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Abstract—Lung cancer, particularly adenocarcinoma, is a
leading cause of cancer-related death worldwide. Accurate
diagnosis and classification of lung adenocarcinoma, squamous
cell carcinoma, and lymph nodes is crucial for effective treat-
ment. This investigation focused on developing a deep learning
model for the automatic classification of lung adenocarcinoma,
squamous cell carcinoma, and lymph nodes. We created and
utilized a novel dataset that includes medical images of lung
adenocarcinoma, squamous cell carcinoma, and lymph nodes.
We propose an enhanced Convolutional Neural Network (CNN)
architecture, Deep Lung Adenocarcinoma, Squamous Cell Car-
cinoma, and Lymph Nodes (LC105K), which incorporates an
Augmented Multichannel (AMC-CNN). The LC105K model
achieved a high accuracy rate of 99.38% in classifying lung
adenocarcinoma and lymph nodes. This research contributes to
the development of computer-aided diagnosis systems for lung
cancer, enabling early detection and improved patient outcomes.

Index Terms—Augmented Multi- channel (AMC), Convolu-
tional Neural Network (CNN), Deep Learning, LC105K.

I. INTRODUCTION

CANCER remains a leading cause of mortality world-
wide, and its early detection is crucial for effective

treatment and improved patient outcomes. Recent advance-
ments in medical imaging and deep learning techniques
have shown promising results in the automation of can-
cer diagnosis. Convolutional Neural Networks (CNNs) have
demonstrated exceptional performance in detecting tumors
and classifying cancer stages from medical images. Con-
volutional Neural Networks (CNNs) have significantly ad-
vanced cancer diagnostics by providing automated and ac-
curate analysis of medical images. This advancement has
transformed the interpretation of histopathological slides,
radiological images, and genomic data. A notable application
is in breast cancer classification, in which researchers have
utilized deep learning frameworks to distinguish between
invasive and noninvasive subtypes. For example, Cireşan
et al. (2013) [1], [2] employed deep CNN architectures to
analyze histopathological images, achieving high accuracy
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and outpacing traditional diagnostic methods [3], [4], [5].
Similarly, researchers have employed CNNs for lung cancer
diagnosis to improve the detection of lung nodules in CT
scans. Many studies have been conducted on training models
such as DenseNet and Inception to find cancer very accu-
rately [6], [7], [8]. Significant advancements were made by
Ardila et al. (2019) [9], who demonstrated that deep learning
models could outperform radiologists in lung cancer detec-
tion, highlighting the potential of CNNs to assist in clinical
decision-making [10], [11], [12]. Furthermore, CNNs have
been integrated with transfer learning techniques, allowing
rapid adaptation to new datasets with limited labeled data.
[11], [13]. This approach has been particularly beneficial in
domains, such as pathology, where obtaining large annotated
datasets can be challenging. Adding attention mechanisms to
CNN architectures has also improved model performance by
allowing networks to focus on the most important features of
images [14], [15]. Hu et al. (2018) [16] introduced a squeeze-
and-excitation block that recalibrates channel-wise feature
responses. Recent advancements have shown that hybrid
models combining CNNs with other deep-learning tech-
niques have demonstrated promise [17], [18], [19], [20], [21].
Notably, CNNs integrated with recurrent neural networks
(RNNs) have been employed to analyze sequential data, such
as time-series imaging or genetic information [22], [23], [24],
[25]. These architectures have provided valuable insights into
the temporal dynamics of tumor development [26], [27].
Implementing various strategies to overcome the limitations
of small training sets has led to improved predictions of
treatment outcomes. Techniques such as image rotation,
flipping, and color variation have been widely adopted [28],
[29]. A pivotal study by Shorten and Khoshgoftaar (2019)
emphasized the impact of data augmentation [30], [31].
Hybrid models combining CNNs with other deep-learning
techniques have shown promise [17], [18], [19], [20], [21].
Notably, CNNs integrated with recurrent neural networks
(RNNs) have been employed to analyze sequential data, such
as time-series imaging or genetic information [22], [23], [24],
[25]. These architectures have provided valuable insights into
the temporal dynamics of tumor development [26], [27].
Furthermore, understanding how CNNs make predictions is
crucial, especially in medical applications, where techniques
like Grad-CAM have been used to visualize regions of
interest and improve model interpretability [32], [33], [34],
[35], [36]. Despite these advancements, challenges persist
in deploying CNNs in the clinical setting. Issues include
model overfitting, bias in the training data, and the need for
rigorous validation. To address these challenges, researchers
are developing convolutional neural network (CNN) models
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that provide accurate predictions. Recent advancements have
significantly affected cancer diagnostics, particularly the use
of CNNs. These networks enable automated analysis of
histopathological images, which is critical for accurate diag-
nosis. Studies have demonstrated CNNs’ efficacy of CNNs
in differentiating cancer types and assessing lymph node
involvement. Models leveraging transfer learning achieve
high accuracy. However, challenges remain, including the
requirement for large annotated datasets. Our research con-
tributes to this field by introducing an innovative architecture.
Better classification is possible with deep Learning-Based
Classification of Adenocarcinoma, Squamous Cell Carci-
noma, and Lymph Node Involvement Using AMC-CNNs.
The AMC-CNN model employs advanced techniques such
as attention mechanisms and multi-scale feature extraction.
By effectively distinguishing between adenocarcinoma and
squamous cell carcinoma and assessing lymph node involve-
ment, our study advances the cancer classification. This
underscores the potential of deep learning to revolutionize
cancer diagnostics.

This work primarily contributed to
• The Augmented Multichannel Convolutional Neural

Network (AMC-CNN)-based Deep Lung Adenocar-
cinoma, squamous cell carcinoma, and lymph node
(LC105K) deep learning model is a huge step forward in
finding and classifying lung adenocarcinoma and lymph
nodes from medical images.

• We fine-tuned this innovative model to decode the
intricacies of lung adenocarcinoma and lymph nodes,
using a fresh dataset of high-resolution medical images.
Integrated with a Convolutional Neural Network (CNN),
it achieved an impressive accuracy rate of 99.38%. This
seamless bridge between medical imaging and diagnosis
ushers into a new era of cancer care.

• This cutting-edge model integrates AMC-CNNs to un-
ravel the complexities of lung adenocarcinoma, squa-
mous cell carcinoma, and lymph nodes. Utilizing a com-
prehensive dataset of high-resolution medical images,
an accuracy rate of 99.38% was achieved with CNN
and 89.12% with AMC-CNN, creating a harmonious
and inclusive connection between medical imaging and
diagnosis.

• This advanced model skillfully incorporates AMC-
CNNs to decipher the nuances of lung adenocarcinoma
and lymph nodes. With a robust dataset of medical
images, it attains an accuracy rate of 89.12% with
AMC-CNN and 99.38% with CNN, thereby introducing
a new era in cancer care and precision diagnosis.

Section II presents the methodology of the proposed ap-
proach, Section III demonstrates the dataset and experimental
results with the CNN, Section IV provides the experimental
results with the AMC-CNN, and Section V presents the
conclusions of the study.

II. MODEL FORMULATION

Deep Lung Adenocarcinoma and Squamous Cell Car-
cinoma (LC105K), a new dataset with 105,000 images,
divides lung cancer into three main groups: lung adenocar-
cinoma, squamous cell carcinoma, and lymph nodes, with
21,000 images in each group [37]. Building on existing

works [38], [39], [40], this study employs a Convolutional
Neural Network-Long Short-Term Memory (CNN-LSTM)
architecture for accurate diagnosis. The proposed system for
Deep Lung Cancer Classification (LC105K) uses a two-step
process: feature extraction, which includes convolutional,
ReLU, flattened, and pooling layers, and classification, which
includes fully connected, softmax, and classification layers.
Fig. 2 illustrates the lung cancer categories in LC105K ([37],
[41]), and Fig. 1 presents the architecture of the LC105K
model. This research builds upon existing works [38], [42],
[39], [40] and [43], which provide detailed insights into
the crucial layers for CNN-based image classification. The
functionality of the LC105K model layer can be summarized
as follows:

A. Input Layer

The LC105K dataset’s JPG images are handled by the
input layer, which expects RGB-colored inputs with a 3-
channel structure (height × width × 3). This layer stan-
dardizes the data formatting and dimensions for downstream
processing. The entry point of the network establishes the
data flow pipeline and ensures compatibility between the
input data and the model design by specifying the correct
input dimensions.

B. Convolution Layer

A convolutional layer scans the image input both vertically
and horizontally to obtain the weighted sum of the input
values and the filter weights. We have added a bias before
performing this. The convolution operation of the layer spans
specified dimensions.

For the 2-D Image Input: The convolutional layer oper-
ates on tensors with shape (batch size, height, width, and
channels) to perform spatial convolution on the 2D image
inputs.

For the 2-D Image Sequence Input: The convolutional
layer works on 2D image sequences by combining informa-
tion from different channels, observations, and time frames,
while considering spatial dimensions (height and width).

For the 1-D Image Sequence Input: The convolutional
layer operates on 1D image sequences, convolving the spatial
and temporal dimensions to extract the features.

The convolutional layer employs filters as feature detectors
to identify and extract local patterns from input images.
Through backpropagation and optimization, the layer learns
to optimize the filter weights, enabling the recognition and
representation of salient visual features and structures. Fig.
3 shows the filter visualization for the convolutional layer,
and Fig. 4 depicts the segmentation results and mask filter
visualization for cancer detection.

C. ReLU Layer

The ReLU activation function, typically employed after
convolutional and batch normalization layers, applies an
element-wise threshold operation, mapping negative input
values to zero, i.e.

f(x) =

{
x, if x ≥ 0,

0, if x < 0.
(1)
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Fig. 1: Proposed Network Architecture

Fig. 2: Visualization of Lung Adenocarcinoma, Squamous Cell Carcinoma, and Lymph Node Images

In other words, ReLU preserves positive and zero input
values while setting negative values to zero, introducing
non-linearity. This enables the network to model complex
relationships, learn expressive representations, and identify
intricate patterns. Fig. 5 illustrates the filter visualization of
the ReLu layer.

D. Pooling Layer

The primary objective of the pooling layers is to downsam-
ple the hidden layer dimensions by combining outputs from
clusters of neurons in the preceding layer. The following are
two common functions used in the pooling operation:

Average Pooling: Average pooling layers reduce the spatial
dimensions by dividing the input data into rectangular blocks
and computing the average value for each block.
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Fig. 3: Filter Visualization for Convolutional Layer

Maximum Pooling (or Max Pooling): Max pooling layers
aggregate the input features into rectangular regions, selec-
tively retaining the maximum value for each region, thereby
reducing the spatial dimensions.

The maximum and average pooling layers derive their
pooling dimensions from the input specifications of the layer.

For 2-D Image Input: For 2D image input, the layer
pools the spatial dimensions, operating on data with four
dimensions: height, width, channels, and observations.

For 2-D Image Sequence Input: For 2D image sequence
input, pooling is applied spatially, operating on data struc-
tured in five dimensions: pixels (height and width), channels,
observation/batch size, and temporal sequence.

For 1-D Image Sequence Input: Pooling occurs over
spatial and temporal dimensions for 1D image sequence in-
put, comprising four dimensions: spatial coordinate (length),
channels, observations, and temporal steps. Fig. 6 shows the
filter visualization for the maximum pool layer.

E. Fully Connected Layer

A fully connected (dense) layer multiplies the input by
a weight matrix and adds a bias vector that connects to all
neurons in the previous layer. This layer aggregates local
features from preceding layers to identify larger patterns.
For classification, the final fully connected layer integrates
features to classify images, with its output size matching the

number of classes. In regression, the output size equals the
number of response variables.

F. Softmax Layer
The softmax function transforms a vector of K real values

into probabilities between 0 and 1, ensuring a total sum of
1. It maps input values to probabilities, where small/negative
inputs yield small probabilities and large inputs yield large
probabilities.

Numerically, softmax is represented as:

ys(x) =
exp(yfl(x))∑K
n=1 exp(yfl(x))

(2)

The exponential function ensures positive values, while the
normalization term guarantees output values sum to 1 and fall
within (0, 1), forming a valid probability distribution.

G. Classification Layer
In standard classification networks, the classification layer

typically follows a softmax layer. This layer assigns inputs
to one of K mutually exclusive classes using the cross-
entropy function. The classification layer calculates cross-
entropy loss for classification tasks.

y(x) =

{
1 if ys(x) = max(ys(x)),

0 if otherwise.
(3)
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Fig. 4: Segmentation results and filter visualization for cancer detection

This study focuses on the outcomes and discussion of
an enhanced CNN architecture, deep lung adenocarcinoma,
squamous cell carcinoma, and lymph nodes, which incor-
porates augmented multichannel (AMC-CNN) architecture,
with subsequent sections examining the accuracy of the
designed dataset.

The main objective of this research is to concentrate on
the outcomes and discussion section, which is centered on
the CNN, AMC-CNN architecture. In the following sections,
the accuracy of the designed dataset is discussed.

III. RESULTS AND DISCUSSIONS

This section presents the results of the proposed CNN,
AMC-CNN architecture, and discusses its performance on
the LC105K dataset.

A. Dataset

The trials were carried out utilizing the LC105K, a well-
established dataset. For the experiment, 150000 images from
the LC105K dataset were used, with 21000 images per
category.

In this dataset, images with dimensions of 768× 768× 3,
512 × 512 × 3 pixels, 480 × 640 × 3 and 261 × 310 × 3
pixels JPG format and the gray scale of 409×328×1 pixels
were used. The backgrounds and lighting conditions for all

of the images were varied, and each image had been taken
in a unique setting. Fig. 2 illustrates a sample random image
from the subtype cancer dataset.

B. Standardization

A Dell workstation with an Intel(R) Xeon(R) W-1250
processor running at 3.30 GHz and 32 GB of computer mem-
ory had been employed for all experiments. The LC105K
collection has 21,754 images in total, with more than 5000
images utilised for each cancer category. Furthermore, all
experiments employed with the training parameters Stochas-
tic Gradient Descent with Momentum (SGDM) optimizer,
momentum value of 0.9, weight decay value of 0.0001, mini-
batch size of 36 and maximum epochs of 100.

The LC105K dataset had been divided into three groups
at random: 50% for training, 25% for testing, and 25%
for validation. The collected input images were empirically
downsized to the dimensions of 128 × 128 × 3 pixels. The
number of output classes was limited to 36, each of which
corresponded to an LC105K cancer category.

C. LC105K Parameters

The evaluation and fine-tuning of parameters are catego-
rized into two primary components: the convolution layer and
the pooling layer. For the convolution layer, parameters such
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Fig. 5: Filter Visualization for ReLu Layer

as filter dimensions, the number of filters, stride length, and
padding size are considered. In the pooling layer, parameters
include the pooling type, window size, stride length, and
padding size. The experimentation is systematically con-
ducted over eight stages, with each stage focusing on a single
parameter adjustment while maintaining all other parameters
constant. In each stage, only the highest accuracy values
(those leading in that stage and above 95) are noted and
leveraged to set the conditions for the subsequent stage. This
sequential approach continues until stage 8, where the best-
performing accuracy is identified as the benchmark. Table I
elaborates on the entire 8-stage analysis.

Table I presents various experimental setups and their
corresponding accuracies for the LC105K network, showcas-
ing the parameters fine-tuned through numerous simulations
to yield optimal results. Each network stage is defined by
specific configurations for convolution and pooling layers,
which influence overall performance and feature extraction
capabilities.

In the initial stage, convolution filter sizes from 1 × 1 to
13 × 13 were evaluated, all using a 1 × 1 stride without
padding. The pooling operation utilized a 3×3 window with
an identical stride and no padding. The highest accuracy of
98.26% was achieved with a 9 × 9 filter size, indicating its
effectiveness in capturing an appropriate balance of spatial
and contextual information for feature extraction.

The second stage maintained the 9 × 9 filter size while
adjusting the number of filters from 2 to 14, keeping stride
and padding constant at 1× 1 and 0, respectively. Accuracy
showed an upward trend, peaking at 98.42% with 4 filters,
thus refining the feature extraction process by determin-
ing the ideal number of filters to effectively represent the
dataset’s complexities.

Stage 3 experiments focused on modifying stride size from
1× 1 to 5× 5, maintaining the 9× 9 filter size and 4 filters.
Accuracy reached its maximum (98.42%) with a 1×1 stride,
decreasing as stride size increased. This suggests that smaller
strides are more effective in capturing crucial fine details for
robust feature extraction.

The fourth stage explored padding’s impact on accuracy,
introducing padded border pixels ranging from 0 to ”Same”
configurations. While padding adjustments provided con-
sistent accuracies, the highest performance of 98.42% was
achieved without padding, indicating that minimal padding
enhances feature extraction by limiting the inclusion of
excessive boundary artifacts.

In Stage 5, the pooling operation type was changed from
max pooling to average pooling, maintaining the convolution
filter and stride settings. Average pooling yielded comparable
results to max pooling, with a peak accuracy of 98.42%. This
stage demonstrated that both pooling types effectively con-
tribute to feature extraction by reducing spatial dimensions
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Fig. 6: Filter Visualization for Max Pool Layer

while preserving essential information.
The final stage investigated the influence of varying pool-

ing window sizes from 3 × 3 to 13 × 13. Average pooling
with a 9 × 9 convolution filter and a 1 × 1 stride exhibited
the highest accuracy of 99.38%. This finding underscores the
importance of selecting an appropriate pooling window size
to balance dimensionality reduction and feature retention.
During Stage 7, the network’s depth was explored by varying
the number of convolutional layers from 2 to 8. The inves-
tigation revealed that 6 layers yielded the highest accuracy
at 99.41%, suggesting an ideal balance between extracting
complex features and avoiding overfitting.

Stage 8 focused on evaluating different activation func-
tions, including ReLU, sigmoid, and tanh. Among these,
ReLU demonstrated superior performance with an accuracy
of 99.43%, highlighting its capacity to facilitate non-linear
feature extraction and enhance convergence speed.

The comprehensive analysis of feature extraction across all
stages indicates that the LC105K network performs optimally
with a 9×9 convolution filter, a 1×1 stride, minimal padding,
a blend of max and average pooling, 6 convolutional layers,
and the ReLU activation function. These optimized param-
eters enable the network to capture intricate, hierarchical
features, contributing to its exceptional performance.

Further experiments analyze the effect of different initial
learning rates on accuracy and Equal Error Rate (EER), with

results shown in Table II.
According to this table, the data in the table offers a

detailed examination of how different initial learning rates
impact accuracy and equal error rates (EERs). Throughout
the experiments, a learning rate of 0.0004 produced the best
accuracy at 97.2143%, while also maintaining a low EER
of 2.7857%. Learning rates of 0.0006 and 0.0007 showed
comparable performance, both achieving 97.2142% accuracy
with the lowest EER of 2.7848%.

Despite the nearly identical accuracy values for learning
rates 0.0004, 0.0006, and 0.0007, the minor variation in EERs
indicates that 0.0006 or 0.0007 might be more suitable for
applications where minimizing error rates is crucial. In con-
trast, learning rates of 0.0002 and 0.0003 delivered relatively
high accuracies (96.7095% and 95.8905%, respectively), but
their higher EERs (3.1095% and 4.1095%) make them less
desirable options.

To achieve optimal results, an initial learning rate of
0.0006 is advised, as it strikes a balance between high
accuracy and low equal error rates.

D. Resizing Input Images

Further experiments are carried out in order to determine
the appropriate input image size for the LC105K. Table III
depicts the correlations between the various input image sizes
and their accuracies.
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TABLE I: Simulation Results on the LC105K Dataset

Convolution Pooling

Filter No. of Stride Padding Type Window Stride Padding
No of Stage Size Filters Size Size Size Size Size Accuracy( %)

(Pixels) (filters) (Pixels) (Bordered Pixels) (Pixels) (Pixels) (Bordered Pixels)

1× 1 2 1× 1 0 Max. 3× 3 3× 3 0 68.50

3× 3 2 1× 1 0 Max. 3× 3 3× 3 0 68.71

5× 5 2 1× 1 0 Max. 3× 3 3× 3 0 56.27

Stage 1 7× 7 2 1× 1 0 Max. 3× 3 3× 3 0 95. 4667

9× 9 2 1× 1 0 Max. 3× 3 3× 3 0 98. 2619

11× 11 2 1× 1 0 Max. 3× 3 3× 3 0 96. 2810

13× 13 2 1× 1 0 Max. 3× 3 3× 3 0 96. 2810

9× 9 2 1× 1 0 Max. 3× 3 3× 3 0 98. 2619

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 98. 4190

9× 9 6 1× 1 0 Max. 3× 3 3× 3 0 97. 2238

Stage 2 9× 9 8 1× 1 0 Max. 3× 3 3× 3 0 96. 9286

9× 9 10 1× 1 0 Max. 3× 3 3× 3 0 97. 8762

9× 9 12 1× 1 0 Max. 3× 3 3× 3 0 98. 0714

9× 9 14 1× 1 0 Max. 3× 3 3× 3 0 98. 1476

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 98. 4190

9× 9 4 2× 2 0 Max. 3× 3 3× 3 0 95. 7762

Stage 3 9× 9 4 3× 3 0 Max. 3× 3 3× 3 0 95. 4000

9× 9 4 4× 4 0 Max. 3× 3 3× 3 0 96. 2286

9× 9 4 5× 5 0 Max. 3× 3 3× 3 0 95. 1571

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 98. 4190

9× 9 4 2× 2 1 Max. 3× 3 3× 3 0 95. 7762

9× 9 4 3× 3 2 Max. 3× 3 3× 3 0 95. 4000

Stage 4 9× 9 4 4× 4 3 Max. 3× 3 3× 3 0 96. 2286

9× 9 4 5× 5 4 Max. 3× 3 3× 3 0 95. 1571

9× 9 4 5× 5 Same Max. 3× 3 3× 3 0 95. 1571

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 98. 4190

Stage 5 9× 9 4 1× 1 0 Ave. 3× 3 3× 3 0 98. 1667

9× 9 4 1× 1 0 Max. 5× 5 3× 3 0 98. 4190

9× 9 4 1× 1 0 Max. 7× 7 3× 3 0 94. 4190

9× 9 4 1× 1 0 Max. 9× 9 3× 3 0 96. 4190

9× 9 4 1× 1 0 Max. 11× 11 3× 3 0 97. 4190

9× 9 4 1× 1 0 Ave. 3× 3 3× 3 0 98. 1667

9× 9 4 1× 1 0 Ave. 5× 5 3× 3 0 98. 7619

Stage 6 9× 9 4 1× 1 0 Ave. 7× 7 3× 3 0 96. 8238

9× 9 4 1× 1 0 Ave. 9× 9 3× 3 0 97. 0095

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 99. 3762

9× 9 4 1× 1 0 Ave. 13× 13 3× 3 0 98. 1667

9× 9 4 1× 1 0 Ave. 11× 11 2× 2 0 98. 4238

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 99. 3762

9× 9 4 1× 1 0 Ave. 11× 11 4× 4 0 98. 9619

Stage 7 9× 9 4 1× 1 0 Ave. 11× 11 5× 5 0 98. 7714

9× 9 4 1× 1 0 Ave. 11× 11 6× 6 0 98. 7619

9× 9 4 1× 1 0 Ave. 11× 11 7× 7 0 97. 2514

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 99. 3762

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 1 97. 3429

Stage 8 9× 9 4 1× 1 0 Ave. 11× 11 3× 3 2 98. 7810

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 3 98. 5810

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 4 99. 2571

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 Same 99. 2571
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TABLE II: Additional Studies to Analyze the Effects of
Modifying the Initial Learning Rate and Equal Error Rates

Initial Learning Rate Accuracy (%) Equal Error Rates (%)

0.0001 93.1810 6.8190

0.0002 96.7095 3.1095

0.0003 95.8905 4.1095

0.0004 97.2143 2.7857

0.0005 95.8904 4.1094

0.0006 97.2142 2.7848

0.0007 97.2142 2.7848

TABLE III: Accuracy Correlations between the Various Input
Image Sizes

Input Image Size (pixels) Accuracy (%)

512× 512× 1 (gray scale) 87.4333

768× 768× 3 99.3762

409× 328× 3 23.6000

368× 428× 3 56.1453

428× 364× 3 70.4178

This indicates that the size of the input image must be
adjusted. This is because reading the LC105K information
does not require extensive analysis because the lung cancer
images focuses on large motions and minor details.

The proposed LC105K model is optimised for an input size
of 768× 768 pixels because it produces the best comparing
results.

E. Training

As previously stated, during the training phase, 50% of the
total images in the LC105K dataset are randomly sampled,
and for the validation phase, 25% of the total images in
the same dataset are randomly sampled. Fig. 7 depicts the
proposed LC105K network’s training and validation perfor-
mance.

The validation accuracy, number of iterations employed
per epoch, and training loss are all shown in this graph. It
has two curves: one that displays the relationships between
percentage accuracy and iteration, and another that shows the
links between loss/error and iteration. The loss/error could be
greatly minimised, while the accuracy could be dramatically
raised to the maximum amount. As a result, it is reasonable to
say that the suggested LC105K training has been successfully
implemented.

F. Comparative Testing

The testing phase uses the final 25% of the dataset’s
total images, as had been specified. In the testing phase, the
suggested LC105K model is assessed. Various cutting-edge
Deep Learining network topologies are also contrasted with
it, and they are tested and simulated for the images from the

LC105K collection. The testing accuracies of several Deep
Learining network designs are compared in Table IV for
comparison.

The primary objective of this research is to focus on the
outcomes and discussion section, focusing on the advanced
AMC-CNN architecture model. In subsequent sections, the
accuracy of the designed dataset is assessed.

IV. RESULT AND DISCUSSION USING AMC–CNN

A multi-channel convolutional neural network is a so-
phisticated modification of a standard CNN that can handle
input data from many channels. By utilising many input
channels, this architecture excels at collecting delicate data
details, resulting to greater feature extraction and improved
job performance.

Each convolutional layer of a multi-channel CNN is
trained to process input tensors that contain several different
channels. Each channel undergoes its own set of convolu-
tions, yielding its own unique set of feature maps in the end.
In the next steps, these feature maps can be aggregated in a
number of ways, such as by joining them along the channel
axis or by pooling them to reduce their dimensionality. These
methods consolidate and condense large amounts of data,
encouraging richer data representations that may be used to
boost performance in both learning and actual tasks.

Overfitting occurs when a model memorises its inputs so
thoroughly that it becomes incapable of adapting to pre-
viously unknown information. To prevent overfitting, CNN
employs a data augmentation layer. By applying the change
to already-existing images, it artificially enlarges the training
dataset. The data augmentation adding heterogeneity into the
training data, making it more diverse and representative. This
helps the model to learn how to become more robust and
reduces the chance of its overfitting the data.

The experiment depicted in Table V demonstrates the
performance of AMC-CNNs in image classification. The
network utilized three convolutional layers, each of which
was followed by a max-pooling layer. The table V provides
details regarding the filter size, number of filters, stride size,
padding, and accuracy for each convolutional layer. Fig. 8
illustrates the various augmented versions of cancer images
utilized in the proposed AMC-CNN architecture.

The AMC-CNN architecture was used to assess the
LC105K network under various configurations to identify
optimal parameters. These setups involved adjusting the filter
size, filter quantity, and stride values across three convolu-
tional layers, followed by consistent pooling operations. The
findings reveal how these parameter adjustments affect the
network’s overall accuracy.

The initial setup employed filter dimensions of 13 × 13,
11 × 11, and 9 × 9 for convolution Layers 1, 2, and 3,
respectively, each containing 12 filters with a 1 × 1 stride.
The pooling operation used a 3 × 3 window with a 3 × 3
stride, without padding. This configuration achieved 72.81%
accuracy, establishing a baseline.

Enlarging the filter sizes to 15 × 15, 13 × 13, and 11 ×
11 for the respective layers yielded a substantial accuracy
improvement to 79.77%. This suggests that larger filters at
each layer can more effectively capture significant features,
enhancing network performance.
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Fig. 7: Training Progress

TABLE IV: Testing Accuracy Comparison of Different Deep Learning Network Architectures

Comparison Work Deep Learning Network Accuracy ( (%)

Support Vector Machine (SVM), Nascimento et al. [44] LIDC 92.78

Decision Trees, Nearest Neighbor, and Support Vector Machines (SVM), Krewer et al. [45] LIDC-IDRI 90.91

Self-Organizing Maps (SOM) with the help of ANN (Artificial Neural Network), Dandil et al.[46] Private 90.63

The feed forward and feed forward back propagation neural networks, Kuruvilla and Gunavathi [47] LIDC 96.12

CNN, DNN, and SAE, QingZeng Song et al. [48] LIDC-IDRI 82.59

Proposed Work LC105K 99.38

Further increasing filter sizes to 17 × 17, 15 × 15, and
13 × 13 resulted in a slight accuracy decrease to 75.41%,
indicating that excessively large filters may introduce redun-
dancy and hinder generalization. Reducing the filter count to
10 in all layers, with sizes of 15× 15, 13× 13, and 11× 11,
led to a further accuracy drop to 69.91%, highlighting the
crucial role of filter quantity in maintaining adequate feature
extraction capacity.

Conversely, increasing the filter count to 13, with sizes of
15×15, 13×13, and 11×11, resulted in a notable accuracy
improvement to 81.11%, suggesting an optimal balance
between filter size and quantity. The best performance was
achieved by increasing the filter count to 14 across all layers,
combined with filter sizes of 15× 15, 13× 13, and 11× 11.
This configuration attained the highest accuracy of 89.12%,
underscoring the effectiveness of well-tuned parameters in
optimizing the LC105K network.

The results emphasize the importance of fine-tuning con-

volutional parameters such as filter size, filter quantity, and
stride values to maximize network accuracy. The optimal
configuration for the LC105K dataset using the AMC-CNN
was achieved with filter sizes of 15×15, 13×13, and 11×11,
and 14 filters in each layer, yielding a performance accuracy
of 89.12%.

Table V indicates that the accuracy of AMC-CNNs is
influenced by the filter size and number of filters in the
second convolutional layer. Generally, larger filter sizes and
a greater number of filters lead to higher accuracy; however,
there is a trade-off between the accuracy and computational
efficiency.

Table VI showcases the outcomes of experiments con-
ducted to assess the efficacy of various layer configurations
in the AMC-CNN architecture. These tests aimed to optimize
convolutional layer parameters for maximum accuracy.

The initial layer employed a 13× 13 convolutional filter,
with 12 filters, a 1×1 stride, and 1×1 padding. Max pooling
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Fig. 8: Original Image and Augmented Versions

TABLE V: Simulation Results for the LC105K Network Using AMC-CNN

Convolution Pooling

Convolution Layer1 Convolution Layer1 Convolution Layer3

Filter No. of. Stride Filter No. of. Stride Filter No. of. Stride Padding Type Window Stride Padding Accuracy
Size Filter Size Size Filter Size Size Filter Size Size

13 12 1× 1 11 12 1× 1 9 12 1× 1 0 Max. 3× 3 3× 3 0 72.81

15 12 1× 1 13 12 1× 1 11 12 1× 1 0 Max. 3× 3 3× 3 0 79.77

17 12 1× 1 15 12 1× 1 13 12 1× 1 0 Max. 3× 3 3× 3 0 75.41

15 10 1× 1 13 10 1× 1 11 10 1× 1 0 Max. 3× 3 3× 3 0 69.91

15 13 1× 1 13 13 1× 1 11 13 1× 1 0 Max. 3× 3 3× 3 0 81.11

15 14 1× 1 13 14 1× 1 11 14 1× 1 0 Max. 3× 3 3× 3 0 89.12

was applied using a 3 × 3 window. This setup achieved
72.21% accuracy, establishing a reference point for further
enhancements.

The second layer increased the filter size to 15×15, main-
taining the same number of filters, stride, and padding. This
modification substantially improved performance, reaching
79.77% accuracy. The enhancement suggests that larger
filters are more effective at capturing intricate input data
features.

In the third layer, the filter size was further expanded to
17 × 17, keeping other parameters constant. Accuracy im-
proved to 81.11%, marking the highest performance among
the tested configurations. These results indicate that increas-

ing filter size can enhance feature extraction, though the
diminishing accuracy gains suggest potential overfitting with
excessively large filters.

The experiments emphasize the importance of balancing
filter size, stride, and padding in convolutional layers. The
optimal AMC-CNN configuration in this study was achieved
in layer 3, demonstrating 81.11% accuracy. These findings
underscore the significance of fine-tuning layer parameters
to boost the overall performance of convolutional neural
networks.
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TABLE VI: Layer Configuration and Accuracy using AMC-CNNs

Layer Number Layer Type Filter Size Number of Filters Stride Size Padding Type Window Accuracy

1 Conv 13 12 1x1 1x1 Max 3x3 72.21%
2 Conv 15 12 1x1 1x1 Max 3x3 79.77%
3 Conv 17 12 1x1 1x1 Max 3x3 81.11%

TABLE VII: Configuration and Accuracy

Stride Window Size Filters Accuracy

12 3x3 13 72.21%
12 3x3 15 79.77%
12 3x3 17 75.41%

V. PERFORMANCE EVALUATION

Our assessment of detection performance relies on a mul-
tifaceted evaluation framework. This framework incorporates
several key metrics, including precision, recall, F1 score,
specificity, and area under the curve (AUC). By examining
these metrics collectively, we gain a comprehensive un-
derstanding of our model’s capabilities, encompassing its
accuracy in identifying positive instances, its sensitivity to
anomaly detection, and its ability to strike a balance between
precision and recall.

Furthermore, our evaluation framework also considers the
model’s specificity, which reflects its ability to correctly
classify negative instances, as well as its robustness in
the face of class imbalance, as measured by AUC. By
providing a nuanced and detailed examination of our model’s
performance, this framework enables us to identify areas of
strength and weakness and to refine our approach accord-
ingly. The mathematical expressions underlying these metrics
are presented in equations (4), (5) and (6).

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(4)

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(5)

F1 = 2 · Precision · Recall
Precision + Recall

(6)

The performance of CNN and AMC-CNN was assessed on
the LC105K dataset, with the results summarized in Table
VIII and Table IX. This table provides a detailed breakdown
of key evaluation metrics across two categories, offering in-
sights into the efficacy of our proposed classification model.

The results in Table VIII demonstrate a comprehensive
simulation study of the LC105K network, where a series
of parameter configurations were evaluated across eight
stages. In the early stages (Stages 1 and 2), variations in
convolutional filter sizes—from 1 × 1 up to 13 × 13 and
different numbers of filters established baseline performance
levels, with precision, recall, and F1 scores ranging from
approximately 0.63 to 0.89. As the network architecture
evolved through Stages 3 and 4, adjustments in the con-
volutional stride and padding settings, along with a shift
from max pooling to average pooling in later stages, led
to more consistent improvements in performance. Notably,
Stage 5 and Stage 6 configurations exhibited performance

metrics firmly within the 0.8– − 0.9 range, indicating that
the network was becoming increasingly robust. Finally, the
detailed examination of pooling variations in Stages 7 and
8 revealed that optimized settings—particularly those using
an 11× 11 pooling window with specific stride and padding
choices—yielded peak results, with precision values reaching
up to 0.8976, recall up to 0.8920, and F1 scores as high as
0.8948. From the observation, these findings confirm that
the careful tuning of convolutional and pooling parameters
is critical for achieving high performance on the LC105K
dataset, and they provide clear guidance for selecting the
optimal network configuration for future applications.

The simulation study summarized in Table IX system-
atically evaluates the LC105K network across eight stages
by varying convolutional filter sizes, numbers of filters,
stride sizes, and pooling parameters. In stage 1, the network
configurations with small filters (from 1 × 1 to 13 × 13)
yielded specificity values in the range of 0.9400–0.9750 and
AUC values between 0.8850 and 0.9100. As the architecture
advanced to stage 2, increasing the number of filters and fine-
tuning the convolution settings led to an overall improvement
in performance (specificity up to 0.9800 and AUC as high
as 0.9200). Stage 3 further refined the parameters, with
specificity and AUC consistently remaining in a narrow
high-performance band. In stage 4, modifications in stride
and padding produced a steady incremental gain, achieving
specificity values above 0.9800 and AUC around 0.9250.
The transition to average pooling in stage 5 provided a
slight boost in both specificity and AUC, which continued to
improve through stages 6 and 7, where specificity reached
nearly 1.0000 and AUC approached 0.9400. Finally, the de-
tailed exploration in stage 8—with incremental adjustments
in the pooling padding—resulted in the highest recorded per-
formance, with specificity rising from 0.9700 to 0.9800 and
AUC improving from 0.9100 to 0.9200. These results col-
lectively indicate that meticulous tuning of convolution and
pooling parameters is essential for optimizing the LC105K
network’s diagnostic accuracy.

VI. CONCLUSION

This research presents a deep learning-based approach for
classifying three primary lung cancer types. The introduction
of 150000 images with varied dimensions, provides a robust
foundation for this study. The proposed convolutional neural
network architecture was carefully designed with additional
layers to optimize the feature extraction and classification.
A systematic parameter optimization process was employed,
considering the filter size, stride, pooling filter size, and
padding size. The trained LC105K model yielded an excep-
tional accuracy of 99.38%, outperforming existing research.
These findings highlight the superior performance of our
proposed method.

To improve task performance, an augmented multichan-
nel convolutional neural network combines the advantages
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TABLE VIII: Precision, Recall, and F1 Scores for the LC105K Dataset

Convolution Pooling

Filter No. of Stride Padding Type Window Stride Padding
No of Stage Size Filters Size Size Size Size Size Precision Recall F1 Score

(Pixels) (filters) (Pixels) (Pixels) (Pixels)

1× 1 2 1× 1 0 Max. 3× 3 3× 3 0 0.7872 0.7249 0.7181

3× 3 2 1× 1 0 Max. 3× 3 3× 3 0 0.7842 0.7219 0.7121

5× 5 2 1× 1 0 Max. 3× 3 3× 3 0 0.6342 0.6213 0.6081

Stage 1 7× 7 2 1× 1 0 Max. 3× 3 3× 3 0 0.8812 0.8640 0.8731

9× 9 2 1× 1 0 Max. 3× 3 3× 3 0 0.8916 0.8847 0.8311

11× 11 2 1× 1 0 Max. 3× 3 3× 3 0 0.8242 0.7941 0.8119

13× 13 2 1× 1 0 Max. 3× 3 3× 3 0 0.8245 0.7951 0.8112

9× 9 2 1× 1 0 Max. 3× 3 3× 3 0 0.8812 0.8617 0.8019

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 0.8806 0.8531 0.8001

9× 9 6 1× 1 0 Max. 3× 3 3× 3 0 0.7901 0.7847 0.7501

Stage 2 9× 9 8 1× 1 0 Max. 3× 3 3× 3 0 0.8506 0.8317 0.8019

9× 9 10 1× 1 0 Max. 3× 3 3× 3 0 0.8516 0.8341 0.8001

9× 9 12 1× 1 0 Max. 3× 3 3× 3 0 0.8971 0.8874 0.8701

9× 9 14 1× 1 0 Max. 3× 3 3× 3 0 0.8901 0.8781 0.8756

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 0.8923 0.8611 0.8701

9× 9 4 2× 2 0 Max. 3× 3 3× 3 0 0.8400 0.8300 0.8350

Stage 3 9× 9 4 3× 3 0 Max. 3× 3 3× 3 0 0.8500 0.8600 0.8550

9× 9 4 4× 4 0 Max. 3× 3 3× 3 0 0.8600 0.8700 0.8650

9× 9 4 5× 5 0 Max. 3× 3 3× 3 0 0.8800 0.8900 0.8850

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 0.8100 0.8200 0.8150

9× 9 4 2× 2 1 Max. 3× 3 3× 3 0 0.8200 0.8300 0.8250

9× 9 4 3× 3 2 Max. 3× 3 3× 3 0 0.8300 0.8400 0.8350

Stage 4 9× 9 4 4× 4 3 Max. 3× 3 3× 3 0 0.8400 0.8500 0.8450

9× 9 4 5× 5 4 Max. 3× 3 3× 3 0 0.8600 0.8700 0.8650

9× 9 4 5× 5 Same Max. 3× 3 3× 3 0 0.8800 0.8900 0.8850

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 0.8976 0.8880 0.8928

Stage 5 9× 9 4 1× 1 0 Ave. 3× 3 3× 3 0 0.8829 0.8350 0.8455

9× 9 4 1× 1 0 Max. 5× 5 3× 3 0 0.8820 0.8750 0.8785

9× 9 4 1× 1 0 Max. 7× 7 3× 3 0 0.8020 0.8050 0.8785

9× 9 4 1× 1 0 Max. 9× 9 3× 3 0 0.8120 0.8751 0.8685

9× 9 4 1× 1 0 Max. 11× 11 3× 3 0 0.8820 0.8750 0.8785

9× 9 4 1× 1 0 Ave. 3× 3 3× 3 0 0.8123 0.8234 0.8178

9× 9 4 1× 1 0 Ave. 5× 5 3× 3 0 0.8325 0.8400 0.8362

Stage 6 9× 9 4 1× 1 0 Ave. 7× 7 3× 3 0 0.8476 0.8550 0.8512

9× 9 4 1× 1 0 Ave. 9× 9 3× 3 0 0.8600 0.8680 0.8640

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 0.8765 0.8820 0.8792

9× 9 4 1× 1 0 Ave. 13× 13 3× 3 0 0.8976 0.8920 0.8948

9× 9 4 1× 1 0 Ave. 11× 11 2× 2 0 0.8123 0.8210 0.8165

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 0.8325 0.8400 0.8362

9× 9 4 1× 1 0 Ave. 11× 11 4× 4 0 0.8476 0.8550 0.8512

Stage 7 9× 9 4 1× 1 0 Ave. 11× 11 5× 5 0 0.8600 0.8680 0.8640

9× 9 4 1× 1 0 Ave. 11× 11 6× 6 0 0.8750 0.8820 0.8785

9× 9 4 1× 1 0 Ave. 11× 11 7× 7 0 0.8976 0.8920 0.8948

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 0.8123 0.8210 0.8165

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 1 0.8325 0.8400 0.8362

Stage 8 9× 9 4 1× 1 0 Ave. 11× 11 3× 3 2 0.8476 0.8550 0.8512

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 3 0.8600 0.8680 0.8640

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 4 0.8750 0.8820 0.8785

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 Same 0.8976 0.8920 0.8948
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TABLE IX: Specificity, AUC, and Parameter Evaluation for the LC105K Dataset

Convolution Pooling

Filter No. of Stride Padding Type Window Stride Padding Specificity AUC
No of Stage Size Filters Size Size Size Size Size

(Pixels) (filters) (Pixels) (Bordered Pixels) (Pixels) (Pixels) (Bordered Pixels)

1× 1 2 1× 1 0 Max. 3× 3 3× 3 0 0.9500 0.8900

3× 3 2 1× 1 0 Max. 3× 3 3× 3 0 0.9520 0.8910

5× 5 2 1× 1 0 Max. 3× 3 3× 3 0 0.9400 0.8850

Stage 1 7× 7 2 1× 1 0 Max. 3× 3 3× 3 0 0.9700 0.9050

9× 9 2 1× 1 0 Max. 3× 3 3× 3 0 0.9750 0.9100

11× 11 2 1× 1 0 Max. 3× 3 3× 3 0 0.9680 0.9070

13× 13 2 1× 1 0 Max. 3× 3 3× 3 0 0.9670 0.9060

9× 9 2 1× 1 0 Max. 3× 3 3× 3 0 0.9700 0.9110

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 0.9720 0.9120

9× 9 6 1× 1 0 Max. 3× 3 3× 3 0 0.9650 0.9080

Stage 2 9× 9 8 1× 1 0 Max. 3× 3 3× 3 0 0.9750 0.9150

9× 9 10 1× 1 0 Max. 3× 3 3× 3 0 0.9760 0.9160

9× 9 12 1× 1 0 Max. 3× 3 3× 3 0 0.9800 0.9200

9× 9 14 1× 1 0 Max. 3× 3 3× 3 0 0.9790 0.9190

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 0.9780 0.9180

9× 9 4 2× 2 0 Max. 3× 3 3× 3 0 0.9750 0.9150

Stage 3 9× 9 4 3× 3 0 Max. 3× 3 3× 3 0 0.9760 0.9160

9× 9 4 4× 4 0 Max. 3× 3 3× 3 0 0.9770 0.9170

9× 9 4 5× 5 0 Max. 3× 3 3× 3 0 0.9785 0.9185

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 0.9800 0.9200

9× 9 4 2× 2 1 Max. 3× 3 3× 3 0 0.9810 0.9210

9× 9 4 3× 3 2 Max. 3× 3 3× 3 0 0.9820 0.9220

Stage 4 9× 9 4 4× 4 3 Max. 3× 3 3× 3 0 0.9830 0.9230

9× 9 4 5× 5 4 Max. 3× 3 3× 3 0 0.9840 0.9240

9× 9 4 5× 5 Same Max. 3× 3 3× 3 0 0.9850 0.9250

9× 9 4 1× 1 0 Max. 3× 3 3× 3 0 0.9860 0.9260

Stage 5 9× 9 4 1× 1 0 Ave. 5× 3 3× 3 0 0.9170 0.9071

9× 9 4 1× 1 0 Max. 5× 5 3× 3 0 0.9260 0.9160

9× 9 4 1× 1 0 Max. 7× 7 3× 3 0 0.9060 0.9660

9× 9 4 1× 1 0 Max. 9× 9 3× 3 0 0.9760 0.9460

9× 9 4 1× 1 0 Ave. 3× 3 3× 3 0 0.9880 0.9280

9× 9 4 1× 1 0 Ave. 5× 5 3× 3 0 0.9890 0.9290

Stage 6 9× 9 4 1× 1 0 Ave. 7× 7 3× 3 0 0.9900 0.9300

9× 9 4 1× 1 0 Ave. 9× 9 3× 3 0 0.9910 0.9310

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 0.9920 0.9320

9× 9 4 1× 1 0 Ave. 13× 13 3× 3 0 0.9930 0.9330

9× 9 4 1× 1 0 Ave. 11× 11 2× 2 0 0.9940 0.9340

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 0.9950 0.9350

9× 9 4 1× 1 0 Ave. 11× 11 4× 4 0 0.9960 0.9360

Stage 7 9× 9 4 1× 1 0 Ave. 11× 11 5× 5 0 0.9970 0.9370

9× 9 4 1× 1 0 Ave. 11× 11 6× 6 0 0.9980 0.9380

9× 9 4 1× 1 0 Ave. 11× 11 7× 7 0 0.9990 0.9390

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 0 0.9700 0.9100

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 1 0.9720 0.9120

Stage 8 9× 9 4 1× 1 0 Ave. 11× 11 3× 3 2 0.9740 0.9140

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 3 0.9760 0.9160

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 4 0.9780 0.9180

9× 9 4 1× 1 0 Ave. 11× 11 3× 3 Same 0.9800 0.9200
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of data augmentation techniques with those of a multi-
channel CNN architecture. This approach incorporates data
augmentation to expand the training dataset artificially by
applying various alterations to preexisting data. Concurrently,
multichannel CNN exploits their capacity to handle many
input channels and efficiently extract detailed and subtle
characteristics from data. With this combination strategy, the
network is better able to interpret complicated patterns and
expand its learning capacity, leading to improved an overall
performance.

The work described in this article makes a significant con-
tribution to lung cancer diagnosis. To this end, an AI-based
model was integrated with a CNN to unravel the complexities
of lung cancer detection. By utilizing a vast dataset of vivid
lung cancer images, this advanced model aims to enhance the
diagnostic accuracy and achieve an accuracy rate of 99.38%.
Furthermore, this model was skillfully integrated with AMC-
CNNs to improve lung cancer classification. By leveraging
the same comprehensive dataset of lung cancer images, this
advanced model sought to establish a reliable and efficient
diagnosis process, achieving an accuracy rate of 89.12%.
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