
 

   Abstract: This paper presents an adaptive sliding mode 

control method for mobile robots under the saturation 

conditions of speed and torque. Under the condition of 

complex terrain and uncertain external disturbance, the 

kinematic model is constructed by combining Lyapunov 

stability theory and Barbalat extended lemma, and the 

control law satisfying the velocity constraint is designed. 

In order to solve the problem of decreasing control 

performance caused by torque saturation, an auxiliary 

dynamic system is proposed to dynamically adjust the 

torque output to avoid control signal failure by solving 

the torque difference between the limited and the ideal 

and combining with the tracking error parameters. 

Finally, considering the external disturbance of the 

mobile robot, an adaptive disturbance observer is 

proposed according to the influence mechanism of the 

external disturbance on the dynamic model, so that the 

system can estimate the external disturbance in real time, 

and enhance the robustness and adaptability of the 

control. Simulation results show that this method can 

effectively reduce the trajectory tracking error and 

ensure the stability and accuracy of the system in 

complex environment. 

 

Keywords: Wheeled mobile robots; Saturation; 

Disturbance observer; Sliding mode control 

I. INTRODUCTION 

n the process of autonomous navigation and control of 

mobile robots, the saturation of speed and torque is a key 

problem, which will significantly affect the performance and 

stability of the control system[1-4]. In particular, the 

topography of the planet's surface is complex and varied, 

including steep slopes, pits, sand, rocks and so on. Saturation 

of speed and torque can limit the robot's ability to maneuver 

in these complex terrains, while operating at saturation can 
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lead to increased wear on motors or mechanical components. 

This puts forward higher requirements for high-precision 

trajectory tracking and robustness of mobile robots. However, 

the traditional control methods usually ignore the limit of 

input saturation, which makes the system difficult to meet the 

expected performance indicators in practical applications.  

In recent years, domestic and foreign scholars have made 

some explorations and achieved some research results in 

response to such working conditions [4-7]. Chen et al. [8] 

proposed a tracking control method based on first-order 

filters, which designed the controller under the constraints of 

speed and torque. However, it is assumed that the inertia 

matrix and damping coefficient are constant, but these 

parameters may change in actual operation due to the change 

of speed, acceleration, load and other factors. Chen et al. [9] 

proposed a control method combining adaptive neural 

network and barrier Lyapunov function to effectively deal 

with velocity constraints and system uncertainties and 

improve trajectory tracking accuracy, but its dynamic model 

did not consider the problem of moment limitation. Bla Z. et 

al. [10] proposed a high order kinematic model to address the 

discontinuity problem of Angle errors in traditional models. 

Du et al. [11] proposed and designed an auxiliary dynamic 

system to ensure that the control signal would not exceed the 

physical limit of the propulsion system, so as to prevent 

system performance degradation or instability. Shojaei et al. 

[12] proposed a neural adaptive robust output feedback 

controller, which uses neural network and adaptive robust 

control technology to deal with the uncertainty and unknown 

parameters of the system, and reduces the influence of 

actuator saturation through the saturation characteristics of 

hyper hyperbolic tangent function. Shojaei et al. [13] studied 

the trajectory tracking control problem of internally damped 

Euler-Lagrange (EL) systems with input saturation 

constraints. An adaptive controller based on output feedback 

is proposed, which uses generalized saturation function to 

reduce the risk of actuator saturation effectively. The 

semi-global uniform final boundness of the system is proved 

by Lyapunov stability analysis. The research results of the 

appeal provide a way to consider the high precision control 

under the conditions of speed and moment limitation. 

Considering the complexity of mobile robot working 

environment, a sliding mode control method based on 

adaptive disturbance observer is proposed to solve the mobile 

robot control problem with modeling error, external 

disturbance and input-output limitation. The main 

contributions of this paper are as follows:  

(i) By combining Lyapunov stability theory and Barbalat 

extended lemma to determine the parameter selection 

conditions, the control law satisfying the velocity and 

acceleration constraints is designed. 

(ii) Aiming at the nonlinear saturation problem of the output 

torque, an auxiliary dynamic system is designed to 
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dynamically compensate and adjust when the physical limit 

is about to be reached, so as to avoid the failure or 

performance degradation caused by excessive control signal. 

(iii) This paper designs an adaptive disturbance observer to 

quickly estimate external disturbances acting on mobile 

robots, ensuring the stability and robustness of trajectory 

tracking in complex environments. 

II. KINEMATIC AND DYNAMIC MODELING OF WHEELED 

MOBILE ROBOT 

Robot kinematics modeling is the basis of robot motion 

control, and the accuracy of the model directly determines the 

accuracy of the control. However, it is often difficult to 

achieve the desired performance index when the trajectory 

tracking is only carried out at the kinematic level[14-17]. 

Therefore, this paper considers the combination of 

kinematics and dynamics to establish the functional 

relationship between torque and velocity. 

Ideally, the Lagrangian formal dynamic equation of WMR 

is generally expressed as: 

( ) ( , ) ( ) ( ) ( )T

dM q q V q q q G q A q B q  + + + + =  (1) 

Where: ( )M q represents the inertia matrix, ( , )V q q  denotes 

the Coriolis matrix, ( )G q stands for the gravitational term, 

( )B q  signifies the transformation matrix, ( )TA q  is the 

matrix associated with constraints,   represents the torque 

term, and   denotes the Lagrangian operator. 

 

 
Fig. 1  Wheeled mobile robot movement diagram 

 

Fig.1 is a schematic diagram of a wheeled mobile robot 

whose driving wheel center coincides with the robot's center 

of gravity; XOY represents the inertial coordinate system, 

while c c cx o y  denotes the robot coordinate system. 

 , ,
T

q x y = represents the position and orientation angle of 

the robot in the inertial coordinate system. 

The transformation of the velocity of the robot's center of 

mass from the inertial coordinate system to the robot 

coordinate system can be calculated as follows: 

cos 0

sin 0

0 1

x
v

y
w







   
    

=     
       

 (2) 

v  is the linear velocity of the robot, and w  is the angular 

velocity of the robot. For ease of calculation, let the 

transformation matrix be: 

cos 0

( ) sin 0

0 1

S q





 
 

=
 
  

 (3) 

By differentiating equation (1) with respect to time, 

substituting equation (2) and multiplying by ( )TS q , the 

constraint matrix  ( ) sin cos 0TA q  = − can be 

eliminated because ( ) ( ) 0T TS q A q = . Therefore, the 

dynamic model of WMR obtained is as follows: 
1 1( ) ( ) ( )T T T T

dS B S MSv S B S MS VS v  − −+ + + =  (4) 

[ ]T

d dl dr  =  represents the external disturbance acting 

on the WMR, which can be rewritten by a properly defined 

model as: 

( ) ( ) dM q v V q v  + + =  (5) 

In formula (5), 
1( ) ( ) ,T TM q S B S MS−=  

1( ) ( ) ( )T TV q S B S MS VS−= + . 

Note: TS B  is a constant non-singular matrix that depends 

on the distance between the drive wheel and the wheel radius 

(see Figure 1). System (4) describes the behavior of a 

nonholonomic system in a new set of local coordinates. Thus, 

the properties of the dynamics remain unchanged in the new 

coordinate system. 

III.  KINEMATIC CONTROLLER BASED ON VELOCITY 

SATURATION CONSTRAINT 

Design the control system as illustrated in Fig. 2. 

 

 
Fig. 2  Control system framework 

 

In practical situations, excessive speed will cause the 

wheels of the robot to slip, and the motor will fluctuate at low 

speed, and the performance will decline. And too much 

acceleration can cause the wheel to slip or even overturn. 

Therefore, this paper designs the restriction conditions that 

meet the actual situation. 

Hypothesis 1: The desired linear and angular velocities of 

the robot meet the following constraints: 

min max

min max

,v w

v v v

w w w

v a w a

  


−  


 

 (6) 

Where, minv , maxv , minw , maxw , va and 
wa are normal 

numbers. 

Given the reference trajectory ( ) ( , , )T

d d d dq t x y =  , the 

kinematic model of the expected pose can be expressed as: 

cos 0

sin 0

0 1

d d

d

d d

d

d

x
v

y
w







   
    

=     
       

 (7) 
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Where dv  is the desired linear velocity of the robot and 

dw  is the desired angular velocity of the robot. The expected 

linear and angular velocities meet the following conditions: 

min maxrm d dv v v v v     (8) 

maxd dw w w   (9) 

,d da v d da wv v a w w a     (10) 

Where dv , dav , dw , and daw are normal numbers. 

The tracking error is: 

cos sin 0

( ) sin cos 0

0 0 1

e d

e d

e d

x x x

e t y y y

 

 

  

−     
     

= = − −
     
     −     

 (11) 

Taking the derivative of ( )e t  gives: 

cos

( ) sin

e d d e

e d e

e d

x v v x

e t y v x

w

 

 

 

 − + 
  

= = +  
   −   

 (12) 

Item cosd ev  is often included in common auxiliary speed 

control laws, but this makes it difficult for the control law to 

meet the requirements of the lower limit of control speed (8). 

Therefore, this paper designs a new feedback function in the 

control law, and satisfies the restricted conditions to design 

the following auxiliary speed controller: 

1

3
2

1

cos sin
2 2

d

r

d e e
d e er

v
v

v
w y xw



  


+ 
   

=     + + −       

 (13) 

Where 
3 is a constant, 

2 2

1 1 e ex y = + +  , 
1 , 

2  is the 

feedback function, as follows: 

1
1 1

1

2 2 2 sin
2

e

e

x
 


  


= − + 


 = − +


 (14) 

Where
1 and

2 are positive real numbers and ( )1 0 0 =   

and ( )2 0 0 = . 

1 1

2 2

 

 

 




 (15) 

According to the above formula, it can also be obtained: 

1
1 1 1

1

2 2 2 2 2

2

sin 2
2

e

e

x
  


    


 + 





= + 



 (16) 

From the above formula, 
1  is obtained, and 

2  is 

bounded and continuous. 

Lemma 1: If there exists a bounded function ( )z t that 

satisfies 0z → when t →  , and ( )z z f x= − +  , where  

( )f t  is bounded and uniformly continuous, then 0z →   and 

( ) 0f t →   when t →   . 

Select the Lyapunov function as: 

2 2 2 2

1 2 1 3 21 1 1 cos
2

e
e eV x y k k k


 

 
= + + − + − + + 

 

 (17) 

Differentiating the above equation and substituting 

equations (12) and (13) into it yields: 

( )

( )

1
2 1 1 3 2 2

1

1

1

31
2

1

2 22 1 1
2 1 3 2 3 2 2

1

1

1

sin 2 2
2 2

1
cos 1 sin

sin cos sin
2 2 2 2

2
2 2 2 sin

2

1
cos 1 sin

e e e e e
e

d e e e d e e

e d e e
e e

e e

d e e d e e

x x y y k
V k k

v x x v y

vk
y x

k x
k k k

v x v y

k


    

  

   


  
   

 



+
= + + +



= − − +  

  
− + −  

  

− + − +


= − +

− ( )( )

( )

3

1 1
2 1 2 3 2

1

2 2

2 1 3 2

cos 1 sin
4

2 1 sin 2
2 2

2 2

d e e e e

e e

v x y

x k
k k

k k

 

 
  

 


− − 



 
+ − + − 

  

− −  (18) 

If the following conditions are met, then 0V = . 

2 1

1
3 2

1 3

2 1

2
2

4

k

k
k

k







=



=


=

 (19) 

Since 0V   and ( ) ( ) ( )( ), , ,e e eV t x t y t t  is positive 

definite, it follows that ( ) ( ) ( )( ), , ,e e eV t x t y t t is uniformly 

bounded, and thus the errors ,e ex y and 
e   are uniformly 

bounded. Since 
1 2 1, ,   and 

2 are bounded, V and 

2 1 1 3 2 24 4V k k   = − − are also bounded. According to 

Barbalat's lemma, 0V → when t →  , that is, 
1 0 →   

and
2 0 → when t →  . According to lemma 1 and 

equation (14), ex and sin
2

e
converge to zero. 

According to equation (13), it can be obtained: 

3
2

1

cos sin
2 2

d e e
e e e

v
y x

  
 

 
= + − 

  

 (20) 

Obviously e is uniformly continuous. Since 
2 0 → and 

sin 0
2

e
→  have been proved above, according to Barbalat's 

lemma, 0e → when t →  , that is, 

3

2

1

cos sin 0
2 2

d e e

e e

v
y x

  


 
+ − → 

  
, so 

ey  can converge 

to zero. Stability proved complete. Finally, the hypothesis 

condition under velocity constraint is proved. According to 

equations (13) and (15). 

3
2 1

1

1 1

3
2

1

2 3

cos sin
2 2

cos sin
2 2

d e e
d d e e

dm dm

d e e
d e e

d d

v
v v v y x

v v v

v
w w y x

w v

  
 

 

  


 

  
 +  + + − 

  
  −  −


 
 + + −    


 + +

 (21) 

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 2019-2026

 
______________________________________________________________________________________ 



 

According to equation (20) : 

3
2 2 3

1

cos sin
2 2

d e e
e e e d

v
y x v

  
   

 
= + −  + 

  

 (22) 

and 

( )

( ) ( )

1

1

3

1

1

2 2

1

1
cos sin /

2 2

1 1
cos sin sin cos

2 2 2 2 2 2

cos sin
2 2

sin cos cos sin
2 2

1
cos

2 2

cos

e e
e e

e e e e
e e e e e e

e e
e e e e e e

e e
d e e d e e

e
e e e

e

d y x dt

y y x x

y x x x y y

v wx v wy v

x y

y

 

   
 

 

 
 


 



  
−  

   

− − −

=


 
− + 

 −


− − − −




 
− + + 

 



−

(

)

3

1

1

3

1

sin cos
2 2

sin

e e
e d e e

d e e e d e

x v x

v x x y v




 

 
− 

 



− − +



 

1 2 37 3 3 3d d dv v w   + + + +  (23) 

Taking the derivative of 
rv and

rw  separately gives: 

1 1

2 3

1

1 2 3

2

1
cos sin /

2 2

7 3 5 3

r d da

e e
r d d e e

da d d d

v v v

w w v d y x dt

w v v w

 

 
 

  

= +  +


   
= + + −   

   
  + + + + +

 (24) 

According to the above design parameters to meet the 

conditions: 

1 max

1 min

2 3 max

1

1 2 3

2

7 3 5 3

d

dm

d d

da v

da d d d w

v v

v v

w v w

v a

w v v w a





 



  

+ 


− 



+ + 
 + 

 + + + + + 

 (25) 

By selecting reasonable parameters 
1 , 

2   and 
3  

according to equation (10), condition (25) and 0V  can be 

satisfied. Therefore, both the speed and acceleration limits 

can be satisfied, and the tracking error ( )e t can be 

asymptotically converged to zero. 

IV. DYNAMIC CONTROLLER BASED ON TORQUE SATURATION 

CONSTRAINT  

A.  Integral sliding mode control  

In order to improve the dynamic adaptability of WMR to 

uncertain disturbance, a robot dynamic controller is           

designed in this paper. First, the auxiliary velocity tracking    

error vector v re  = −  , where  
T

r r rv w = , is defined. 

On this basis, the integral sliding mode surface is designed: 

( )
0

t

v vs t ce e dt= +   (26) 

Where  1 2c c c= , 1c and 2c are normal numbers. If the 

perturbation of the system is known to be  1 2

T

d d d  = , 

the WMR dynamics equation can be expressed in terms of the 

sliding mode surface as: 

v r m dMs cMe Mv V  = − + − −  (27) 

Based on this assumption of known system perturbations, 

the design control law is: 

( )1 2tanhr v m dMv cMe V M ks s    = − + + − +  
 (28) 

Where 
1  and 

2  are normal numbers. The hyperbolic 

tangent function ( )tanh ks was chosen because, as a 

continuous function, it has better buffeting suppression 

properties than the sign function, where 0k    is used to 

determine the step length time. 

Lemma 2: For the dynamic model (5) of wheeled mobile 

robot, when the external disturbance d  is known, the 

integral sliding mode surface formula (26) and the total 

controller formula (28) can ensure the global asymptotic 

stability of the control system. 

The stability analysis is as follows[27-35]: 

Select the Lyapunov function as: 

1

1

2

TV s s=  (29) 

Obviously 
1 0V  . The derivative of time is:  

( )
1

1 1 1

T

T

v r m d

V s s

s ce v M M V M  − − −

=

= − + − −

 (30) 

Substituting equation (28) into equation (30) yields: 

( )1 1 2tanhT TV s ks s s = − −  (31) 

Obviously, 
1 0V  . LaSalle theorem[18] is used to make 

the tracking error converge to zero globally. 

B.  Adaptive control based on disturbance observer 

The external interference to WMR, such as sensor noise 

and uncertain friction force, will cause the system variables 

related to the sliding mode surface to produce severe 

buffeting, which makes the controller stability cannot be 

guaranteed. In complex unstructured environments, uncertain 

perturbations must be unknown. Therefore, the controller 

with the preset disturbance value is not satisfied with the 

actual WMR control. However, the rate of change of 

interference is much slower than the processing speed of the 

computer. Therefore, an adaptive disturbance observer can be 

introduced to estimate the uncertain disturbance[19-25]. 

The estimated disturbance vector is expressed as 

 1 2
ˆ ˆ ˆ

T

d d d  = , and the disturbance estimation error is 

ˆ
d d d  = − . Since the rate of change of the disturbance is 

slower due to the faster processing speed of the computer, 

ˆ
d d = . Therefore, the original control law can be extended 

by introducing adaptive disturbance estimation to:   

( )1 2
ˆ tanhr v m dM cMe V M ks s     = − + + − +  

 (32) 

1ˆ T

d s M  −= −  (33) 

Where 0  .   determines the time of convergence. 
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As shown in Figure 3, in practical applications, due to the 

physical limitations of the motor, the controlling force and 

torque are affected by saturation nonlinearity, which can be 

described as follows: 

max max

max max

max max

c

c c

c

  

    

  




= −  
−  −

  (34) 

 

 
Fig.3 Torque saturation diagram 

 

In order to prevent input saturation, this paper constructs 

the following auxiliary dynamic system:  
2

1

1

2

0

T

i i

i

s

K

  
 

  
  

=


 +   − −= + 





，  (35) 

Where  1 2

T
  =  is the state vector of the auxiliary 

power system, c   = − , 
2 2TK K R 

=   is a positive 

definite matrix, and 0   is a smaller normal number. The 

auxiliary dynamic system (35) avoids the singularity problem 

of 0 =  when   . Therefore, the control law is 

expanded to: 

( )1 2

ˆ

tanh

c r v m s dM cMe V MK

M ks s

    

 

= − + − +

− +  

  (36) 

Lemma 3: For the dynamic model (5) of wheeled mobile 

robot, when the external disturbance 
d is unknown, the 

integral sliding mode surface formula (24), adaptive 

interference observer (33) and total controller formula (32) 

are adopted to achieve global asymptotic stability of the 

control system. 

Select the Lyapunov function as:  

2

1 1 1

2 2 2

T T T

d dV s s    


= + +  (37) 

Obviously 2 0V  . The derivative of time is:  

2

1
ˆT T T

d dV s s    


= + +  (38) 

Considering the auxiliary dynamic system to prevent the 

moment saturation, the stability analysis of the control 

system is divided into two cases. The first case is when 

  , according to equation (35) and young's 

inequality[26]: 

2

1

2

1

1

2

1

2

T T T T

i i

i

T T

i i

i

K s

K s





        

    

=

=

= − −  −   + 

 − −  +





 (39) 

Substituting equations (33), (36), and (39) into equations (38) 

yields:  

(

)

( )( )

( )

( )

1 1

2

1 1

1

1

1 2

1 2

2

1

1
ˆ ˆ

ˆ

1
ˆ

tanh

1 1
tanh

2 2

1

2

T

v r c m

T T

d d d d

T

v r c m d

T T T

d d

T T T T

s

T T T T T

s s

T T

i i

i

V s ce M M V

M M s

s ce M V

s M

s ks s s s K

s ks s s s s K K

K s

  

     


   

   


    

   

    



− −

− −

−

−

=

= − + −

− + + +

= − + − −

 
+ + + 

 

= − − − +

 − − − −

− −  +

 −



( )1 2

1
tanh

2

1 1

2 2

T T

T T

s

s ks s s

K K K



 

 
− + 

 

 
− + − 

 

 (40) 

The second case is when    , then: 

0T  =  (41) 

Substituting equations (33), (36), and (41) into equations 

(38) yields: 

( )

( )

2 1 2

1 2

1 1
tanh

2 2

1 1
tanh

2 2

T T T T T

s s

T T T T

s s

V s ks s s s s K K

s ks s s K K

   

   

 − − − −

 
 − − + − 

 

 (42) 

If the design parameters K , sK and 2 meet the following 

conditions, 2 0V  . 

1 1

2 2

T

s sK K K +   (43) 

V.  SIMULATION EXPERIMENT 

 

 
Fig. 4  WMR platform 

 

In this section, this paper conducts simulation experiments 

on the mobile robot platform subject to velocity 

constraint/torque saturation constraint. Figure 4 is shown as 
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the controlled object verified by the experiment to prove the 

effectiveness of the proposed scheme. Formula (5) is used as 

the dynamic mathematical model. 

The robot system parameters are the total weight m=10kg, 

the total moment of inertia of the robot 27.884I kg m=  , the 

radius of the wheel r=0.05, and the distance between the 

wheel and the center of the two wheels b=0.15m. 

The parametric equation 
cos

( 0)
sin

d

d

x t
t

y t

=


=
 for the 

expected trajectory is a circular trajectory. The design 

parameters of the controller in this paper 

are 1 2 3 1 20.9, 0.2, 1.4, 7, (5,5)k k k c c K diag= = = = = = , and the 

external disturbance  0.1cos ,0.1sind t t = . At the same 

time, in order to make the disturbance irregular, the pose 

disturbance  0.1cos ,0.1,0.1sind t t  = is added. The initial 

pose is  1.5 0.5 0
T

q = − , the expected linear velocity is 

0.6 /dv m s= , and the expected angular velocity is 

0.3 /dv rad s= . 

The tracking situation of a given expected circular 

trajectory is shown in Fig.5. It can be seen from Fig.6 of 

position and pose tracking error that the error convergence 

accuracy can basically be stabilized at about 0.1 meters. The 

curves of the expected speed, virtual speed and actual speed 

are shown in Fig.7, from which it can be seen that the actual 

speed successfully tracks the expected linear speed and meets 

the condition that the speed limit is up to 1m/s. Fig.8 shows 

the tracking error curve of the velocity, because the existence 

of disturbance makes the velocity fluctuate, but the control 

system has controlled the linear velocity tracking error within 

0.1m/s, and the angular velocity tracking error within 

0.02rad/s. 

 

 
Fig.5 Circular trajectory tracking curve 

 
Fig.6 Pose tracking error 

 
Fig.7 Velocity curve 

 

 
Fig. 8  Velocity error curve 

 

Fig.9 shows the torque control input curve of the left and 

right wheels, with a maximum torque limit of 0.7N. As can be 

seen from the figure, under the action of the auxiliary power 

system, the torque of the right wheel does not exceed the 

maximum torque limit. Fig.10 shows the torque curve of the 

control system when the auxiliary power system is on and off. 

Since the torque of the left wheel does not tend to approach 

the maximum torque, only the torque comparison diagram of 

the right wheel is given. As can be seen from the figure, after 

the auxiliary power system is closed, the torque of the right 

wheel obviously reaches the maximum limit torque, and the 

torque curve is not smooth, which will further damage the 

motor. Fig.11 and Fig.12 show the disturbance estimation of 

left wheel torque and right wheel torque by the disturbance 

observer respectively. As can be seen from the figure, the 

disturbance observer can quickly track the disturbance within 

2 seconds, and the observation error is within 0.01N. 

 

 
Fig. 9  Left and right wheel control torque 
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Fig.10  Torque comparison with and without auxiliary dynamic systems 

 

 
Fig.11  Disturbance estimation of left wheel torque 

 

 
Fig.12 Disturbance estimation of right wheel torque  

 

Fig.13 shows the effect of circular trajectory tracking 

without observer. It can be clearly seen that the tracking 

effect of the control system without feedback from the 

disturbance observer is poor. Fig 14-16 compares the pose 

tracking errors of the X axis, Y axis, and Angle of the closed 

and open disturbance observer. It can be seen from the figure 

that without the feedback value of the disturbance observer, 

the tracking error is greatly affected by the disturbance, and 

the tracking effect becomes worse. 

 

 
Fig.13 Observerless circular trajectory tracking 

 

 
Fig.14 X-axis error comparison with or without observer 

 

 
Fig. 15 Y-axis error comparison with or without observer 

 

 
Fig.16 Comparison of Angle error with or without observer 
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VI. CONCLUSION 

A disturbance observer based adaptive sliding mode 

control method is proposed to address the stability control 

problem of wheeled mobile robots under speed 

constraints/torque saturation constraints, while considering 

uncertainties such as modeling errors and external 

disturbances. A kinematic model was established, taking into 

account boundary conditions, and a kinematic control law 

was designed. A sliding mode controller based on a dynamic 

torque regulator was designed to address modeling errors and 

torque saturation issues. An adaptive disturbance observer 

was also designed to achieve real-time estimation of external 

disturbance signals. Experimental results further verify the 

effectiveness of the proposed method. The effectiveness of 

the proposed algorithm has been verified through 

comparative experiments, and the control algorithm with 

disturbance observer has higher control accuracy. 
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