
 

  

Abstract—Semantic segmentation of armor images faces 

significant challenges due to the complexity of battlefield 

environments and the diversity of armor types. To enhance the 

accuracy of armor damage point detection, we developed an 

improved segmentation model based on SegNet, specifically 

designed for segmenting armor damage. The original SegNet 

model suffers from limitations, including unclear segmentation 

and feature loss. To address these issues, we integrated the 

DenseNet (Densely Connected Convolutional Networks) 

architecture, which enables direct connections between feature 

maps across layers, thereby improving feature reuse and 

segmentation accuracy. Our model demonstrates enhanced 

flexibility in feature utilization compared to traditional 

architectures, such as U-Net and Fully Convolutional Networks 

(FCN), facilitating more effective feature integration. 

Experimental results on a specially constructed armor dataset 

show that our model achieves Precision of 85.32%, Recall of 

83.87%, Specificity of 84.36%, and Dice similarity coefficient 

(Dice) of 85.9%. Additionally, our model demonstrates a 3.53% 

improvement in recognition accuracy while maintaining similar 

processing times for batches of 100 images. These results 

highlight the effectiveness of our model in accurately segmenting 

damage points under complex battlefield conditions, enabling 

military personnel to quickly assess armor integrity and make 

informed tactical decisions. 

 
Index Terms—battlefield environments, armor damage point, 

SegNet model, DenseNet architecture, segmentation accuracy 

 

I. INTRODUCTION 

HE rapid evolution of modern warfare, driven by 

advancements in anti-armor technologies, has intensified 
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the demand for increasingly sophisticated armor systems. 

Armored vehicles, such as tanks and personnel carriers, must 

now withstand the impact of advanced long-rod 

armor-piercing projectiles, shaped charges, and other 

high-velocity threats. Accurately detecting, assessing, and 

predicting armor damage is therefore critical for maintaining 

vehicle survivability on the battlefield [1]. However, 

traditional methods of manual armor damage detection and 

classification are time-consuming and labor-intensive, 

especially under the chaotic and dynamic conditions of 

combat [2]. Consequently, the need for automated systems 

capable of accurately and efficiently identifying armor 

damage points has become a key research priority in both 

military and engineering fields. These systems offer 

significant advantages, including higher efficiency and 

precision, which are essential for real-time battlefield 

applications. 

Deep learning and neural network-based methods have 

emerged as powerful tools for segmenting and recognizing 

complex patterns, including damage points on armor surfaces. 

Among these methods, Convolutional Neural Networks 

(CNNs) have demonstrated remarkable success in various 

image recognition and segmentation tasks, ranging from 

medical imaging to autonomous driving systems [3-5]. In the 

context of armor damage detection, CNNs leverage their 

ability to analyze pixel-level information and extract relevant 

features from complex and noisy environments. The 

development of armor damage point segmentation algorithms, 

particularly those based on deep learning architectures such 

as SegNet, represents a significant advancement in 

automating the detection and analysis of battlefield damage to 

armored vehicles [6]. SegNet, a deep learning architecture 

originally designed for semantic segmentation, has shown 

considerable promise in applications requiring pixel-level 

classification of images. Its encoder-decoder structure is 

particularly well-suited for tasks such as road scene 

segmentation and holds potential for armor damage point 

detection, where precise localization of small and irregular 

damage points is crucial [7-8]. However, despite its 

effectiveness in certain segmentation tasks, SegNet's ability to 

handle the complexity and variability of damage points in 

real-world battlefield conditions remains limited. The 

traditional SegNet model suffers from feature loss during the 

encoding and decoding process, particularly in deep networks, 

where small-scale features may be lost or diluted, leading to 

inaccurate segmentation [9]. This limitation is especially 

critical when dealing with complex armor damage patterns 

caused by high-velocity penetrators, where small details are 

often crucial in determining the extent of damage. 
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To address these limitations, researchers have proposed 

various modifications to the SegNet architecture, 

incorporating elements from other successful deep learning 

models such as DenseNet and ResNet. DenseNet, for instance, 

is a CNN architecture that enhances feature propagation by 

directly connecting each layer to every other layer in a 

feed-forward manner. This dense connectivity ensures that 

features learned by earlier layers are reused by later layers, 

thereby reducing feature loss and improving the overall 

accuracy of segmentation. Recent studies have demonstrated 

that combining DenseNet with SegNet leads to significant 

improvements in the segmentation of small objects and fine 

details, making it a promising approach for armor damage 

detection tasks that require high precision [10]. In addition to 

the integration of DenseNet, attention mechanisms have been 

incorporated into segmentation models to enhance their 

ability to focus on relevant features while ignoring irrelevant 

background noise [11]. Attention mechanisms enable the 

model to prioritize specific regions of the image based on 

their relevance to the segmentation task. This capability is 

particularly useful in armor damage detection, where 

irrelevant surface textures or occlusions may distract the 

model from accurately identifying actual damage points. The 

incorporation of attention mechanisms into CNNs has been 

shown to significantly improve segmentation accuracy, 

especially in noisy or visually cluttered environments [12-13]. 

Another important advancement in deep learning-based 

segmentation is the use of multi-scale feature extraction. 

Armor damage points can vary significantly in size, shape, 

and texture, particularly when considering different types of 

projectiles and impact angles. Multi-scale feature extraction 

enables the model to analyze the image at different levels of 

detail, ensuring the accurate detection of both large and small 

damage points. This approach has been successfully applied 

to various segmentation tasks, including medical imaging and 

autonomous driving, and recent research suggests that it can 

also enhance the detection of armor damage points [14-15]. 

Recent studies have shown the effectiveness of improved 

SegNet architectures for various segmentation tasks in 

complex environments. For instance, Khatri et al. [16] applied 

an enhanced SegNet model to detect cracks and surface 

damage on concrete structures, achieving significantly higher 

accuracy compared to traditional methods. Similarly, Chen et 

al. [17] developed a modified SegNet model for identifying 

corrosion points on steel surfaces in harsh industrial 

environments, proving the model's robustness in handling 

noisy data. These studies emphasize the potential of improved 

SegNet architectures for armor damage detection, especially 

when addressing challenges in battlefield environments, 

where damage points may be obscured by dirt, debris, or other 

occlusions. The use of deep learning for armor damage 

segmentation presents challenges. One of the main challenges 

is the need for large, labeled datasets to effectively train the 

models. In armor damage detection, obtaining such datasets is 

especially challenging because it requires detailed 

annotations of real-world damage scenarios. To address this 

limitation, synthetic data generation techniques have been 

used to augment existing datasets. These techniques involve 

generating simulated armor damage images using 

computer-generated models, which are then used to train the 

segmentation model. Although synthetic data may not 

perfectly replicate real-world conditions, it provides a 

valuable resource for training deep learning models when 

large-scale labeled datasets are unavailable [18-19]. Another 

challenge is the computational complexity of deep learning 

models, especially when deployed in real-time battlefield 

settings. The need for rapid and accurate damage assessment 

during combat necessitates models that can process data 

quickly and efficiently. Recent advancements in model 

optimization techniques, such as pruning and quantization, 

have reduced the computational burden of deep learning 

models, making them more suitable for real-time applications 

[20]. These techniques, along with advancements in hardware 

acceleration, have the potential to enable real-time armor 

damage detection and segmentation on the battlefield. 

In conclusion, integrating deep learning techniques, such as 

improved SegNet architectures, into armor damage detection 

represents a significant advancement in automating battlefield 

damage assessment. By utilizing dense connectivity, attention 

mechanisms, and multi-scale feature extraction, these models 

can accurately detect and segment armor damage points in 

complex and noisy environments. The application of these 

methods holds great potential for enhancing the survivability 

of armored vehicles by enabling faster and more accurate 

damage assessment during combat. As research in this field 

progresses, further advancements in model architecture, data 

augmentation, and real-time processing are expected to 

improve the effectiveness of deep learning-based armor 

damage detection systems. This work marks a step forward in 

addressing the increasing challenges faced by armored 

vehicles in modern warfare and contributes to the ongoing 

development of more resilient and adaptive defense 

technologies. 

II. MATERIALS AND METHODS 

A. Building data sets 

The dataset utilized in this study consists of 27 single-layer 

armor images, 23 multi-layer armor images, and 47 composite 

armor images, all captured at a resolution of 2048 × 1536 

pixels. We collected the images under diverse lighting 

conditions to simulate real-world battlefield scenarios and 

manually annotated the damage points using Photoshop to 

ensure high-quality ground truth data. The model was trained 

on a GeForce GTX 1080 GPU using the PyTorch framework. 

The learning rate was set to 0.001, with a batch size of 16, and 

the Adam optimizer was employed with cross-entropy loss as 

the loss function. These parameters were chosen to ensure 

stable and efficient training. 

Data Augmentation: To improve the model's generalization 

ability, we applied data augmentation techniques, including 

random rotation, scaling, and flipping, during the training 

process. These techniques help the model learn invariant 

features and reduce overfitting. The primary objective of this 

study is to recognize and segment armor damage points, 

particularly bullet holes, which are critical for the accurate 

armor repair assessments. Consequently, the collected armor 

images were classified into two main categories: bullet holes 

and the surrounding background. Figure 1 illustrates the 

original armor image alongside its annotated damage points, 
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showcasing the manual annotation process used to generate 

the ground truth data for model training. 

  

a) Original armor image               b) annotated armor damage points    

Fig. 1.  Results of image annotation for armor damage points 

B. SegNet model 

The SegNet model, a state-of-the-art deep learning 

architecture based on the VGG16 framework [20-21], is 

specifically designed for semantic segmentation tasks. The 

model operates in two primary stages: encoding and decoding. 

During the encoding phase, VGG16's convolutional layers are 

utilized, while the fully connected layers are omitted to 

enhance performance and reduce computational overhead 

[22-23]. This design enables SegNet to prioritize effective 

feature extraction, which is crucial for achieving accurate 

image segmentation. 

The operational principle of SegNet is illustrated in Fig. 2. 

The encoding process involves reducing the dimensionality of 

the input image through a series of Max Pooling operations. 

Each Max Pooling operation not only down-samples the 

image but also records the indices of the maximum values, 

which is crucial for the decoding phase. The encoder consists 

of two 3 × 3 convolutional layers followed by a 2 × 2 pooling 

layer, with the ReLU activation function applied to introduce 

non-linearity into the model. This configuration enables 

SegNet to capture complex spatial hierarchies and patterns in 

the input data. 

Convolution+BN+ReLU

Max-pooling 

 Upsampling 

Deconvolution+BN+ReLU

Softmax

Input image Output image

Convolution 

Pooled index

 
Fig. 2.  Structure diagram of SegNet 

The decoder phase is symmetrically designed to match the 

encoder. During downsampling, it is essential to preserve the 

positions corresponding to the maximum values obtained 

from the Max Pooling operations [24]. For upsampling, a 

scale factor of 2 is applied, and the stride is set to 2, restoring 

the maximum values to their corresponding positions, while 

setting all other values to zero. For example, if the Maximum 

Pooled values are denoted as a, g, j, and p, their 

corresponding maximum positions are retained to ensure 

accurate image reconstruction. 

By using this upsampling method, SegNet effectively 

recovers the contours and positional information within the 

image. This capability enhances the extraction and 

preservation of edge features, allowing for the maintenance of 

the original image's size and intricate details. As a result, 

SegNet achieves high-precision image segmentation, making 

it particularly effective for identifying armor damage points 

[25-26]. The restored features not only improve visual 

accuracy but also facilitate better analysis of the segmented 

images, which is essential in military applications. 

Finally, the output layer is connected to a multi-class 

Softmax classifier, which predicts the class probabilities for 

each pixel in the segmented image. This classification 

mechanism allows the model to differentiate between various 

classes present in the image, thereby providing 

comprehensive segmentation results that are vital for tasks 

such as damage assessment and repair strategy formulation. 

The transition from downsampling to upsampling is shown in 

Fig. 3. 

Overall, SegNet's architecture balances effective feature 

extraction with spatial information retention, making it an 

ideal choice for applications requiring precise segmentation, 

particularly in military engineering contexts where timely and 

accurate damage assessment is critical. Through continuous 

training and validation, SegNet demonstrates considerable 

potential for enhancing operational effectiveness in various 

engineering scenarios, underscoring its significance in the 

field of deep learning and computer vision. 
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Fig. 3.  The process diagram of down-sampling-up-sampling 

C.  DenseNet model 

To enhance segmentation accuracy in CNNs, a widely 

adopted strategy is to increase the number of layers. However, 

deep networks often face challenges such as the dilution or 

loss of input information, while shallower networks may fail 

to capture sufficient detail [27]. To address these issues, 

Ajioka et al. [28] introduced the DenseNet architecture, 

which revolutionizes feature propagation within the network. 

The core concept of DenseNet is its direct connectivity 

between feature maps across various layers, allowing for 

multiple instances of feature reuse. This design significantly 

improves the flow of information, effectively alleviating the 

vanishing gradient problem that often plagues deep networks. 

By promoting stronger propagation of image features, 

DenseNet enhances training efficiency and achieves higher 

accuracy in segmentation tasks. In this architecture, the output 
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of each convolutional layer is concatenated with the input to 

the following layer. This ensures that each layer has direct 

access to features from all preceding layers, facilitating a 

richer representation of the input data. Such connectivity 

allows for a more compact model by reducing the number of 

parameters compared to traditional deep networks, thereby 

enhancing computational efficiency without compromising 

performance. 

The structural design of DenseNet is shown in Fig. 4, 

highlighting how inter-layer connections promote effective 

feature learning and retention. Overall, DenseNet represents a 

significant advancement in deep learning methodologies, 

particularly for applications requiring high segmentation 

accuracy, such as in military engineering and image analysis. 

This innovative approach not only improves model 

performance but also opens avenues for further research in 

enhancing the robustness of deep learning frameworks. 

 
Fig. 4.  Structure diagram of DenseNet 

D.  Improved SegNet model 

When SegNet is applied directly to segment armor images, 

it frequently yields ambiguous and imprecise segmentation of 

damage points [29]. This limitation arises from the model's 

restricted ability to leverage multi-scale semantic information, 

as each decoder in SegNet processes only one scale of 

semantic data. Such a design leads to the loss of crucial 

features during the information transmission across multiple 

layers [30]. In response to these challenges, this paper 

proposes an improved version of SegNet, inspired by the 

DenseNet architecture.The implementation of improved 

SegNet maintains a structure similar to SegNet while 

incorporating enhancements aimed at better feature retention 

and utilization. As illustrated in Fig. 5, the input to this depth 

network is an 8-channel image, which results from merging 

two 4-channel images. To begin processing, Local Response 

Normalization (LRN) is applied to the 8-channel input in the 

initial layer of the depth network. This normalization step is 

essential for optimizing the network's performance by 

addressing potential issues arising from varying input 

magnitudes. 

Following LRN, a series of convolution and pooling 

operations are performed to effectively extract features. 

Specifically, the network employs nine convolution 

operations and eight deconvolution operations. Each 

convolution and deconvolution utilizes a 3 × 3 convolution 

kernel, with a sliding step size of 1, allowing for fine-grained 

feature extraction. The pooling method implemented is 

maximum pooling, which uses a 2 × 2 sliding window with a 

stride of 2, enabling dimensionality reduction while 

preserving essential information. 

Convolution+BN+ReLU

Max-pooling 

 Upsampling 

Deconvolution+BN+ReLU

Softmax

Input image Output image

Convolution 

Pooled index

Fig. 5.  Structure diagram of improved SegNet 

After the convolution and pooling stages, the model 

performs multiple upsampling and deconvolution operations. 

Here, "deconvolution" refers to the transpose convolution, 

which serves to reconstruct the spatial dimensions of the 

feature maps to their original size. The final output of the 

network is generated through a convolution operation 

followed by a Softmax function, which produces a K-channel 

probability image. In this context, K denotes the number of 

output categories. For this experiment, which distinguishes 

between background and damage points, K is set to 2. 

Detailed implementation parameters of improved SegNet are 

presented in Table 1. 

 
TABLE I 

THE IMPLEMENTATION PROCESS OF IMPROVED SEGNET. 

Operation 
Output Image 

(Width, Height, Channels) 

Input Image +LRN (224, 224, 8) 

Convolution +BN+ReLU (224, 224, 64) 

Convolution + BN+ReLU (224, 224, 64) 

Maximum Pooling (112, 112, 64) 

Convolution + BN+ReLU (112, 112, 128) 

Convolution + BN+ReLU (112, 112, 128) 

Maximum Pooling (56, 56, 128) 

Convolution + BN+ReLU (56, 56, 256) 

Convolution + BN+ReLU (56, 56, 256) 

Maximum Pooling (28, 28, 256) 

Convolution + BN+ReLU (28, 28, 512) 

Convolution + BN+ReLU (28, 28, 512) 

Maximum Pooling (14, 14, 512) 

Up Sampling (28, 28, 512) 

Deconvolution + BN+ReLU (28, 28, 256) 

Deconvolution + BN+ReLU (28, 28, 256) 

Up Sampling (56, 56, 256) 

Deconvolution + BN+ReLU (56, 56, 128) 

Deconvolution + BN+ReLU (56, 56, 128) 

Up Sampling (112, 112, 128) 

Deconvolution + BN+ReLU (112, 112, 64) 

Deconvolution + BN+ReLU (112, 112, 64) 

Up Sampling (224, 224, 64) 

Deconvolution + BN+ReLU (224, 224, 64) 

Deconvolution + BN+ReLU (224, 224, 64) 

Convolution (224, 224, 2) 

Softmaxclassifier  
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In addition to Convolution operations, Batch 

Normalization (BN) is applied after each Convolution and 

Deconvolution operation, excluding the last Convolution. 

The inclusion of LRN and BN techniques is primarily to 

facilitate network training and enhance convergence speed, 

thus optimizing the overall training process. 

Compared to other state-of-the-art architectures [31], 

Improved SegNet significantly reduces the number of 

parameters in the encoder network, making it more 

computationally efficient. Additionally, two widely used 

architectures, FCN and U-Net, share structural similarities 

with improved SegNet but also exhibit key differences. FCN 

requires a higher level of parameterization, leading to 

increased computational demands and making end-to-end 

training more challenging. This complexity largely stems 

from the inclusion of fully connected layers, even when 

implemented in a convolutional manner. 

On the other hand, U-Net [20] takes a different approach. 

Instead of reusing Pooling indices, as improved SegNet does, 

U-Net transfers entire feature maps to corresponding 

decoders, which incurs higher memory usage. These feature 

maps are then concatenated with upsampled decoder feature 

maps via transposed Convolutions. Another notable 

distinction is that U-Net lacks the Conv5 and Max-Pool5 

blocks present in the VGG network architecture. This 

difference impacts the depth and hierarchical feature 

extraction capability of the network. 

In contrast, Improved SegNet uses all pre-trained 

convolutional layer weights from the VGG network as 

initialization weights. This design choice not only improves 

feature reuse and computational efficiency but also ensures 

robust performance by building on a well-established feature 

extraction backbone. These advantages position improved 

SegNet as a highly efficient and accurate architecture for 

semantic segmentation tasks. 

A key aspect of the improved SegNet architecture is the 

incorporation of outputs from earlier layers after each Pooling 

operation. This integration is vital for retaining the 

multi-scale feature information that is typically lost in 

standard models. However, it is important to ensure that the 

outputs from the preceding layers are pooled to align with the 

size of the current Pooling output. For instance, after the first 

maximum Pooling operation, the input from the first layer 

requires one Pooling operation to adjust its dimensions. 

During the second Pooling phase, both the input from network 

layer 1 and the results from the first Max Pooling need to be 

processed, necessitating two Pooling operations on the layer 1 

input and one on the result from the first Pooling. Similarly, 

after the third Maximum Pooling operation, introducing the 

outputs from the first layer and the two previous Max Pooling 

results requires three Pooling operations on the first layer 

input, two on the first Max Pooling result, and one on the 

second Max Pooling result. 

This systematic approach to layer integration and feature 

management within improved SegNet model is intended to 

enhance the model's ability to accurately segment armor 

damage points, ensuring a more robust performance in 

applications requiring precise image analysis. The proposed 

architecture aims to effectively combine multi-scale semantic 

information, ultimately improving the clarity and accuracy of 

segmentation outcomes. 

Finally, morphological operations are employed as a 

post-processing step to refine the semantic segmentation 

results and enhance their quality. These operations are 

essential for reducing image noise, filling gaps, and enhancing 

the key features in the segmented image. The primary goal is 

to retain relevant information while removing unnecessary 

elements, thereby improving the overall segmentation 

performance. 

Common morphological operations include dilation, 

erosion, opening, and closing [32]. Dilation works by 

expanding or thickening objects in an image, helping to 

connect small gaps, while erosion shrinks or thins objects, 

which is useful for removing small artifacts. The opening 

operation involves erosion followed by dilation, efficiently 

removing noise and filtering out small, irrelevant objects. In 

contrast, closing involves dilation followed by erosion, which 

helps merge small disconnected components and smooths 

boundaries, thereby filling gaps or holes in objects. 

In this study, we chose to use the closing operation as the 

preferred post-processing technique because of its ability to 

enhance the continuity and coherence of the segmented 

objects. Closing is especially effective for improving the 

quality of armor damage point segmentation, as it helps merge 

fragmented regions and fill small holes in the detected 

damage points. By using closing as a post-processing step, we 

ensure a more accurate and refined final segmentation result, 

which ultimately contributes to better damage assessment in 

armor images. 

III.  RESULTS 

A.  Accuracy evaluation index 

Several key accuracy metrics are employed to assess the 

performance of segmentation models, including Precision, 

Recall, Specificity, and Dice coefficient. These metrics 

collectively provide a comprehensive assessment of the 

model's effectiveness in detecting damage points in armor 

images. 

The formulas for calculating these metrics are as follows: 

 100%
TP

Precision
TP FP

= 
+

 (1) 

 100%
TP

Recall
TP FN

= 
+

 (2) 

 100%
TN

Specificity
TN FP

= 
+

 (3) 

 
2

100%
2

TP
Dice

FP TP FN
= 

+ +
 (4) 

Where TP denotes the number of pixels accurately identified 

as damage points, FP represents the number of pixels 

erroneously classified as damage points, TN indicates pixels 

correctly recognized as background, and FN refers to pixels 

mistakenly identified as background. Dice coefficient 

quantifies the overlap between the segmentation output and 

the ground truth, serving as a pivotal metric for evaluating the 

model's accuracy in generating reliable segmentations. 

B.  Training results 

After completing the training phase, we evaluated the 
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model's accuracy on a designated test set. The statistical 

analysis of model performance is summarized in Table 2, with 

a graphical representation provided in Fig. 6. The improved 

SegNet model integrates DenseNet's dense connectivity, 

which facilitates better feature reuse and multi-scale 

information extraction. As a result, it demonstrates superior 

performance, achieving improvements in precision, recall, 

and Dice coefficient of 3.49%, 3.34%, and 2.35%, 

respectively, over the original SegNet. These enhancements 

are attributed to the integration of DenseNet's dense 

connectivity, which facilitates better feature reuse and 

multi-scale information extraction. Regarding Recall, which 

measures the model's ability to correctly identify all relevant 

instances, improved SegNet outperformed U-Net, FCN, and 

SegNet by 3.15%, 5.93%, and 3.34%, respectively. 

Specificity, which indicates the model's ability to correctly 

classify background pixels, also showed slight improvements 

with improved SegNet, with increases of 0.31%, 0.53%, and 

0.76% over U-Net, FCN, and SegNet, respectively. The Dice 

coefficient, a similarity measure comparing the segmented 

output to the ground truth, showed that improved SegNet 

achieved higher similarity scores, with improvements of 

1.98%, 3.69%, and 2.35% over U-Net, FCN, and SegNet. The 

increase in Dice coefficient suggests that the improved model 

is able to produce more accurate segmentation outputs, due to 

its capability to retain multi-scale semantic information 

through the reuse of feature maps from various layers. 

TABLE II 

COMPARISON OF ACCURACY EVALUATION INDEXES FOR SEGNET, U-NET, 

FCN AND OUR MODEL. 

Model Precision(%) Recall(%) Specificity(%) Dice(%) 

SegNet 81.83 80.36 80.51 81.25 

U-Net 79.15 78.72 78.81 79.06 

FCN 80.73 79.94 80.15 80.37 

Improved 

SegNet 
85.32 83.87 84.36 84.81 

Improved SegNet

U-Net

FCN

SegNet

60 70 80 90 100

 Precision

 Recall

 Specificity

 Dice

Fig. 6.  Comparison of segmentation accuracy among different models 

Improved SegNet connects and reuses feature maps across 

different layers, facilitating the extraction of richer image 

features and improving segmentation precision. This feature 

reuse approach, inspired by DenseNet, enables the model to 

better capture and retain critical semantic information across 

scales, mitigating the information loss typically seen in the 

original SegNet. In addition to accuracy, the recognition 

success rate of damage points was evaluated by analyzing the 

total number of correctly identified damage points across all 

the armor images. Of the total 425 damage points, SegNet 

correctly identified 387, while improved SegNet identified 

402. Thus, the recognition success rates for SegNet and 

improved SegNet were 91.06% and 94.59%, respectively, 

showing a 3.53% improvement with the enhanced model. 

The improved SegNet model maintains computational 

efficiency comparable to the original SegNet, with only a 

marginal increase in processing time. This makes it suitable 

for real-time applications: battlefield damage assessment, 

where rapid processing is essential. This is evident from the 

computational statistics shown in Table 3. FCN, with its fully 

connected layers converted into convolutional layers, 

demonstrates much slower training speeds. Moreover, their 

forward and backward pass times are comparable to, or even 

exceed, those of SegNet. Notably, overfitting is not a major 

issue when training these larger models, as their performance 

metrics tend to improve over iterations, similar to SegNet. For 

FCN, learning transposed convolutional layers, rather than 

relying on bilinear interpolation weights, can enhance 

performance. This modification also allows the model to 

achieve better metrics within a shorter time frame. 

Interestingly, the trained U-Net achieves competitive 

performance despite being the least parameterized model with 

the fastest training time, as shown in Table 3. However, U-Net 

struggles with lower segmentation accuracy when compared 

to its counterparts. 

TABLE III 

COMPARISON OF COMPUTATIONAL TIME AND HARDWARE RESOURCES 

REQUIRED FOR SEGNET, U-NET, FCN AND OUR MODEL. 

Model 

Forward 

Pass 

(ms) 

Backward 

Pass (ms) 

GPU 

Traning 

Memory 

(MB) 

GPU 

Inference 

Memory 

(MB) 

Model 

Size 

(MB) 

SegNet 381.83 380.36 6805 1081 135 

U-Net 179.15 178.72 5788 1979 94 

FCN 350.73 379.94 8480 1880 572 

Improved 

SegNet 
385.32 383.87 6843 1084 137 

After a period of training, improved SegNet surpasses other 

networks in terms of segmentation accuracy. This subtle yet 

crucial difference in runtime emphasizes improved SegNet’s 

ability to achieve superior accuracy without a significant 

increase in processing time. By maintaining computational 

efficiency while delivering enhanced segmentation 

performance, improved SegNet demonstrates its robustness 

and practical applicability in battlefield environments. 

C.  Recognition performance on different armor types 

In complex battlefield scenarios, accurate segmentation 

and identification of armor damage points are crucial for 

evaluating armor resilience. In this study, we applied SegNet, 

U-Net, FCN, and our model to recognize and segment 

damage points across various armor types, including 

multi-layer, single-layer, and composite armor. The 

comparative segmentation effects of these models on different 

armor types are shown in Fig. 7–9.  

In the segmentation of multi-layer armor images, U-Net 

demonstrated inferior performance compared to the other 

models. Specifically, U-Net incorrectly identified some 

undamaged armor material as damage points, resulting in an 

overestimation of the damage areas. Fig. 8 and Fig. 9 reveal 

the segmentation limitations of SegNet. When SegNet, U-Net, 
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and FCN were directly applied to single layer armor and 

composite armor images, segmentation errors occurred, 

resulting in inaccuracies in damage point detection. These 

challenges likely arise from SegNet's limited multi-scale 

feature extraction capabilities, which impact its ability to 

accurately detect fine details inherent in various armor 

compositions. When analyzing complex structures like 

composite armor, SegNet struggled to accurately distinguish 

between damage points and the surrounding material. 

Improved SegNet model, however, effectively addresses 

these issues by incorporating a more sophisticated approach 

to multi-scale feature utilization. Drawing from DenseNet 

model structure, this improved version enhances the 

connections between feature maps across different network 

layers. As a result, it allows for multiple reuses of image 

features, thereby improving segmentation precision. 

   

a) Original armor image                   b) Segmentation of SegNet                 c) Segmentation of U-Net 

   
d) Segmentation of FCN          e) Segmentation of Improved SegNet            f) Reconstruction effect 

Fig. 7.  Segmentation of multi-layer armor 

   
a) Original armor image                   b) Segmentation of SegNet                 c) Segmentation of U-Net 

   
d) Segmentation of FCN          e) Segmentation of Improved SegNet            f) Reconstruction effect 

Fig. 8.  Segmentation of single layer armor 

   

a) Original armor image                   b) Segmentation of SegNet                 c) Segmentation of U-Net 

   
d) Segmentation of FCN          e) Segmentation of Improved SegNet            f) Reconstruction effect 

Fig. 9.  Segmentation of composite armor
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Improved SegNet demonstrates a significant reduction in 

segmentation errors, providing more clearly defined 

boundaries for damage points in both single-layer and 

composite armor images. This improvement is crucial for 

precise damage assessment, as it helps differentiate between 

closely situated damage points and noise. In the segmentation 

of composite armor, our model demonstrates enhanced 

robustness. This is particularly evident in situations where the 

layered material composition obscures or fragments damage 

point features. The ability of improved SegNet to retain 

critical information from multiple layers enhances its capacity 

to deliver consistent segmentation results across various 

armor types. As a result, this consistency is a key advantage in 

battlefield applications, where rapid and accurate assessment 

of armor damage is vital for operational decision-making. 

IV.  DISCUSSION 

While increasing model depth and parameter complexity 

can enhance performance, it is crucial to balance these factors 

with computational efficiency, especially in real-time 

applications. Future research will focus on developing more 

efficient architectures that maintain high accuracy while 

reducing computational overhead. However, in practical 

applications, selecting an appropriate model involves 

balancing multiple factors, such as memory consumption and 

computational time during both training and testing. These 

considerations impose critical constraints on deployment. 

Notably, as demonstrated in this study, when performance 

improvements are disproportionate to increases in training 

time, training efficiency becomes a key factor. Additionally, 

for tasks like armored damage detection, memory 

requirements and computational load during the testing phase 

are equally critical, especially in battlefield environments 

where real-time responsiveness is essential. Compared to 

other competing architectures, improved SegNet achieves 

excellent performance, similar model size, and runtime in 

armor damage analysis.  

When benchmarking segmentation architectures with 

different parameter configurations and depths, the choice of 

training method is crucial. Many architectures rely on 

auxiliary techniques and multi-stage training methods to 

achieve high accuracy, complicating the assessment of their 

true performance under time and memory constraints. To 

address this, our study integrates direct connections between 

feature maps across different network layers, allowing 

multiple feature reuse. This modification enhances inter-layer 

feature propagation, addressing the limited multi-scale 

capability of SegNet. However, it is important to note that this 

approach cannot entirely isolate the interactions between the 

model architecture and the solver in achieving specific 

outcomes. Training deep networks inherently involves 

imperfect gradient backpropagation and optimization 

challenges associated with high-dimensional non-convex 

problems. Therefore, this controlled analysis complements 

other benchmarks, highlighting practical trade-offs among 

well-known architectures. 

Looking ahead, our research team plans to leverage 

insights from this benchmarking study to design more 

efficient architectures for real-time applications. Additionally, 

we are interested in exploring methods for evaluating the 

uncertainty of predictions in deep segmentation architectures, 

a key focus of future work. 

V.  CONCLUSIONS 

This study enhanced the accuracy of damage point 

detection in segmented armor images using a 

battlefield-collected dataset, with SegNet as the base 

architecture. Recognizing SegNet's limitations in utilizing 

multi-scale information, we improved the model by 

incorporating DenseNet-inspired modifications, which 

establish direct connections between feature maps across 

different layers. This modification enables more efficient 

feature reuse, improving inter-layer feature propagation and 

mitigating SegNet's limitations in multi-scale capabilities. 

Improved SegNet was evaluated against SegNet, U-Net, 

and FCN on various armor types, including multi-layer, 

single-layer, and composite armor. Quantitative evaluation 

showed significant improvements: precision increased by 

3.49%, recall by 3.34%, specificity by 0.76%, and Dice 

coefficient by 2.35%, indicating enhanced segmentation 

accuracy and reduced false positives. 

These improvements have significant practical 

implications for battlefield applications, where accurate 

damage assessment is crucial for timely decision-making. The 

model’s improved ability to distinguish damage points across 

diverse armor types provides more reliable results, addressing 

challenges posed by varying armor structures. Improved 

SegNet achieved a recognition success rate of 94.59%, 

compared to SegNet’s 91.06%. The processing time for 100 

images showed a negligible increase, while maintaining 

operational efficiency. By integrating multi-layer feature 

maps, improved SegNet provides precise, reliable results, 

making it an effective tool for real-time armor damage 

assessment and advancing damage detection technologies in 

military and engineering applications. 
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