5670.0 6071.1 77.5 5091.7 5298.6 42.7
lrc105 6031.0 6319.1 52.0 6422.1 6777.3 69.2 5685.8 5848.7 34.7
lrc106 7231.6 7637.1 73.3 7146.9 7602.4 87.4 5947.4 6182.3 47.8
lrc107 6635.2 6908.3 49.2 6983.1 7320.2 65.8 6208.6 6356.1 31.9
lrc108 6550.7 6855.2 55.0 6865.3 7234.3 71.7 5713.3 5876.2 34.7
lrc201 6000.7 6257.2 46.2 6260.8 6578.9 62.4 5831.3 5969.4 30.2
lrc202 7021.5 7392.1 66.9 7601.6 8049.4 86.0 6333.7 6562.6 46.7
lrc203 6449.4 6794.6 62.3 6959.2 7378.7 80.8 5840.9 6047.8 42.7
lrc204 5547.4 5878.6 59.8 6041.4 6448.1 78.5 5235.8 5439.4 42.1
lrc205 6796.9 7061.9 47.8 7267.9 7599.6 64.9 6162.9 6297.7 29.6
lrc206 6932.7 7290.7 64.6 7744.5 8188.2 85.2 6541.1 6680.0 46.7
lrc207 7052.3 7369.7 57.3 7356.5 7738.0 73.9 6475.9 6660.8 38.7
lrc208 5967.1 6247.1 50.4 6402.9 6751.2 67.8 5487.6 5638.4 32.5
AVG 5843.6 6210.3 66.2 6091.5 6523.6 83.1 5227.1 5434.9 45.7
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TABLE VI
MULTI-DISTRIBUTION CENTER VEHICLE USAGE AND EFFICIENCY COMPARISON ON LARGE BENCHMARK INSTANCES

Instance GTS ALNS ALNCO

𝑘𝑒 𝑘𝑣 𝑧 𝑡 𝑘𝑒 𝑘𝑣 𝑧 𝑡 𝑘𝑒 𝑘𝑣 𝑧 𝑡

lc101 5 5 10 62.9 4 8 12 321.5 6 4 10 103.5
lc102 4 7 11 68.5 4 8 12 517.9 7 3 10 134.8
lc103 5 6 11 331.9 5 8 13 488.1 7 4 11 242.9
lc104 6 5 11 404.9 5 7 12 376.5 7 4 11 166.5
lc105 7 4 11 190.1 5 6 11 606.8 7 3 10 578.1
lc106 3 8 11 156.5 2 11 13 497.3 7 3 10 408.6
lc107 4 7 11 249.1 4 8 12 237.9 5 4 9 257.1
lc108 6 5 11 242.7 5 5 10 266.3 6 4 10 241.6
lc201 2 1 3 320.9 2 5 7 538.6 3 1 4 352.0
lc202 2 2 4 91.5 0 6 6 310.4 1 3 4 165.2
lc203 1 3 4 124.8 0 5 5 146.3 2 2 4 72.6
lc204 3 2 5 66.5 3 3 6 103.4 4 1 5 83.3
lc205 1 3 4 86.0 3 3 6 177.4 1 3 4 127.9
lc206 3 1 4 46.9 1 4 5 392.3 4 1 5 97.4
lc207 3 1 4 43.2 2 3 5 163.2 3 2 5 83.1
lc208 2 2 4 88.5 2 6 8 146.5 2 2 4 101.7
lr101 8 6 14 34.5 6 7 13 242.3 6 5 11 53.6
lr102 5 10 15 45.3 4 13 17 311.5 3 5 8 48.5
lr103 5 9 14 76.7 4 9 13 255.9 3 5 8 214.4
lr104 4 9 13 449.0 4 11 15 536.0 4 5 9 562.3
lr105 5 6 11 358.7 3 10 13 477.0 3 5 8 303.9
lr106 5 3 8 99.6 4 6 10 175.3 5 2 7 192.5
lr107 4 3 7 795.6 2 5 7 907.1 4 3 7 283.8
lr108 3 5 8 259.3 3 9 12 329.4 3 4 7 319.2
lr201 4 2 6 53.7 3 2 5 327.5 2 3 5 152.1
lr202 2 2 4 109.2 1 5 6 188.9 1 2 3 168.5
lr203 2 2 4 908.9 2 4 6 536.9 1 2 3 311.4
lr204 1 2 3 121.3 0 5 5 342.3 1 2 3 301.5
lr205 1 2 3 106.7 0 5 5 181.1 1 2 3 134.8
lc206 1 2 3 166.3 1 3 4 249.2 0 3 3 205.7
lc207 1 3 4 175.2 0 5 5 228.8 1 3 4 233.0
lc208 3 2 5 186.0 2 4 6 246.3 3 2 5 125.8
lrc101 6 7 13 296.0 4 11 15 327.4 3 4 7 215.6
lrc102 5 6 11 434.7 4 9 13 742.2 5 4 9 459.6
lrc103 4 8 12 845.6 4 10 14 796.0 4 5 9 505.3
lrc104 7 6 13 275.0 5 9 14 590.4 3 3 6 373.7
lrc105 3 5 8 559.0 1 7 8 461.6 3 4 7 364.1
lrc106 5 3 8 351.5 5 5 10 547.1 6 3 9 430.1
lrc107 5 5 10 426.4 4 9 13 494.4 4 5 9 371.1
lrc108 6 5 11 20.6 5 6 11 414.1 3 4 7 77.3
lrc201 1 3 4 88.5 2 5 7 346.5 1 3 4 78.1
lrc202 1 3 4 131.2 1 6 7 206.2 1 3 4 176.6
lrc203 1 3 4 187.2 1 6 7 248.6 0 3 3 273.2
lrc204 2 3 5 85.4 2 7 9 209.6 1 2 3 173.5
lrc205 1 4 5 116.7 0 5 5 210.7 1 4 5 246.4
lrc206 2 2 4 144.5 1 5 6 346.7 1 3 4 330.4
lrc207 1 3 4 195.3 1 5 6 199.6 0 3 3 111.8
lrc208 1 3 4 247.0 1 4 5 369.7 0 3 3 239.9
AVE 3.4 4.1 7.5 227.6 2.6 6.4 9.1 361.2 3.1 3.2 6.3 234.5
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Table VII 

VEHICLE CONFIGURATION RATIO OF ALGORITHMS GTS, 

ALNS AND ALNCO 
 

Algorithm Electric Vehicle Fuel Vehicle 

GTS 4801.23 868.8956 

ALNS 4683.74 1241.245 

ALNCO 4671.42 1473.584 

 

strategic recommendations for these vehicle types' future 

application and development. Particular emphasis is placed 

on charging-related issues, such as battery capacity 

constraints, the possibility of en-route charging, and the 

relationship between charging time and volume, to capture 

the complexity of real-world transport operations better. 

Additionally, the environmental impact of fuel trucks is 

incorporated through introducing carbon emission costs, 

offering a new comparative dimension when choosing 

between pure electric and fuel-powered trucks.By 

developing a hybrid ALNCO heuristic algorithm, this study 

demonstrates the efficiency and practical value of the 

proposed method on a newly designed MDC-EFPDPTW 

benchmark. The results provide algorithmic solid support 

for routing and charging decisions in real-world transport 

operations and encourage the adoption and profitable 

utilization of electric trucks in the transport market, thereby 

promoting green logistics practices. Future research will 

explore more comprehensive vehicle procurement cost 

models and optimize charging station locations and density 

further to enhance the development of green and efficient 

transportation modes.  
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