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Abstract—Evaluating the level of dysarthria severity offers
valuable insights into a patient’s progress, helps pathologists
in therapy planning, medication and supports the functionality
of automated dysarthric speech recognition systems. In this
study, we conducted experiments on dysarthric speech detection
followed by severity classification for speaker-dependent and
speaker-independent scenarios. Our findings highlight the
effectiveness of Speech-Vision approaches, particularly those
leveraging transformers and spectrograms. Audio Spectrogram
Transformer (AST) has been taken as a base model in
this paper, marking the development of a convolution-free,
exclusively attention-driven model for audio classification.
While various deep learning techniques have been explored
in this domain, our paper distinguishes itself by introducing
detection and classification using an audio spectrogram through
a speech-vision approach. For all the experiments UASpeech
database has been utilized and achieved state-of-the-art results
of 99.64% accuracy for dysarthric speech detection and 78.97%
accuracy for severity classification in a speaker-independent
context. These outcomes surpass all previous results in the field.

Index Terms—Dysarthric speech detection, Severity
classification, Intelligibility assessment, Audio-Spectrogram
Transformer, Speech disorder.

I. INTRODUCTION

HUMANS are social creatures by nature and cannot live
alone. Mutual dependence is required for growth in this

environment and hence communication is an essential aspect
of life. There are different ways humans communicate, such
as via speech-language, non-verbal gestures and electronic
channels. In most cases, fully or partially, speech disorders
affect the ability of an individual to communicate. According
to the fact sheets of the World Health Organization (WHO)
updated on 7th March 2023, 1.3 billion people are estimated
to have significant disabilities, which equates to 16% of
the world’s population [1] [2] [3]. According to the Census
2011 by the Government of India, 2.21% of the total
Indian population, which is around 21.9 million people, are
suffering from speaking disability [4]. This is a significant
number of individuals that need to be supported and taken
care of. People with disabilities are twice as likely as
the general population to suffer disorders such as anxiety,
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asthma, heart disease, stroke, or poor oral health [5]. In
speech processing, speech disorders can be addressed in two
ways: by helping individuals to improve their comprehension
rate or by analyzing their speech patterns so that therapy can
be adjusted based on severity [6].

This paper is focused only on dysarthria among several
speech disorders. Dysarthria is a neurological motor speech
disorder characterized by inadequate synchronization of
speech production subsystems. Neurodegenerative diseases
like cerebral palsy and Parkinson’s disease typically cause
it, or it can be acquired through neurological injuries
such as stroke, brain injury or tumors. Consequently,
speech quality deteriorates due to imprecise articulation, low
audibility, atypical prosody, inter and intra-speaker variability
and irregular speech rate [7]. Although dysarthric patients
can form syntactically flawless sentences, they struggle to
produce them phonetically or pronounce them correctly.
Dysarthria is not a life-threatening disorder, but it affects
the livelihood of patients in many aspects, including social,
physical and emotional challenges [8] [9]. As severity
increases, they are more likely to rely on others for their
daily activities and household chores. Pathologists have tried
to assist them using keyboard or joystick-based applications,
but due to a lack of muscle coordination and trembling hands,
these methods are not very effective.

Early detection of dysarthria is essential, as it allows
timely therapy that can improve communication and reduce
the disorder’s impact on their lives. Assessing the severity of
dysarthria is a crucial diagnostic step, as it provides valuable
insights into the patient’s condition, the progression of the
disorder, and potential treatment options. It can also assist
clinicians to determine the appropriate course of medication
and therapy sessions. However, classifying the intelligibility
and severity of dysarthric speech poses challenges due
to variable speech features and subjective judgments.
Figure 1 provides a visual comparison representation for
clear differentiation between normal and dysarthric speech
characteristics. It compares the utterances of the words
‘Delete’ and ‘Zero’ taken from the UASpeech corpus,
representing normal and dysarthric speech, respectively. The
utterances were taken from speaker F02, whose dysarthric
speech had a low intelligibility score of 29%, indicating a
high level of severity.

The primary goal of motor speech assessment is to
determine the severity of a person’s speech difficulty.
In clinical practice and research, we frequently utilize
severity ratings to explore speech difficulties. However,
existing methods for determining the intensity of speech
difficulty have not been properly evaluated and there is
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Fig. 1. Normal (top) and Dysarthric (down) utterance of word ”Delete” and ”Zero” respectively

no commonly accepted definition or classification system
[10] [11]. Speech difficulties caused by dysarthria are
commonly described by both clinicians and researchers.
Speech-Language Pathologists (SLPs) often use two common
informal methods to measure speech intelligibility: (a)
Estimating the percentage of a patient’s speech that others
can understand and (b) using descriptive labels like ‘normal’,
‘mild’, ‘moderate’, ‘severe’, or ‘profound’. We require
further research to establish the reliability and accuracy of
these assessments and to understand the factors that influence
how we perceive the severity of someone’s speech issue.

There is often a correlation between speech intelligibility
and speech severity in dysarthria literature, yet these two
measures are unconnected. Kaila et al. highlighted the
relationship between speech intelligibility and severity very
elegantly [10]. Dysarthria severity pertains to the extent
of motor impairment affecting speech production, while
intelligibility refers to how well listeners comprehend the
speaker. Speech intelligibility relies on speech efficiency,
voice quality and speaking rate of patients. In common
practice, severity is determined based on the intelligibility
rate. Table I shows that researchers have used different cutoff
points to define severity levels based on speech intelligibility
scores. Nevertheless, inconsistencies exist not just in the
assigned ranges of intelligibility for each category but also in
the approaches used to measure intelligibility across various

TABLE I
THE DISTRIBUTION OF SPEECH SEVERITY BASED ON THE

INTELLIGIBILITY RANGE (%) IN THE LITERATURE

Article Profound Severe Moderate Mild Normal

[12] 0-60 60-70 70-80 80-90 90-100
[13] - 0-45 45-75 75-100 -
[14] 0-25 25-50 50-75 75-100 -
[15] - 0-40 40-70 70-100 -
[16] 0-25 25-50 50-75 75-100 -
[17] - 0-50 50-75 75-100 -
[18] 0-50 50-80 80-90 90-95 95-100

studies.

II. MOTIVATION AND RELATED WORK

To diagnose dysarthria, it is important to measure the
severity of the disease, which helps Speech-Language
Pathologists (SLPs) to determine the appropriate medication
and to schedule speech therapy sessions if needed. In
conventional SLP practice, the severity of speech disorders
was typically evaluated using the standardized rating scales
given by Frenchay Dysarthria Assessment (FDA) [19]. This
evaluation process incorporates a combination of acoustic,
physiological and perceptual measures. However, it is worth
noting that while treating patients with dysarthria the use of
physiological measurements can be demanding and require
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specialized equipment and expertise and on the other hand,
perceptual measures can vary considerably depending on
the clinician’s level of experience and listening skills.
Additionally, this would be costly and time-consuming,
limiting its use in remote rehabilitation. In order to maintain
homogeneous interpretation across SLPs, it is necessary to
conduct dynamic assessments to determine speech severity
rates. It is, therefore, necessary to develop a system that
automatically classifies dysarthria severity levels. Automated
severity assessment methods are cost-effective, traceable,
reliable and allow remote monitoring of rehabilitation
progress for patients.

Researchers have been exploring various approaches
to achieve accurate results for dysarthric speech severity
classification [20] [21] [22]. Numerous studies have
been conducted to investigate the objective evaluation
of dysarthric speech intelligibility by capturing essential
acoustic data related to prosody, vocal tract dynamics, and
excitation source information [23]. Mel-Frequency Cepstral
Coefficients (MFCCs) and spectral and temporal features
have been used exhaustively for the feature selection
process. Deep Belief Networks (DBNs) [24] were compared
with MFCC giving a marginal improvement in dysarthric
severity classification using a multi-layer perceptron neural
network. The combination of Glottal-to-Noise Excitation
Ratio (GNER) and Harmonics-to-Noise Ratio (HNR) with
MFCC was pursued in [25], as both of these metrics can
determine the degree of noise caused by the disorder.

Linear discriminant analysis and non-linear techniques
based on self-organizing maps were studied for dysarthria
classification, but the decision was based on human
evaluations [26]. Dahmani et al. [27] introduced a novel
method to differentiate dysarthric speech from healthy
controlled speech using rhythm metrics based on vocalic
and intervocalic intervals durations on the Nemours dataset
[28]. They applied a Gaussian Bayes classifier for this
classification task. However, the rhythm metrics they
extracted did not yield promising results in expressing
the severity level of dysarthria. Garima et al. used a
genetic algorithm to select prosodic features and apply
SVM to classify dysarthric speech severity [29]. Machine
learning models such as Recurrent Neural Networks
(RNNs), Convolutional Neural Networks (CNNs), and Long
Short-Term Memory (LSTM) networks have been used to
achieve high classification accuracy. While the results have
generally been favorable, the training process often requires
significant computation time Chitralekha et al. explored
Bi-directional LSTM (BLSTM) for a binary classification
of dysarthric and non-dysarthric speech using the transfer
learning method and achieved an improvement of 6%
compared to the traditional machine learning method [30].
Kwanghoon et al. used the Mel spectrogram as input to
a CNN for the early detection of Amyotrophic Lateral
Sclerosis (ALS). This approach was later extended to capture
spectro-temporal variations for assessing dysarthric speech.

An et al. [31] employed CNN to automatically detect
early stage ALS from highly intelligible speech. They
utilize both time domain and frequency domain CNNs
to categorize speech from a group of 13 patients with
early stage ALS and healthy individuals. The frequency
based CNN showed better performance at predicting ALS

at the individual level, compared to the time based CNN.
Researchers utilized joint spectro temporal features extracted
from a mel scale spectrogram for dysarthria severity
estimation as well [32]. Their findings demonstrated that
a time frequency CNN that captures both spectral and
temporal information outperforms CNN that captures only
temporal or spectral information separately. This highlights
the importance of jointly considering both aspects to achieve
superior dysarthria severity estimation results. In the long
run, CNN was exhausted and researchers started to add an
attention layer with CNN for end-to-end audio classification.

Over the last decade, deep learning techniques have been
extensively explored for end-to-end audio classification,
emphasizing direct mapping from spectrogram to
corresponding labels [33]. To effectively capture long
range global context, some researchers have proposed
hybrid models that combine CNNs with self attention
mechanisms. The proposed method builds upon the
Transformer architecture, which has been previously
explored for language and audio processing, but in
this case, it is combined with CNN. Researchers have
experimented with various combinations of transformer
and CNN, such as implementing Transformer on top of
CNN and incorporating a Transformer within each block
of CNN. Hybrid models that combine CNNs with attention
mechanisms have demonstrated remarkable effectiveness in
delivering precise outcomes across various tasks like audio
event classification, emotion recognition and command
recognition. In the vision domain, purely attention based
models have demonstrated remarkable success, leading to
the question of whether CNNs are still necessary for audio
classification. The approach proposed in this study is purely
attention based, eliminating the need for convolution and
offering a distinctive solution for the task.

The main objective of this work is to address the tasks of
dysarthric speech detection in a speaker-dependent manner,
and severity classification in both speaker-dependent and
speaker-independent contexts, specifically:

• Speaker-dependent dysarthric speech detection: This
involves detecting whether a speaker’s speech is affected
by dysarthria or not.

• Speaker-dependent dysarthric speech severity
classification: After detecting dysarthric speech,
the system aims to classify the severity level of
dysarthria for the specific speaker.

• Speaker-independent dysarthric speech severity
classification: This task shares the same objective
as the second one; however, it aims to classify the
severity of dysarthric speech from speakers who were
not included in the training set, thereby enhancing the
model’s generalizability.

The proposed architecture for these tasks has been
designed to outperform all previous methods in terms
of accuracy for dysarthric speech detection and severity
classification.

A. Datasets

The primary focus of this paper is detection and
assessment of dysarthric speech severity. The experiments
utilize the publicly available UASpeech dataset for all
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Fig. 2. UASpeech database graphical representation

objectives. The UASpeech dataset consists of speech samples
from 19 individuals affected by cerebral palsy, exhibiting
a wide range of intelligibility level. Speakers consist of
both males and females and their ages range from 18 to
58 years. The data was recorded using an eight-microphone
array, with 1.5 inches of spacing between each microphone
and complemented by video recordings to capture visual
features. Throughout the recording sessions, participants
were seated comfortably in front of a laptop and they
were instructed to read isolated words displayed on slides.
The entire recording process was divided into three blocks,
each containing 255 words. Among these, 155 words were
repeated across the blocks and 100 words were selected
from uncommon categories. Uncommon words comprised 10
digits, 26 radio alphabets, 19 computer commands and 100
words sourced from the Brown Corpus. Subsequently, each
of the 19 speakers recorded a total of 765 isolated words.

To assess the intelligibility of dysarthric patients, five
impartial listeners, proficient in American English aged
between 18 and 40, were selected for each speaker. Listeners
were instructed to listen to real words spoken by an
individual with a speech disorder. The speech files were
presented on a web page and listeners used headphones
in a quiet room. Each listener transcribed the words
and the percentage of correct responses were calculated.
Speaker intelligibility was determined by averaging the
correct percentages across five listeners. The classification
of speakers intelligibility into four categories (very low,
low, mid and high) was based on the average percent
accuracy for each speaker. The recorded speech files were
saved in the .wav format, and the entire dataset is publicly
available for further research and analysis. They found that
as dysarthria severity increased, listeners’ confidence in
transcribing dysarthric speech decreased [34]. So, we can
say that as severity increases, speech intelligibility decreases.
The distribution of all speakers in the UASpeech database is
illustrated in Fig. 2. The database comprises 60% of speakers
with very low and low intelligibility, where inter-speaker
variability is notably higher. In Fig. 3, the word ‘November’
from the UASpeech database is annotated at the phoneme
level by both a naive listener and a speech pathologist. The
start and end boundaries of each phoneme differ, reflecting
the annotator’s listening experience. Similarly, all words from
speakers with low and very low intelligibility are annotated
and labeled accordingly. These annotations serve as ground

truth for the model, enabling detection and intelligibility
assessment by providing both the ideal reference and the
originally annotated data.

The entire UASpeech database is utilized for the detection
and severity classification experiments in which data is split
in a random fashion for training, testing and validation.
All experiments are conducted using the UASpeech dataset,
which includes audio recordings from 16 individual speakers.
Each speaker contributed 765 isolated words, with seven
recordings available for each word. For the detection task,
we included both controlled and dysarthric speech samples
from these 16 speakers, resulting in a total of 171,360 audio
files (2×16×765×7 = 171,360). However, for the severity
classification task, we exclusively used dysarthric speech
data, totaling 85,680 audio files (16×765×7 = 85,680). The
following section elaborates on the research methodology
and model architecture, which is then followed by a
comprehensive report detailing the experimental procedures
and the outcomes achieved for each specific objective.

III. METHODOLOGY

Lately, the Transformer architecture has gained significant
popularity in the realm of image processing. To adapt it for
audio processing, a modification has been made wherein the
Audio Spectrogram Transformer (AST) is designed in such a
way that instead of taking an image as an input AST utilizes
logarithmic Mel spectrograms derived from speech signals.
The baseline of AST draws inspiration from the architecture
of the Visual Transformer (ViT) [35] [36].

A. Audio Spectrogram Transformer

To achieve this transformation, the input audio waveform
is initially converted into a sequence of 128-dimensional
vectors using librosa, called log Mel filterbank (fbank)
features [37]. The process of Mel filterbank feature extraction
involves handling the input audio waveform with a duration
of ‘t’ seconds. This process includes dividing the audio
input into manageable chunks every 10 ms and performing
a Short-Time Fourier Transform (STFT) with a 25 ms
hamming window on each chunk generating a sequence of
128-dimensional vectors that illustrate the evolution of the
input audio waveform [38]. The STFT determines the power
spectrum of each chunk, which is then passed through a set
of filters. These filters are designed to mimic human hearing
and are spaced non-linearly in frequency to better capture the
properties of speech and other sounds. The Mel filterbanks
use non-linear spacing to emphasize frequency regions that
are important for distinguishing phonemes and sounds, which
also makes the system more robust to noise. The distribution
of the filters in the Mel scale tends to concentrate more on the
lower frequencies, which often contain critical information
for speech understanding. The filters in the Mel filterbank are
designed to capture the distribution of energy across different
frequency bands. Human perception of sound is not linear
with respect to frequency, and the Mel scale is a perceptual
scale that approximates the human ear’s response to different
frequencies. The set of filters helps to map the raw frequency
content of the audio signal into a representation that aligns
better with human perception. The resulting sequence of
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Fig. 3. Annotations of word “November” from UASpeech database
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Fig. 4. Audio Spectrogram Transformer with dysarthric speech

vectors forms a spectrogram, which serves as the input to
the AST (Audio Spectrogram Transformer) model.

Next, the spectrogram is split into a sequence of smaller
N patches, each having a size of 16 by 16. These patches are
extracted with a 6-step overlap in both time and frequency
dimensions. The overlap refers to the degree of overlap
between consecutive patches derived from the spectrogram.
A 6-step overlap in both time and frequency dimensions
means that when extracting patches from the spectrogram,
each patch is offset by 6 steps in both the time and frequency
directions compared to the previous patch. This overlap

is used to ensure that information from adjacent patches
is shared, which is beneficial for capturing temporal and
frequency related patterns in the data. To determine the total
number of patches, denoted as N, the following formula is
utilized:

N = 12 ∗ (100 ∗ t− 16)/10 (1)

Here, ‘t’ represents the duration of the audio waveform in
seconds. The value of N corresponds to the effective input
sequence length for the transformer at that particular stage.
Each patch is then treated as an individual input token and
the transformer processes them separately.

Thereafter, using a linear projection layer, each 16x16
patch that was extracted from the spectrogram is flattened
into a 1D patch embedding of size 768. This dimensionality
reduction technique helps retain essential features while
reducing the complexity of the input data. To preserve
the spatial structure of the original 2D audio spectrogram,
a trainable positional embedding of size 768 is added to
each patch embedding. A trainable positional embedding of
size 768 means that for each patch, there is a learnable
vector of 768 elements that represents its position in
the 2D space. These embeddings are trainable, signifies
that the model can adjust them during training to best
capture the spatial relationships in the data. By incorporating
positional embeddings, the model retains information about
the spatial location of each patch, which is otherwise lost
during the flattening process. The positional embeddings
are required since the model does not naturally capture
the order information of the input data, making them
necessary to capture the spatial structure of the input. By
encoding the spatial structure, the model becomes capable
of distinguishing between patches that are close together
and those that are far apart. Along with the other model
parameters, the positional embeddings are learned during
training and updated during backpropagation.

The sequence begins by appending a unique token named
[CLS]. In classification tasks, the [CLS] token is a special
symbol that is used to represent the entire sequence and
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allows the model to make predictions based on the full input
sequence. The sequence is then fed to the transformer. In this
case, only encoder layers are being utilized as we are doing
detection and classification instead of recognition tasks. The
output of the Transformer encoder, specifically the hidden
state of the [CLS] token, serves as the representation of the
spectrogram. To generate the final prediction, a linear layer
with a sigmoid activation function is applied to map the audio
spectrogram to the labels. The combination of the linear layer
and sigmoid activation allows the model to learn a mapping
from the features extracted from the audio spectrogram to a
prediction of positive or negative class. For the detection
task, label 0 corresponds to normal voice, while label 1
corresponds to dysarthric voice.

B. Adaptation of ViT in AST

In Visual Transformer (ViT), the input image is divided
into non overlapping patches, and each patch is treated
as an individual token. Similarly, in audio processing, the
spectrogram is divided into overlapping segments, treating
each segment as a token. This allows the transformer to
capture local patterns in both vision and audio. ViT uses
positional embeddings to provide the model with information
about the spatial arrangement of patches. Similarly, in
audio processing, positional embeddings are used to convey
information about the temporal order of spectrogram tokens.
In this way, the architecture of the ViT serves as inspiration
for the baseline of the Audio Spectrogram Transformer
(AST).

The AST model is designed in such a way that it is able to
transfer the 2D spatial knowledge from a pre-trained ViT to
the AST even when the input shapes are different. The AST
takes advantage of transfer learning by utilizing pre-trained
weights from the ViT architecture, which enables it to use
expertise gained from a sizable dataset of images to improve
its performance on the audio classification job. Additionally,
since the network has already picked up useful features
from the images it was trained on, using pre-trained weights
reduces the amount of training data required for the AST
to perform well. Given the limited availability of dysarthric
speech in UASpeech, transfer learning enables the model to
acquire valuable representations from a larger visual dataset
and subsequently adapt these representations to the audio
domain.

The positional embedding of ViT architecture is fixed in
size since it employs a fixed size input image, but while
dealing with audio data it can be of variable length. As
audio signals vary in length, maintaining the sequential
nature of the data becomes essential for capturing temporal
relationships within the audio signal. To accommodate
variable length audio sequences, the model employs padding,
where shorter audio sequences are padded with zeros to
match the length of the longest sequence in the dataset. The
AST, analyses 16x16 pixel patches in variable length audio
spectrograms.

The adaptation of positional embedding from the ViT to
AST architecture involves the utilization of cut and bi-linear
methods [39]. These techniques enhance the model’s capacity
to adeptly handle audio data having diverse sequence lengths.
By effectively capturing temporal relationships, mitigating

TABLE II
EXPERIMENTAL SETUP AND MODEL PARAMETERS USED FOR

EXPERIMENTS

Parameter Value

Input Normalisation Dataset mean -4.268 and std 4.569
Number of Classes 2 and 4
Frequency Stride 10
Time Stride 10
Loss Function BCE and CE
Learning Rate Scheduler MultiStepLR with 0.5 decay
Training Device cuda
Total Parameter Number 87.728 million
Optimizer Adam and SGD
Input Method JSON file

TABLE III
CLASSIFICATION RESULT WITH GLOTTAL FEATURES AND CNN+LSTM

MODEL BY NARENDRA ET AL. [40] FOR DYSARTHRIC SPEECH
DETECTION

Input Accuracy Sensitivity Specificity

Raw Speech 74.19 69.26 81.48
Glottal flow 77.57 73.13 82.48

the impact of padding, and enhancing generalization
across varying sequence lengths, these methods contribute
significantly to the model’s performance in processing audio
data.

In a more technical sense, the patch embedding layer
is likened to a single convolution layer with an extensive
kernel and stride size and the projection layer within
each transformer block is equivalent to a 1x1 convolution.
It is important to note that the design diverges from
conventional CNNs, which typically employ multiple layers
having smaller kernel and stride sizes. Transformer models
are often labeled as “convolution-free” to distinguish them
from traditional CNN architecture.

IV. EXPERIMENTS AND RESULTS

The experimental setup involved using spectrograms,
which are visual representations of the frequency content
of a signal over time. The Audio Spectrogram model is
employed for all tasks. To execute the experiments, we
utilized a Kubernetes cluster, specifically utilizing an Nvidia
A100 GPU with 40GB RAM for training the model for all
scenarios. We summarize our experimental setup in Table II.
The subsequent subsection provides an in-depth description
of each objective.

A. Speaker-dependent dysarthric speech detection

Initially, we conducted dysarthric speech detection using
a limited subset of the UASpeech dataset, specifically
encompassing 16% of its content. The training set consisted
of 11,486 audio files, while the testing and validation sets
contained 5,744 and 5,743 audio files, respectively. After
training the model for 3 epochs, we achieved an accuracy of
94%. To further improve the results, we extended training
to 10 epochs, and the accuracy significantly improved to
96.86%. These outcomes demonstrated better performance
compared to some early experiments conducted by Narendra
et al. [40]. They applied CNN+LSTM model on raw speech
and glottal flow as shown in Table III.
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Subsequently, we conducted the same experiment using
the entire UASpeech dataset. Remarkably, the accuracy
improved to an impressive 99.64%, surpassing the
performance presented by Dong-Her et al. [41]. The detailed
results are documented in Table IV and the loss curve is
visualized in Figure 5. Additionally, Figure 6 showcases a
comparison graph illustrating the accuracies of the previous
state-of-the-art CNN-GRU model alongside our proposed
AST model. The graph clearly demonstrates the superior
accuracy achieved by the AST model over the previous
approach.

Fig. 5. Loss-curve for dysarthric speech detection by AST

Fig. 6. Comparison between the SOTA CNN-GRU results [41] and current
method results for dysarthric speech detection

Table V presents a comprehensive comparison of various
approaches for dysarthric speech detection on the UASpeech
corpus.

Various authors have employed different approaches for
dysarthric speech detection on the UASpeech corpus. In
this paper, we utilized the AST approach, achieving the
highest accuracy of 99.64% for dysarthric speech detection.
The AST model is a neural network architecture that is
specifically designed to process audio spectrograms for
speech recognition tasks. Overall, the results in Table V
demonstrate the effectiveness of deep learning approaches,
particularly those based on CNNs and their variations, are
effective for dysarthric speech detection on the UASpeech
corpus. Our model surpassed all previous dysarthric speech
detection accuracies, highlighting its superiority in this task.
These approaches have the potential to improve the accuracy
and efficiency of dysarthria screening in clinical settings.

B. Speaker-dependent severity classification
After dysarthric speech detection, we proceeded with

severity classification experiments. The severity levels for

dysarthria in the UASpeech dataset are grouped into
four categories, which are based on the assessment of
speech-language pathologists. Table VI includes the severity
categories of UASpeech along with corresponding speaker
IDs. These severity levels form the foundation for assessing
the effectiveness of dysarthric speech severity classification
models in accurately predicting the level of dysarthria
exhibited by the speaker.

Initially, we performed severity classification using Binary
Cross Entropy (BCE) as the loss function, Automated
Dynamic Analysis of Mechanical Systems(ADAMS) as
the optimizer, and a batch size of 16 for 30 epochs,
resulting in an accuracy of 84%. In pursuit of better
performance, we switched to Stochastic Gradient Descent
(SGD) as the optimizer, which significantly improved the
accuracy to 93.6%. Continuing our efforts to enhance the
model, we implemented a dynamic learning rate strategy,
reducing it after every 3rd epoch. Additionally, we opted
for the Cross-Entropy (CE) loss function. The choice of
the Cross-Entropy (CE) loss function is motivated by
its suitability for classification tasks, including severity
classification models. This is derived from the principle of
maximum likelihood estimation. It encourages the predicted
probability distribution to be close to the true distribution
of the labels. These combined adjustments resulted in the
highest accuracy achieved so far, reaching an impressive
95.6% classification accuracy. However, further experiments
were conducted to enhance the model, such as experimenting
with the learning rate by decreasing it after every 4 epochs.
Unfortunately, this alteration did not yield the desired results,
and the accuracy dropped to 89%. Figure 7 shows the
accuracy versus loss graph plotted for 30 epochs during
the classification experiments. Additionally, we evaluated the
model’s performance on both the validation and test sets and
the corresponding confusion matrices are provided in Figure
8 and 9.

Fig. 7. Accuracy and loss curve for severity level classification by AST

C. Speaker-independent binary severity classification

Initially, the severity classification was carried out using
a speaker-dependent model, where the training and testing
data included only one specific speaker. However, to
enhance practicality and applicability, it was desirable to
develop a speaker-independent model. The goal is to build
a speaker-independent model that can accurately classify
speech severity without prior knowledge of the speaker.
Therefore, we aimed to create a speaker-independent model.
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TABLE IV
TRAINING AND VALIDATION METRICS FOR DYSARTHRIC SPEECH DETECTION USING AST

Epoch Validation Training loss Validation loss learning rate
Accuracy(%) AUC Avg Precision Avg Recall

1 93.0039 0.988149 0.890938 0.966523 0.314101 0.55059 0.001
2 97.6181 0.998203 0.937057 0.997080 0.100899 0.517632 0.0005
3 99.2443 0.999622 0.943930 0.999259 0.029803 0.508477 0.00025
4 99.4219 0.999764 0.948494 0.999717 0.015913 0.532678 0.000125
5 99.5299 0.999825 0.967261 0.997639 0.009256 0.506424 6.25e-05
6 99.4742 0.999758 0.976602 0.993125 0.006116 0.506301 3.125e-05
7 99.5960 0.999848 0.986126 0.999197 0.004430 0.505693 1.5625e-05
8 99.6169 0.999820 0.992635 0.997011 0.003522 0.505428 7.8125e-06
9 99.6204 0.999800 0.995619 0.996684 0.002949 0.505475 3.90625e-06
10 99.6378 0.999750 0.995623 0.993877 0.002666 0.505362 1.953125e-06

TABLE V
PERFORMANCE COMPARISON FOR DYSARTHRIC SPEECH DETECTION

FOR UASPEECH CORPUS

Author Classification Method Accuracy

Hernandez et al. (2019) [42] SVM 72%
Narendra et al. (2019) [43] SVM 96.38%
Narendra et al. (2020) [40] CNN-LSTM 77.57%
Rajeswari et al. (2022) [44] CNN 95.95%
Dong-Her et al. (2022) [41] CNN-GRU 98.38%

Present work AST 99.64%

TABLE VI
UASPEECH DATASET DISTRIBUTION ACCORDING TO SEVERITY LEVEL

Severity UASpeech

Very Low F05, M08, M09, M10, M14
Low F04, M05, M11

Medium F02,M07, M16
High F03, M04, M12, M01

Fig. 8. Validation confusion matrix for speaker-dependent severity
classification

Table VI shows that the intermediate classes have
fewer speakers than the border classes, indicating a class
imbalance in the UASpeech database. In pursuit of creating a
speaker-independent model capable of accurately classifying
severity, we merged the “low” and “very low” severity
classes, as well as the “high” and “medium” severity
classes into one. This decision was motivated by the
limited availability of data for the “low” and “medium”

Fig. 9. Test confusion matrix for speaker-dependent severity classification

TABLE VII
SPEAKER DISTRIBUTION FOR TRAIN AND TEST SETS BASED ON

SEVERITY LEVEL

Severity Speakers
Train Test

High F02,M16,F03,M12,M01,M07 M04

Low F05,M09,M10,M14,F04,M11,M05 M08

severity classes, which could potentially lead to reduced
model accuracy if these classes were treated separately. By
combining them, we effectively increased the amount of data
available for training, enabling us to build a more robust
model capable of classifying severity independently of the
speaker’s voice. The speaker’s data taken for training and
testing can be seen in Table VII. This approach allowed us to
improve the model’s performance across different speakers.

For speaker-independent classification, we trained the
model for 10 epochs, using Binary Cross Entropy (BCE)
as the loss function and utilizing the ADAM optimizer.
The resulting accuracy was 62.5%. To enhance the model’s
performance, we switched to the Stochastic Gradient Descent
(SGD) optimizer and reduced the learning rate every two
epochs during training. These modifications had a significant
impact on the model’s accuracy, which increased the
accuracy to 78.97%. The dynamic learning rate strategy
plays a crucial role in enhancing the accuracy of the
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Fig. 10. Validation and Test confusion matrix for speaker-independent severity-level classification

speaker-independent severity classification model. Adjusting
the learning rate allows the optimization process to converge
more efficiently. Initially, a higher learning rate helps the
model make large updates to its parameters, potentially
escaping from local minima. As the optimization progresses,
reducing the learning rate helps the model to converge
more precisely to the optimal solution. By reducing the
learning rate, the model becomes more sensitive to smaller
gradients and makes finer adjustments to its parameters.
This is particularly useful in later stages of training when
the model is close to convergence. Figure 11 presents the
validation accuracy and loss curves, along with a marker
indicating the final test accuracy. This is compared against
the highest reported accuracies from [45] and [22].

Fig. 11. Accuracy and loss-curve for speaker-independent dysarthric speech
detection by AST

Table VIII shows the results for speaker-independent
severity level classification for dysarthric speech and Table
IX presents a comparison between the current results and the
prior findings, highlighting that our outcomes demonstrate
superior performance compared to the earlier results. Fig.
10 shows the validation and test confusion matrices which
provide a visual representation of the model’s performance
in classifying severity levels.

V. CONCLUSION AND FUTURE WORK

This study represents a comprehensive exploration of
various deep-learning models employing the detection

and classification of dysarthria severity levels. We use
the Speech Vision approach with AST for the various
tasks and achieve 99.64% accuracy for the detection
surpassing the performance of previous state-of-the-art
models. For severity classification, our model achieved
an accuracy of 95.6%. Additionally, we developed a
speaker-independent model, which demonstrated a notable
accuracy of 78.97%. In summary, our research highlights the
effectiveness of speech-vision approaches, specifically those
leveraging transformers and spectrograms, for dysarthric
speech detection and severity classification. These findings
emphasize the potential of these advanced techniques to
improve the accuracy and performance of dysarthria-related
tasks significantly.

Fig. 12. Accuracy of different objectives performed

The model’s capabilities can be extended by incorporating
additional features such as phonetic and prosodic
information. This inclusion would enable capturing more
intricate details regarding the speech patterns of individuals
with dysarthria, enhancing the model’s overall performance
and accuracy. To address the challenge of limited data,
data augmentation and speech synthesis techniques offer
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TABLE VIII
TRAINING AND VALIDATION METRICS FOR SPEAKER-INDEPENDENT SEVERITY-LEVEL CLASSIFICATION OF DYSARTHRIA USING AST

Epoch Validation Training loss Validation loss Learning rateAccuracy(%) AUC Avg Precision Avg Recall

1 72.8976 0.8015 0.6404 0.8753 0.51792 0.6454 0.001
2 71.2854 0.8212 0.7163 0.8088 0.20765 0.6436 0.001
3 77.1023 0.8467 0.6818 0.8963 0.11326 0.6191 0.0005
4 71.1764 0.8172 0.7134 0.8127 0.08471 0.6438 0.0005
5 71.7211 0.8253 0.7157 0.8085 0.05499 0.6398 0.00025
6 78.3006 0.8623 0.7199 0.8676 0.04382 0.6110 0.00025
7 77.6252 0.8559 0.7204 0.8601 0.02992 0.6133 0.000125
8 76.5577 0.8461 0.7144 0.8506 0.02458 0.6181 0.000125
9 77.2331 0.8456 0.7253 0.8429 0.01694 0.6159 0.0000625

10 76.4705 0.8445 0.7236 0.8351 0.01497 0.6178 0.0000625

TABLE IX
PERFORMANCE COMPARISON FOR DYSARTHRIC SPEECH

SPEAKER-DEPENDENT AND SPEAKER-INDEPENDENT SEVERITY
CLASSIFICATION

Work Approach Results

A.Tripathi, S.Bhosale,
and S.K.Kopparapu [45]

Deep Speech posteriors
with SVM

97.40%(SD)
65.20%(binary)

Amlu Anna Joshy and
Rajeev Rajan [22] i MFCC with DNN 93.97%(SD)

70.52%(binary)

Current work
Spectrogram and
Transformers,
(AST), Speech-vision

95.6%(SD)
78.97%(binary)

valuable solutions. By artificially creating new data through
variations applied to existing data, we can substantially
expand the dataset. Common augmentation techniques,
such as pitch shifting, time stretching, noise addition and
spectrogram manipulation prove highly beneficial in this
context. Embracing these techniques opens avenues for
advancing dysarthria research and developing more robust
models for speech-related tasks.

This research can serve as a valuable resource for both
patients and clinicians in accurately identifying the exact
level of speech severity, thereby enabling them to track
and assess progress toward improvements. In severe cases,
where individuals often encounter significant difficulty in
articulating words, such advancements can be transformative
and have a life-changing impact.
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