
Relational Context Modeling for Improved
Knowledge Graph Completion

Guoqi Lin, Qi Li*

Abstract—Knowledge graphs (KGs) structure knowledge, but
are typically incomplete. Link prediction or knowledge graph
completion (KGC) builds on KG facts to infer missing facts.
Previous embedding models cannot capture the expressive
aspects of deeper, multi-layered models. These systems also
assign a static embedding to each object and relationship,
ignoring the fact that they behave differently in different graph
settings, which limits their performance. In this paper, we
propose a method that merges the reception weighted key value
model with the TuckER model to overcome these limitations,
called RCME. RWKV models sequential information and allows
dynamic embeddings, while TuckER provides robust relational
decoding. Embedding provides more expressive representations.
Our strategy outperforms several state-of-the-art models on link
prediction and triple classification on benchmark datasets.

Index Terms—knowledge graphs, knowledge completion,
triple classification, link prediction

I. INTRODUCTION

KNOWLEDGE graphs (KGs) have emerged as a sub-
stantial knowledge resource used in various applica-

tions, including recommendation systems [1] and question-
answering systems [2]. A knowledge graph can be con-
ceptualized as a directed graph structured in the form of
triples, each consisting of a head entity, a relation and a tail
entity [3]. Despite their usefulness, knowledge graphs are
often characterized by incompleteness, with many missing
links. Link prediction, also known as knowledge graph com-
pletion (KGC), is an automated reasoning technique aimed
at inferring missing components within knowledge graphs
[4], [5]. One prominent method for KGC is knowledge
graph embedding (KGE), which attempts to map entities
and relations into a low-dimensional continuous vector space
[6]. Fig. 1 provides a visual representation of a knowledge
graph and demonstrates the application of knowledge graph
completion.

Fig. 1: An example of a knowledge graph with a task for
predicting possible links (dotted lines represent potential

links)

Manuscript received January 5, 2025; revised March 31, 2025.
Guoqi Lin is an Associate Researcher of Shaoxing University, Shaoxing,

Zhejiang 312000, China (e-mail: 2010001537@usx.edu.cn).
Qi Li is a Lecturer of Shaoxing University, Shaoxing, Zhejiang 312000,

China (e-mail: lsongru1106@163.com).

Current approaches to embedding knowledge graphs in-
clude translation-based models [7], semantic matching mod-
els [8], and neural network-based models [9]. Translation-
based models establish linear translation rules that relate the
head entity to the tail entity. Semantic matching models use
various scoring algorithms to evaluate the similarity of em-
beddings between entities and relationships. However, these
methods face challenges in handling the high-dimensional
embeddings required to encapsulate rich information while
managing large knowledge graphs, potentially leading to
overfitting and increased computational complexity [10],
[11]. They typically generate a single static representation
that fails to capture the nuanced meanings of entities and
links in different contexts. In addition, their reliance on
predominantly additive or multiplicative operations limits
their expressiveness [12]. In contrast, neural network-based
models exploit different neural architectures to generate
expressive representations from raw embeddings, achieving
commendable results in KGC tasks [13]–[15].

Receptance weighted key value (RWKV) [16], a sequence
model that combined the advantages of RNNs and trans-
formers, has seen widespread application. Designed for com-
putational efficiency and expressiveness, RWKV enhances
attention mechanisms via multiple linear methods, replacing
point product interactions with channel-directed attention
to increase efficiency. TuckER [17], which uses Tucker
decomposition on binary tensors, excels in predicting links
in knowledge graphs. In this paper, we propose to integrate
RWKV as an encoder and TuckER as a decoder. This frame-
work exploits RWKV’s sequential information modelling
and dynamic embeddings, together with TuckER’s relational
decoding robustness, to achieve more expressive representa-
tions of complex data structures. Our work contributes to the
field through the following three key innovations.

• We propose a novel hybrid architecture that uses the
RWKV model to encode sequential data into dynamic
embeddings and the TuckER model to decode relations.
This design allows us to exploit the temporal dynamics
captured by RWKV and the relational richness modelled
by TuckER.

• Our method introduces advanced mechanisms for learn-
ing from both sequential patterns and relational struc-
tures within the data. By integrating RWKV’s ability to
capture time-evolving features with TuckER’s strength
in handling multi-relational data, it significantly im-
proves the system’s ability to understand and represent
complex relationships, which is critical for tasks such
as link prediction and triple classification.

• To validate the effectiveness of our proposed method,
we conduct experiments on several benchmark datasets.
The empirical results show that our approach consistent-

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 2037-2043

__

ly outperforms several state-of-the-art models in both
link prediction and triple classification tasks.

II. RELATED WORK

A common method for knowledge graph completion is
based on knowledge graph embedding (KGE) techniques.
The goal of KGE is to embed the representations of entities
and relations in a low-dimensional, continuous vector space.
KGE-based approaches can be divided into three main types:
translation-based models [7], semantic matching models [8],
and neural network-based models [9].

Translation-based models use relations to formulate linear
translation rules between head and tail entities. The paradig-
matic translation-based model, TransE [11], represents enti-
ties and relations as vectors. The core concept of TransE is
that the sum of the head entity vector and the relation vector
approximates the tail entity vector, thereby representing all
entities and relations. Although TransE is simple and effi-
cient, it faces challenges in modelling complex relationships.
TransH [18], TransR [19], TransD [20] and TranSparse [21]
transform entities and relations into subspaces to deal with 1-
N, N-1 and N-N relations. RotateE [10] defines each relation
as a complex vector space rotation from head to tail. HAKE
[5], which embeds entities in polar coordinates, captures the
semantic hierarchy in knowledge graphs and differentiates
entities at different levels. HousE [4] identifies important
relational patterns through a householder parameterisation.

Semantic matching models [22] evaluate the similarity of
entity relation embeddings via scoring functions. A typical
tensor decomposition model is RESCAL [2]. It represents
pairwise entity relation interactions by a three-way tensor
factorisation. DistMult [1] streamlines RESCAL by trans-
forming the relation matrix into a diagonal matrix, thus
reducing the number of training parameters, but it only han-
dles symmetric relations. ComplEx [10] handles asymmetric
relations better by extending matrix decomposition to the
complex domain. ANALOGY [23] captures the analogous
properties of entities and relations through linear mapping.
TuckER [17] calculates a validation score for each triple
using the Tucker decomposition.

Neural network approaches [23] use different models to
derive comprehensive representations from embeddings for
tasks such as connection prediction. An early method was
the feedforward neural tensor network (NTN) [15]. Convo-
lutional neural network (CNN)-based models [14], including
ConvE [12], ConvKB [9] and InteractE [15], detect complex
feature interactions. Graph-based models [13], such as R-
GCN [24] and CompGCN [25], use structural and neigh-
bourhood data to improve the quality of the representation.
Transformer-based models [26] have improved knowledge
graph completion, with KG-BERT and CoKE using BERT
and Transformer encoders to process triples. HittER [24]
uses transformer blocks to generate relational embeddings
for entity neighbours.

Current knowledge graph embedding models face limita-
tions in contextual adaptability and computational efficiency,
as translation-based and semantic matching approaches rely
on static embeddings that fail to capture dynamic contex-
tual nuances [24]–[26], while neural network-based methods
struggle with temporal dynamics despite their expressiveness
[9], [12], [17]. To address these challenges, we propose a

Fig. 2: Architecture of our method

hybrid approach combining RWKV’s sequential processing
capability for generating dynamic embeddings with TUCK-
ER’s robust multi-relational decoding, aiming to enhance
context-aware representations while maintaining computa-
tional efficiency.

III. PROPOSED MODEL

This section presents a strategy for predicting connections
in knowledge graph. It combines two different but comple-
mentary architectures: the RWKV model for input encoding
and the TuckER model for decoding and classification. The
hybrid method exploits RWKV’s unique way of handling
sequential data during encoding and TuckER’s advanced
tensor decomposition for efficient decoding. The model is
trained to predict the missing entity in a given input context.
The overall framework of the approach is shown in Fig. 2.

A. Encoder

1) Auxiliary Feature Extraction with Graph Neural Net-
works: The GNN framework consists of several layers where
each layer aggregates information from neighbouring nodes
to update node representations. In particular, we use a graph
attention network (GAT) to highlight important connections
between entities. The attention mechanism allows the model
to weight different neighbours differently, thereby capturing
the most relevant information for each entity.

Let h(l)
i denote the embedding of node i in layer l. The

updated embedding h
(l+1)
i is computed as follows:

h
(l+1)
i = σ

 ∑
j∈N (i)

αijWh
(l)
j

 (1)

where N (i) represents is the set of neighbours of node i,
αij is the attention coefficient between nodes i and j, W is
a learnable weight matrix, and σ is an activation function
such as ReLU.

Once the GNN phase has produced improved embeddings,
these are fed into the RWKV encoder. This pre-processing
step ensures that the dynamic embeddings generated by
RWKV benefit from a richer context derived from the
graph structure. Thus, while the core functionality of the

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 2037-2043

__

RWKV encoder and TuckER decoder remains unchanged,
their performance is potentially improved due to the richer
input features.

2) RWKV Framework: The RWKV framework consists
of a series of stacked residual blocks. Each block consist
of a time-mixing sub-block and a channel-mixing sub-block.
This design effectively combines the advantages of recurrent
neural networks (RNNs) and attention mechanisms.

The receptor vector, denoted R, captures information from
previous states. The weight vector W is a model parameter
that accounts for positional weight decay. The key vector K
plays a similar role to the key in traditional attention models,
and the value vector V is analogous to the value in standard
attention mechanisms.

3) Time Mixing Mechanism: The time mixing mechanism
processes an input sequence x = (eh, er), where eh is the
head entity embedding, and er is the relation embedding.
The resulting output embedding o = (oh, or) encapsulates
the contextual information and dependencies within the input
sequence. The output is determined by the following equa-
tion.

ot = Wo · σ (Rt) ·

(
t∑
i=1

wkivit

)
(2)

where t ∈ {h, r} and Wo is the weighting matrix of
the output vector. The term σ (Rt) is the sigmoid of the
receptance vector, calculated as

Rt = µr · xt + (1− µr) ·Rt−1 (3)

where xt is the input embedding at step t and µr is an inter-
polation coefficient. The term wkivit is consistent with the
techniques used in the Attention-Free Transformer, expressed
as

wkivit = ut ·Wk · ki + (1− ut) ·Wv · vi (4)

where ut is a specialized weighting factor for the current
input, and w, u, k, v are derived from the K, V vectors respec-
tively. The role of ut is to provide a distinct attention channel
for the current step, thus addressing potential information
degradation associated with w. The key and value vectors
are calculated similarly, with µk and µv as the interpolation
coefficients, and Wk and Wv as the weighting matrices for
the key and value vectors respectively.

4) Channel Mixing Operation: In the channel mixing
operation, the modified input sequence is transformed.

Modified sequence =

Wc ·ReLU (Wc ·Modified sequence)
(5)

where Wc is the separate weighting matrix for the trans-
formed vectors, and ReLU is the activation function used
for the output.

5) Integration of Modules in RWKV Blocks: Each RWKV
block processes the input by sequentially applying a dropout-
enhanced time mix followed by a channel mix.

Output = Dropout(TimeMixing) + Input (6)

This design introduces dropout layers in front of the
remaining links to prevent overfitting. These components en-
able the RWKV architecture to effectively handle sequences,
preserve causality, and improve model robustness through its
RNN-inspired mechanism.

B. Decoder

1) Tucker Decomposition Application: The TuckER mod-
el, based on Tucker decomposition, is used for decoding
and classification. Tucker decomposition is a technique that
decomposes a high-dimensional tensor into a product of
a low-dimensional core tensor and several matrix factors.
In the context of knowledge graph completion, the graph
is represented as a set of triplets (eh, r, et), where eh is
the head entity, r is the relation, and et is the tail entity.
After obtaining the output representations of the head entity
and the relation, a third-order tensor is constructed, where
each element is a triplet tuple valued 1 if the triplet is
valid, and 0 otherwise. Tucker decomposition is then used to
decode the embedded information. Let C denote the output
representation of the encoder, where Ch and Cr are the output
representations of the head entity and relation, respectively.
The evaluation function in the decoder is defined as follows.

Score = G (×n) Ch (×n) Cr (7)

where G is the learnable core tensor of the Tucker decom-
position, and (×n) denotes the n-mode tensor product.

C. Training Enhancements

To better capture the bidirectional nature of relations with-
in a knowledge graph, we augment our training dataset with
inverse triples (t, r-1, h). This reciprocal learning approach
ensures that the model learns both the direct relationship
between entities and their inverse counterparts. By including
inverse triples, we mitigate potential biases towards specific
relation orientations and enrich the representation of relation-
al patterns, thereby enhancing the model’s understanding of
bidirectional relationships.

We use an advanced frequency-based weighted sampling
technique. The probability P(e) of a negative sample is
proportional to its frequency of occurrence in the knowledge
graph.

P (e) =
f(e)

α∑
e′∈E f(e′)

α (8)

where f (e) represents the frequency of the entity e in the
dataset, and α is a tunable parameter that controls the em-
phasis on frequent entities. This method ensures that negative
samples are more representative of the true distribution,
leading to improved generalization and robustness to unseen
data.

We implement an adaptive 1-N scoring mechanism, where
each pair (h, r) is scored against all possible entities as the
target t. Unlike static methods, this approach dynamically
adjusts the scoring threshold based on the difficulty of
distinguishing correct from incorrect triples. For a given
triple (h, r, t), the score s(h, r, t) is computed as follows.

s(h, r, t) = g(f(h, r, t)) + β • d(h, r) (9)

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 2037-2043

__

where g(•) is a non-linear activation function applied to the
feature vector, f (h, r, t) represents the head entity, relation
and tail entity, β is a learnable parameter, and d(h, r) is
a measure of difficulty derived from the context of the
head entity and relation. This adaptive scoring improves
accuracy by accounting for different levels of ambiguity
within different parts of the knowledge graph.

Moreover, we adopt a curriculum learning strategy during
training. Starting with simpler tasks or easier to predict
triples, the model gradually progresses to more complex
tasks. The complexity of the training instances is determined
by a predefined metric, such as the average distance of
the embeddings or the historical prediction accuracy. The
transition between levels of difficulty is controlled by a
schedule that can be linear, exponential, or adaptive based
on the model’s performance.

λ(t) = min(1, λ, t) (10)

where λ(t) is the proportion of complex triples included at
time step t, and λ is a rate parameter that controls the speed
of the transition. This method speeds up convergence and
ensures a stable learning process. To optimise the training
process, we use a hybrid loss function that combines the
cross-entropy loss with a margin-based ranking loss. The
total loss L for a given batch is defined as

L = Lce + λLrank (11)

where Lce is the cross-entropy loss that ensures accurate
classification of positive and negative triples, and Lrank is
the margin-based ranking loss that promotes a certain margin
∆ between the scores of positive and negative triples.

Lrank =
∑
i

max(0,∆− s(hi, ri, ti) + s(hi, ri, t
′
i)) (12)

where s(hi, ri, ti) and s(hi, ri, t′i) are the scores for positive
and negative triples, respectively, and λ is a balancing factor
that controls the contribution of the ranking loss relative
to the cross-entropy loss. Algorithm 1 describes the RCME
process in detail.

Algorithm 1 RCME

Input: Head entity eh, Relation r, Adjacency info N, Train-
ing data D

Output: Predicted tail entity et or triple validity
1: h

(l+1)
i ← GAT(h

(l)
j ,N (i)) (GNN Feature Extraction)

2: ot ← RWKV(eh, er) (RWKV Time/Channel Mixing)
3: Score← G ×n ch ×n cr (Tucker Decomposition)
4: D− ← InverseTriples(D) (Add inverse triples)
5: P (e)← f(e)α∑

f(e′)α (Weighted negative sampling)
6: s(h, r, t)← g(f(h, r, t)) +β ·d(h, r) (Adaptive scoring)
7: L← Lce + λLrank (Hybrid loss)
8: Update model parameters via Adam optimizer

IV. EXPERIMENTS

The evaluation framework employs four benchmark
datasets spanning distinct knowledge domains to ensure com-
prehensive validation. The biomedical domain is represented

by UMLS [25], containing clinical entities and therapeutic
relationships. Cross-domain analysis utilizes FB15k [24]
with its 1,345 heterogeneous relations and its refined subset
FB13 [13] focusing on core semantic patterns. Demograph-
ic attribute modeling is enabled through YAGO3-10 [26],
which captures interpersonal characteristics across 46 social
relations.

Our computational architecture was implemented in
PyTorch with NVIDIA RTX 4090 acceleration. Hy-
perparameters were empirically optimized through sys-
tematic grid searches: embedding dimensions k ∈
{64, 96, 128, 192, 256}, RWNV block depth ` ∈ {2, 4, 6, 8},
and adaptive dropout rates η ∈ [0.2, 0.5] across network
layers. The Adam optimizer was configured with learning
rates α ∈ {5 × 10−4, 10−2} alongside standard momentum
parameters (β1 = 0.9, β2 = 0.999). Training procedures
employed fixed batch sizes (B = 512) across maximum
500 epochs, with early termination triggered by development
set MRR plateaus. Final model selections were determined
through five-fold cross-validation on each dataset’s validation
subset to prevent overfitting.

A. Baseline

To ensure fairness, we exclude models that use auxiliary
data such as text and focus on two categories: triple-based
methods that rely solely on KG structural information (e.g.
TransE [23], DistMult [1], ComplEx [10], RotatE [10],
TuckER [17], ConvE [20], CoKE [22], HAKE [5], and
HousE [4]) and contextual methods that incorporate graph
structure or logic rules (e.g. Neural-LP [21], R-GCN [20],
Rlogic [19] and ChatRule [18]).

B. Evaluation Metrics

For link prediction assessment, we implement entity rank-
ing through inverse relation scoring:

1. Head Entity Ranking: For each test triplet (h, r, t) ∈ S,
compute φ(t, r−1, h′) for all h′ ∈ E to determine h’s rank
ρh.

2. Tail Entity Ranking: Calculate φ(h, r, t′) for all t′ ∈ E
to derive t’s rank ρt. Relations remain fixed during scoring
to avoid semantic ambiguity.

The evaluation employs two rigorously defined metrics:
Mean Reciprocal Rank (MRR):

MRR =
1

|S|

|S|∑
i=1

1

ρi
(13)

where ρi denotes the rank of the i-th true triplet.
Hits@k:

Hits@k =
1

|S|

|S|∑
i=1

I(ρi ≤ k) (14)

with I(·) as the binary indicator function.
Consistent with [12], we apply filtered ranking by ex-

cluding training-set triplets during candidate generation to
prevent data leakage.

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 2037-2043

__

TABLE II: Triple classification accuracy.

Method FB13 FB15K
NTN 86.9 84.2

TransE 81.2 78.6
TransH 82.4 79.8
TransR 81.5 82.4

DistMult 85.7 84.3
ComplEx 83.1 88.5

CoKE 87.4 88.9
RCME 88.9 89.7

C. Link Prediction

Link prediction involves predicting the missing head or tail
entity in a triple, which as serves as a common evaluation
task for knowledge graph completion models. TABLE I
shows the performance of our proposed method compared
to existing representative models on the FB15k, YAGO3-
10, and UMLS datasets. Our method excels in performance,
consistently outperforming both triple-based and context-
based methods.

On FB15k, while our method slightly lags behind the
transformer-based CoKE in Hit@1 and Hit@10, the differ-
ence is minimal, and our model outperforms other competi-
tors across the board. On the large scale YAGO3-10 dataset,
our approach achieves the best results, demonstrating its
effectiveness on datasets with many entities. This success
highlights the robustness of our method in dealing with
complexity and scale of large knowledge graphs.

On the smaller UMLS dataset, our approach also delivers
excellent performance, achieving the highest scores across
on all metrics. This shows that our method is not only
effective on large datasets, but also performs well on smaller
ones, demonstrating its ability to handle different data sizes
efficiently.

D. Triple Classification

Triple classification focuses on determining the validity
of a given triple (h, r, t). It is a binary classification task
explored for evaluation in [16]. For this task, the FB13
and FB15k datasets are used. For triple classification a
relation specific threshold δr is set. For a triple (h, r, t),
if the dissimilarity score of fr is below δr, it’s a false fact,
otherwise it’s a true fact. Different relations have different δr
values. Settings from the link prediction task are used. All
parameters are optimized on validation datasets for maximum
accuracy. Finally, our method is compared with TransE,
TransH, TransR, Distmult, ComplEx, and CoKE.

As shown in TABLE II, the results indicate that our pro-
posed model, RCME, achieves the highest accuracy of 88.9%
on the FB13 dataset, outperforming all other baseline meth-
ods, including the transformer-based method CoKE. On the
FB15K dataset, RCME also shows strong performance with
an accuracy of 89.7%, slightly lower than CoKE but better
than other models. These results highlight the effectiveness
of RCME in capturing the underlying relationships between
entities and relations in knowledge graphs. Therefore, in the
triple classification task, the proposed method can accurately
determine whether the given triple is correct or not.

TABLE IV: Comparison of Decoders with Score Functions
on FB15k

Decoders FB15k
MRR H@1 H@10

MLP 0.81 80.2 88.7
TransE 0.85 72.4 87.6

DistMult 0.78 73.5 88.3
ComplEx 0.81 77.9 90.3
TuckER 0.86 82.1 91.5

E. Ablation Study

A comprehensive ablation study is performed on the F-
B15k and YAGO3-10 datasets to evaluate the significance of
the Tucker decomposition decoder and RWKV components.
In the experiments, the RWKV encoder and the Tucker
decomposition decoder are removed one at a time. When the
Tucker decomposition decoder is removed, the embedding
generated by RWKV is used directly as the final predicted
entity embedding. When RWKV is removed, the model
essentially reverts to the original TuckER model. The results
of our ablation study on FB15k and YAGO3-10 are showed
in TABLE III. The integration of both modules gives the
best results, confirming that both components are essential
to achieve optimal performance.

In addition, experiments are carried out on FB15k using
the following decoders: MLP, TransE, DistMult and Com-
plEx. To ensure a fair comparison, all other experimental set-
tings are maintained as kept as consistent as possible. TABLE
IV shows that the results indicate that our model equipped
with the TuckER decoder achieves the best performance.
This shows the effectiveness of the TuckER model when
acting as a decoder, as it is able to capture more complex
interactions between entities and relations.

F. Parameter sensitivity analysis

In this section, we systematically investigate the impact of
key hyperparameters on model performance, with a particular
focus on the number of RWKV layer and the embedding
dimensionality. Our experimental framework first evaluates
the effects of layer configuration by testing architectures
containing 2 to 10 RWKV layers in 2-layer increments,
as shown in the left panel of Fig. 3. Each configuration
underwent independent training with consistent evaluation
metrics (MRR and Hits@10). In particular, the performance
metrics demonstrated remarkable stability across different
layer depths-MRR values fluctuated within a narrow range
of 0.02, while Hits@10 maintained over 98% consistency
across layer variations.

These empirical results suggest that the number of RWKV
layers has a negligible impact on model effectiveness within
the current experimental paradigm. Interestingly, even the
minimal 2-layer configuration achieved comparable perfor-
mance to deeper architectures. This stability implies that
extending the layer depth beyond 4 layers provides diminish-
ing returns while significantly increasing the computational
overhead. Therefore, an optimal implementation should pri-
oritise shallower architectures (2-4 layers) to maintain model
efficiency without compromising performance metrics.

We investigate the influence of the size of the embedding
dimensions size on the performance of the model. Embed-
ding dimensions, which transform the features of entities

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 2037-2043

__

TABLE I: Link Prediction of various methods on FB15k, YAGO3-10, and UMLS datasets

model FB15k YAGO3-10 UMLS
mrr h@1 h@10 mrr h@1 h@10 mrr h@1 h@10

TransE 0.37 22.9 46.5 0.32 23.6 47.1 0.65 51.7 88.6
DistMult 0.62 52.2 81.4 0.35 26.1 55.4 0.89 90.4 97.3
ComplEx 0.63 58.4 84.3 0.39 32.4 59.7 0.88 85.4 96.7

RotatE 0.75 72.7 87.6 0.52 41.2 67.3 0.87 81.2 96.3
TuckER 0.78 73.8 89.1 0.45 38.3 64.5 0.88 82.4 97.1
ConvE 0.73 67.2 86.9 0.49 45.1 59.8 0.87 89.3 98.2
CoKE 0.81 82.5 90.1 0.53 47.2 66.7 0.92 90.1 97.7
HAKE 0.83 81.5 90.5 0.53 45.7 69.1 0.93 90.5 98.2
House 0.79 75.8 89.4 0.55 48.4 70.3 0.92 91.2 93.5

Neural-LP 0.75 75.2 83.1 0.46 42.8 69.4 0.71 57.6 93.2
R-GCN 0.68 59.3 83.2 0.22 20.8 41.6 0.69 52.3 90.8
Rlogic 0.34 19.4 48.5 0.32 25.6 50.7 0.65 54.8 92.1

ChatRule 0.29 20.6 56.7 0.46 35.6 32.8 0.76 68.4 93.7
RCME 0.86 82.6 91.4 0.68 51.3 71.4 0.96 92.7 99.3

TABLE III: Ablation Study Results on FB15k and YAGO3-10

Ablation FB15k YAGO3-10
MRR H@1 H@10 MRR H@1 H@10

RCME 0.87 82.6 91.4 0.62 52.3 71.8
w/o Tucker Decomposition Decoder 0.84 76.4 90.1 0.57 49.5 69.7

w/o RWKV (Viewed as TuckER) 0.82 75.3 88.7 0.48 42.7 65.9

Fig. 3: Experimental results of parameter sensitivity analysis.

and relations into a lower dimensional space, are essential
hyperparameters. Changes in the dimension size can have
a significant impact on the performance of the model. As
shown in the right-hand panel of Fig. 3, we conducted
experiments with a variety of embedding dimensions. On the
FB15k dataset, the performance of the model approached the
optimal level when the dimension was set to 128. In contrast,
on the YAGO3-10 dataset, the model reached its peak perfor-
mance starting from 64 dimensions. This indicates that the
model can work effectively with relatively small embedding
sizes.

G. RCME in recommendation systems

RCME’s ability to model complex relationships and con-
textual dependencies makes it highly effective for recom-
mendation systems. By integrating knowledge graphs with
collaborative filtering data, RCME captures intricate user-
item interactions and diverse preferences that traditional
methods often miss. This dual coding mechanism ensures
that recommendations are not only personalised but also
contextually relevant, overcoming cold-start issues and im-
proving accuracy in sparse data scenarios. For example, in
an e-commerce platform, the knowledge graph can represent

users, products and interactions (such as ”User A-purchase-
item X”). The RCME model can improve recommendation
accuracy by capturing complex user-product interaction pat-
terns. For example, if the model predicts that a user is
likely to purchase a ”wireless headset”, it takes into account
not only the user’s purchase history, but also the purchase
behaviour of similar users and the attributes of the headset
(such as brand, price, noise reduction) to generate more
accurate recommendations.

V. CONCLUSION

In this study, we introduce a novel knowledge graph com-
pletion approach, called RCME, which integrates integrates
the RWKV encoder (for sequential modelling and dynamic
embeddings) and the TuckER decoder (for relational rea-
soning). Experiments on link prediction and triple classifica-
tion show superior performance over state-of-the-art models,
demonstrating RCME’s ability to generate expressive repre-
sentations using this architecture. Future directions include
extending RCME to complex tasks such as multi-relational
reasoning and temporal knowledge graphs, incorporating
multimodal data (text/image), and optimising computational
efficiency for scalability.

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 2037-2043

__

REFERENCES

[1] D. Zhang, W. Feng, Z. Wu, G. Li, and B. Ning, “Cdrgn-sde: Cross-
dimensional recurrent graph network with neural stochastic differential
equation for temporal knowledge graph embedding,” Expert Systems
with Applications, vol. 247, p. 123295, 2024.

[2] P. Rosso, D. Yang, N. Ostapuk, and P. Cudré-Mauroux, “Reta: A
schema-aware, end-to-end solution for instance completion in knowl-
edge graphs,” in Proceedings of the Web Conference 2021, 2021, pp.
845–856.

[3] X. Ge, Y. C. Wang, B. Wang, C.-C. J. Kuo et al., “Knowledge
graph embedding: An overview,” APSIPA Transactions on Signal and
Information Processing, vol. 13, no. 1, 2024.

[4] C. Liu, Z. Wei, and L. Zhou, “Contrastive predictive embedding
for learning and inference in knowledge graph,” Knowledge-Based
Systems, vol. 307, p. 112730, 2025.

[5] Y.-L. Li, X. Liu, X. Wu, Y. Li, Z. Qiu, L. Xu, Y. Xu, H.-S. Fang,
and C. Lu, “Hake: a knowledge engine foundation for human activity
understanding,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 7, pp. 8494–8506, 2022.

[6] Y. Han and H. Dai, “Research on network traffic classification based
on graph neural network.” IAENG International Journal of Computer
Science, vol. 51, no. 12, pp. 2043–2050, 2024.

[7] T. Ebisu and R. Ichise, “Generalized translation-based embedding
of knowledge graph,” IEEE Transactions on Knowledge and Data
Engineering, vol. 32, no. 5, pp. 941–951, 2019.

[8] P. Luo, X. Zhu, T. Xu, Y. Zheng, and E. Chen, “Semantic interaction
matching network for few-shot knowledge graph completion,” ACM
Transactions on the Web, vol. 18, no. 2, pp. 1–19, 2024.

[9] K. Wang, Y. Xu, and S. Luo, “Tiger: Training inductive graph neural
network for large-scale knowledge graph reasoning,” Proceedings of
the VLDB Endowment, vol. 17, no. 10, pp. 2459–2472, 2024.

[10] Y. Wang, Y. Peng, and J. Guo, “Enhancing knowledge graph em-
bedding with structure and semantic features,” Applied Intelligence,
vol. 54, no. 3, pp. 2900–2914, 2024.

[11] S. M. Asmara, N. A. Sahabudin, N. S. N. Ismail, and I. A. A. Sabri, “A
review of knowledge graph embedding methods of transe, transh and
transr for missing links,” in 2023 IEEE 8th International Conference
On Software Engineering and Computer Systems (ICSECS), 2023, pp.
470–475.

[12] S. Schramm, C. Wehner, and U. Schmid, “Comprehensible artificial
intelligence on knowledge graphs: A survey,” Journal of Web Seman-
tics, vol. 79, p. 100806, 2023.

[13] L. Li, X. Zhang, Y. Ma, C. Gao, J. Wang, Y. Yu, Z. Yuan, and Q. Ma,
“A knowledge graph completion model based on contrastive learning
and relation enhancement method,” Knowledge-Based Systems, vol.
256, p. 109889, 2022.

[14] H. Liu, Y. Li, M. Tsang, and Y. Liu, “Costco: A neural tensor
completion model for sparse tensors,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 324–334.

[15] Q. Li, J. Yao, X. Tang, H. Yu, S. Jiang, H. Yang, and H. Song,
“Capsule neural tensor networks with multi-aspect information for
few-shot knowledge graph completion,” Neural Networks, vol. 164,
pp. 323–334, 2023.

[16] Z. Zhu, W. Shao, and D. Jiao, “Tls-rwkv: Real-time online action
detection with temporal label smoothing,” Neural Processing Letters,
vol. 56, no. 2, p. 57, 2024.

[17] C. Peng, F. Xia, M. Naseriparsa, and F. Osborne, “Knowledge graphs:
Opportunities and challenges,” Artificial Intelligence Review, vol. 56,
no. 11, pp. 13 071–13 102, 2023.

[18] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying
large language models and knowledge graphs: A roadmap,” IEEE

Transactions on Knowledge & Data Engineering, vol. 36, no. 07, pp.
3580–3599, 2024.

[19] K. Cheng, J. Liu, W. Wang, and Y. Sun, “Rlogic: Recursive logical
rule learning from knowledge graphs,” in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2022, pp. 179–189.

[20] S. Xiong, Y. Yang, A. Payani, J. C. Kerce, and F. Fekri, “Teilp:
Time prediction over knowledge graphs via logical reasoning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38,
no. 14, 2024, pp. 16 112–16 119.

[21] B. Shang, Y. Zhao, Y. Liu, and C. Wang, “Attention-based exploitation
and exploration strategy for multi-hop knowledge graph reasoning,”
Information Sciences, vol. 653, p. 119787, 2024.

[22] Z. Li, H. Liu, Z. Zhang, T. Liu, and N. N. Xiong, “Learning knowledge
graph embedding with heterogeneous relation attention networks,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 8, pp. 3961–3973, 2021.

[23] R. Pan, Y. Wang, and Z. Wang, “A dga domain name detection
model based on a hybrid deep neural network with multi-dimensional
features,” IAENG International Journal of Computer Science, vol. 52,
no. 1, pp. 11–22, 2025.

[24] Z. Hu, V. Gutiérrez-Basulto, Z. Xiang, R. Li, and J. Z. Pan, “Hyper-
former: Enhancing entity and relation interaction for hyper-relational
knowledge graph completion,” in Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management,
2023, pp. 803–812.

[25] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey
on knowledge graphs: Representation, acquisition, and applications,”
IEEE transactions on neural networks and learning systems, vol. 33,
no. 2, pp. 494–514, 2021.

[26] Z. Bi, S. Cheng, J. Chen, X. Liang, F. Xiong, and N. Zhang,
“Relphormer: Relational graph transformer for knowledge graph rep-
resentations,” Neurocomputing, vol. 566, p. 127044, 2024.

Guoqi Lin was born in Zhejiang, China, in 1983. He is currently affiliated
with Shaoxing University. His research interests mainly focus on computer-
related fields, especially in the areas of artificial intelligence algorithms
and their applications. He has made remarkable contributions to academic
research. He has published several high-quality papers in prestigious inter-
national computer science journals, exploring innovative ways to improve
the efficiency and accuracy of machine learning algorithms. For example,
his research on optimising deep neural network architectures has attracted
considerable attention from the academic community. He has also actively
participated in various international academic conferences, sharing his latest
research findings and exchanging ideas with scholars from around the world.

Qi Li was born in Jiangsu, China, in 1987. He began his academic journey
at the prestigious Northwestern Polytechnical University, where he pursued
his passion for engineering and technology. In 2015, he completed his
Master of Science degree in Communication Engineering, demonstrating
his expertise in the field. He continued his commitment to higher education
and research. He remained at Northwestern Polytechnical University to
continue his studies. In 2019, he received his Doctor of Philosophy degree in
Computer Science, marking a significant milestone in his academic career.
He is currently employed at Shaoxing University, where he contributes his
knowledge and skills to the academic community. His research interests
include graph neural networks and network security.

Engineering Letters

Volume 33, Issue 6, June 2025, Pages 2037-2043

__

