
 

  

Abstract—A flap is a reconstructive surgical procedure used 

to repair defects in parts of the human body due to accidents or 

health complications. Observing flap vitality in the 

postoperative period is crucial for determining the success rate 

of flap reconstruction surgery. This observation aims to detect 

disturbances in the flap as early as possible, allowing medical 

personnel to intervene immediately. One of the clinical 

parameters used to assess flap vitality is the flap color. This 

study classifies viable and compromised flap images using 

Convolutional Neural Network (CNN) architectures. The 

stages carried out in this study include pre-processing, 

classification using CNN architectures, and performance 

evaluation. The pre-processing steps include resizing, 

augmentation, and color enhancement. Color enhancement is 

achieved by increasing the intensity of the saturation 

component in the HSV color model. The performance 

evaluation of the color enhancement process yielded an average 

SSIM of 0.98 and a mean saturation level of 0.9. This indicates 

that enhanced-color images retain a structure similar to the 

original image while exhibiting high saturation levels. The 

CNN architectures used are DenseNet-201, Xception, 

EfficientNet, and ResNet-50. The performance evaluation 

results for the classification of viable and compromised flap 

images demonstrated the following: accuracy, sensitivity, 

specificity, and F1-score all exceeding 98% G-mean exceeding 

97%, and MCC exceeding 93%. This indicates that CNN 

architectures are capable of classifying viable and 

compromised flap images precisely and accurately. 

 
Index Terms—Flap, Classification, CNN, Viable, 

Compromised 

I. INTRODUCTION 

LAP is a reconstructive surgical procedure used to repair 

damage or abnormalities in human body parts due to 

accidents or health complications such as tumor eradication 
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and infections [1]–[4]. A flap is performed by transferring 

healthy tissue from a donor site to a defective area at the 

recipient site. A characteristic feature of a flap is that part of 

the flap remains attached to the donor area [1]. The part that 

remains attached to the donor area functions as a blood 

supply to maintain the vitality of the flap. One of the flap 

surgery techniques is the free flap surgery technique, also 

known as free tissue transfer. The free flap technique is a 

flap surgical technique where the flap is completely 

removed from the donor area and moved to a recipient area 

that is located far away. The free flap technique is carried 

out by connecting the blood vessels in the flap with the 

blood vessels in the recipient area so that the flap can 

survive on the blood supply from the recipient area [1]. 

Observation of flap vitality in the postoperative period is 

an important aspect in determining the success rate of flap 

reconstruction surgery. Observation aims to detect 

disturbances in the flap as early as possible so that medical 

personnel can intervene immediately. Early interventions to 

maintain flap success can have a higher success rate [5]. 

One of the clinical parameters used to assess flap vitality is 

flap color [6]. A flap that matches the color of the patient's 

skin or body as a whole is considered to have good vitality 

and is called a viable flap. A bluish or purplish flap indicates 

venous congestion and is called a compromised flap.  

Observation of flap vitality needs to be performed 

strictly by medical personnel every 12 to 24 hours. The 

results of the free flap technique require stricter observation, 

with monitoring every hour for the first 48 hours [7]. 

Physical examination is a method of observing flap vitality 

that is performed repeatedly. The flap vitality observation 

method has several disadvantages, including subjectivity, 

time consumption, environmental influences around the 

flap, the competency level of medical personnel, and the 

need for trained human resources [7]. There is a need to 

develop technology for observing flap vitality to assist 

medical personnel in conducting vitality observations and 

determining early interventions.  

One use of technology to observe flap vitality is the 

automatic classification of flap images. Classification 

involves grouping objects or assigning them specific labels 

or categories [8]–[10]. Automatic image classification has 

been developed using deep learning algorithms. Deep 

learning is a subset of machine learning that is popular in the 

medical field. Deep learning, uses deep neural networks to 

automatically learn hierarchical features from data [11]. 

Deep learning has strong capabilities in integrating large 

image datasets, learning complex relationships in images, 
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and combining existing knowledge or patterns [10], [12]. 

One of the deep learning algorithms widely used for image 

processing in the medical field is the Convolutional Neural 

Network (CNN) [13]. CNN is an artificial neural network 

that can accept raw input data, such as images [14]. CNN 

can be used in several pattern recognition tasks, such as 

image classification [15], [16]. The main structure of CNN 

consists of several layers such as convolutional layers, 

pooling layers, and fully connected layers [17]–[19]. CNN is 

able to work automatically in recognizing complex patterns 

in images [20]–[23].  Several studies have applied CNN 

architectures to image classification in the medical field. 

Halit & Ibrahim [24] applied the DenseNet201 architecture 

to classify cataracts on retinal fundus images, Moataz et al. 

[25] applied the Xception architecture to classify skin cancer 

on skin images, Zulfiqar et al. [26] applied the EfficientNet 

architecture to classify brain tumors on brain MRI images, 

and Kesuma & Rudiansyah [27] applied the ResNet-50 

architecture to classify COVID-19 on lung images. 

Research on CNNs for the classification of viable and 

compromised flaps is yet to be extensively explored. This is 

due to the limited availability of flap image data. Flap image 

data is private and cannot be easily accessed by anyone 

except authorized parties at the hospital. In this study, the 

classification of viable and compromised flaps will be 

performed on flap images using CNN architectures. The flap 

image data used in this study is private and has been 

approved by the hospital for use. The flap image data used is 

the result of camera capture, so pre-processing stages are 

needed to increase the amount of image data and improve 

image quality. The success rate of viable and compromised 

flap classification using the proposed CNN architecture will 

be evaluated by measuring classification performance 

evaluation. 

II. MATERIAL AND METHODS 

A. Data Description 

This study used flap image data provided by the hospial. 

This data is private data that cannot be accessed publicly. 

The flap image data amounted to 935 images consisting of 

425 viable flaps and 510 compromised flaps. Flap image 

data has different image sizes in .jpg, .png, and .jpeg 

formats. A sample of flap image data used in this study is 

shown in Fig. 1. 
 

 
Fig. 1.  A Sample of (a) A Viable and (b) A Compromised Flap Data 

B. Pre-processing 

In the pre-processing stage, several steps will be taken to 

increase the amount of image data and enhance image 

quality. Several pre-processing stages that will be carried 

out in this study include resizing, augmentation, and color 

enhancement.  

Resizing 

Resizing is the process of adjusting the image size so that 

it is uniform [27]–[31]. Resizing is done to ensure the image 

size is uniform and adapted to the architecture to be used 

[10]. In this study, all flap images will be resized to 

224×224 pixels.  

 

Augmentation 

Image augmentation is a process of creating new images 

from the original image and increasing data variance to 

enhance the amount of image data [32]–[35]. In deep 

learning, augmentation can improve model generalization, 

train models to be more robust, and increase model accuracy 

[33], [36]–[38]. The image augmentation method that will 

be used in this study is flipping. The flipping method will be 

applied horizontally, vertically, and both horizontally and 

vertically to produce three new images from each original 

image. Fig. 2 illustrates the flip augmentation method used 

in this study. 
 

 
Fig. 2.  An Example of The Application of The Flip Augmentation Method 
 

Color Enhancement 

In the color enhancement stage, color enhancement is 

applied to the flap images to improve their clarity. Color 

enhancement aims to enhance the colors and characteristics 

of the images [39], [40]. Color enhancement is implemented 

by increasing the intensity of the saturation characteristic of 

the HSV color model [41]. In this study, color enhancement 

was performed by intensifying the saturation in the red 

channel of the HSV color model. This adjustment was 

applied to compromised flap images to highlight the 

differences in appearance between viable and compromised 

flap images. An example of a color-enhanced flap image can 

be seen in Fig. 3. 
 

 
Fig. 3.  An Example of A Color-enhanced Flap Image 
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C. Convolutional Neural Networks (CNN) Architectures 

DenseNet-201 Architecture 

DenseNet is an architecture consisting of layers connected 

to every other layer [42], [43]. The DenseNet architecture 

offers several advantages, including overcoming the 

vanishing gradient problem, enhancing feature propagation, 

and reducing the number of parameters [25], [42]. In the 

DenseNet-201 architecture, the feature map from the 

preceding layer layer is used as input for each subsequent 

layer [42]. The DenseNet-201 architecture has deep and 

complex layers, comprising 201 layers. An illustration of the 

DenseNet-201 architecture can be seen in Fig.4. 

In Fig. 4, it can be seen that the DenseNet-201 

architecture has a direct connection pattern from each layer 

to every other layer. Every 𝑛-th layer in the DenseNet-201 

architecture receives a feature map from all preceding 

layers. Based on Figure 3, the DenseNet-201 architecture 

consists of dense blocks containing interconnected layers, 

where each layer receives input from all previous layers. 

Each dense block layer consists of a convolution, batch 

normalization, ReLU activation function, and transition 

layers. The output results from the previous layer can be 

calculated using equation (1). 

𝑑𝑛 = 𝐻𝑛([𝑑0, … , 𝑑𝑛−1])                (1) 

where, 𝑑𝑛 is the feature map or output at the 𝑛-th layer and 

𝐻𝑛 is a representation of the convolution operation, batch 

normalization, and ReLU activation function [25]. The 

convolution process applies a convolutional kernel to 

capture localized patterns from the input. The convolution 

operation is carried out using equation (2). 

𝑣𝑥,𝑦 = (∑ ∑ 𝑒𝑜+𝑥,𝑝+𝑦 ×𝑛−1
𝑝=0

𝑛−1
𝑜=0 𝑘𝑜+1,𝑝+1) + 𝑏𝑖         (2) 

for 𝑥 = 1,2, … , 𝑛   and 𝑦 = 1,2, … , 𝑛, where 𝑣𝑥,𝑦 represents 

an element of the convolution matrix in the 𝑥-th row of the 

𝑦-th column, 𝑒𝑜+𝑥,𝑝+𝑦 is the input matrix entry of the 𝑜 + 𝑥-

th row of the 𝑝 + 𝑦-th column, 𝑘𝑜+1,𝑝+1 is the 𝑜 + 1-th row 

𝑝 + 1-th column kernel matrix entry, and 𝑏𝑖 is bias for the 𝑖-
th kernel [10]. 

  Batch normalization is a normalization technique applied 

to each layer in the network [44], [45]. The batch 

normalization operation performs normalization on the 

mean (𝜇𝑦) and variance (𝜎𝑦
2) values. The batch 

normalization calculation process is defined in equations 

(3), (4), and (5). 

𝜇𝑦 =
1

𝑚
∑  𝑣𝑥,𝑦

𝑚
𝑥=1                    (3) 

𝜎𝑦
2 =

1

𝑚
∑ (𝑣𝑥,𝑦 − 𝜇𝑦)

2𝑚
𝑥=1                 (4) 

𝑔 = �̂�𝑥,𝑦 =  
𝑣𝑥,𝑦−𝜇𝑦

√𝜎𝑦
2+𝜀

                   (5) 

where, 𝜇𝑦 and 𝜎𝑦
2 are the mean and variance of each mini-

batch, 𝑗 is the number of mini-batches, 𝑚 is the amount of 

data in a mini-batch �̂�𝑥,𝑦 is the normalized matrix entry in  

the 𝑥-th row and  𝑗-th column, 𝑣𝑥,𝑦 is the input matrix entry 

(convolution result matrix) at the same position, and 𝜀 is the 

smallest constant value [10]. The Rectified Linear Unit 

(ReLU) is a commonly used activation function in CNNs. In 

the ReLU activation function, all the inputs to the function 

are negative, so the output is zero [46], [47]. 

Mathematically, the ReLU function equation can be seen in 

the equation (6) [48]. 

𝑟 = 𝑟(�̂�𝑥,𝑦) = max(0, �̂�𝑥,𝑦) = {
�̂�𝑥,𝑦        𝑗𝑖𝑘𝑎 �̂�𝑥,𝑦 ≥ 0

0          𝑗𝑖𝑘𝑎 �̂�𝑥,𝑦 < 0
    (6) 

where, 𝑟 is the ReLU output result and �̂�𝑥,𝑦 is the input pixel 

from the batch normalization results [10]. In the DenseNet 

architecture, there is a sigmoid layer before the output. The 

sigmoid activation function is used for two-label 

classification because it has a range of 0 to 1 [49]. The 

activation function is calculated using equation (7). 

𝑠 =
1

1+𝑒−𝑟                      (7) 

where, 𝑠 is the output of the sigmoid activation function and 

𝑟 is the output of the ReLU activation function. 

 

Xception Architecture 

 Xception is one of the CNN architectures that can 

improve the efficiency of the computational process. 

Xception uses depthwise separable convolutions and 

residual connections, so it has small parameters and an 

efficient computational process [10]. A key feature of 

Xception is the use of depthwise separable convolutions 

rather than convolutional operations [50], [51]. The use of 

depth-based separable convolutions can reduce the number 

of parameters so that the architecture is efficient in 

extracting features and computing processes [52]. Xception 

comprises both convolutional and separable convolutional 

layers. In this architecture, depthwise convolution processes 

information across channels, while pointwise convolution 

handles information within each channel. This separation 

enables the network to effectively learn features both 

between and within different channels [50]. An illustration 

of the Xception architecture can be seen in Fig. 5. 
 

 
Fig. 4.  Illustration of The DenseNet-201 Architecture 
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Fig. 5.  Illustration of The Xception Architecture 

 

Figure 5 shows that the Xception architecture consists of 

three parts: input, middle, and output streams. Each part of 

the Xception architecture uses depthwise separable 

convolution. The Xception architecture comprises multiple 

convolutional layers, batch normalization, and ReLU 

activation functions. In the Xception architecture, the image 

input is first processed in the input stream block, then 

continues to the middle stream block, and finally enters the 

output stream block. A sigmoid function is at the end of the 

output flow block for class classification. The sigmoid 

activation function is used because classification is only into 

two labels: compromised and viable flaps. The convolution 

operation process, batch normalization, ReLU, and sigmoid 

activation function are performed using equations (2)-(7). 

 

EfficientNet Architecture 

 EfficientNet architecture is one of the most efficient CNN 

architectures for image classification [53]. EfficientNet uses 

a uniform compound scaling approach to structurally 

improve CNN architectures by using a fixed set of scaling 

coefficients. EfficientNet takes an input image with pixel 

intensity values in the range [0-255] because it performs 

image normalization automatically. The EfficientNet 

architecture consists of a stem layer followed by seven 

blocks and a final layer. An illustration of the layer 

arrangement of the EfficientNet architecture can be seen in 

Fig. 6. In Fig. 6, it can be seen that the EfficientNet 

architecture consists of a stem layer, 7 blocks, and a final 

layer. The stem layer extracts initial features, which are then 

further processed by subsequent layers. The stem layer 

consists of input, rescaling, normalization, zero padding, 

convolution operations, batch normalization, and activation 

functions. Modules 1 to 3 in each block consist of depthwise 

convolution operations, batch normalization, rescaling, 

convolution operations, and activation functions. The depth 

level of each block depends on the EfficientNet variant 

used. The final layer of the EfficientNet architecture consists 

of convolution operations, batch normalization, and 

activation functions.  

  

ResNet-50 Architecture 

 The ResNet-50 architecture is able to handle the gradient 

vanishing problem because it has residual connections in the 

layers, thus accelerating the convergence of the deep 

network [54]. The ResNet-50 architecture has low 

computational complexity despite its depth [55]. The 

ResNet-50 architecture can be classified accurately because 

it extracts more representative features [26], [56]. The 

ResNet-50 architecture consists of 50 layers. An illustration 

of the ResNet-50 architecture can be seen in Fig. 7. 

  In Fig. 7, it can be seen that the ResNet-50 architecture 

consists of convolution operations, batch normalization, 

ReLU activation function, max pooling, identity block, 

average pooling, fully connected layers, and sigmoid 

activation function. The first operation is a convolution on 

the input image, followed by batch normalization. The 

output of the batch normalisation operation is used as input 

to the ReLU activation function. Max pooling is used to 

reduce the dimensions of the feature map generated in the 

previous process. The results of max pooling are used as 

input for the next convolution. The results of the second 

convolution are then used as input for the identity blocks. 

The identity blocks consist of convolution layers, batch 

normalization, and ReLU activations without feature map 

merging. The results of the identity blocks become input for 

the next convolution. In the second to fourth identity blocks, 

the same process is carried out as in the first identity block. 

The feature map obtained from the feature learning process 
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used as input for the classification stage. This stage consists 

of combining global average pooling, fully connected layers, 

and sigmoid activation functions. 

D. Performance Evaluation 

 Performance evaluation of the color enhancement method 

used is measured by calculating the structural similarity 

index measure (SSIM) and mean saturation level. SSIM is 

used to assess the structural resemblance between color-

enhanced images and the original images [57]. The mean 

saturation level is used to measure the level of richness or 

intensity of color by measuring the average saturation value 

of all image pixels.  

The evaluation of the classification results performance is 

represented in the form of a matrix called the confusion 

matrix, which is generated at the testing stage. In a 

confusion matrix, the columns represent the actual classes, 

while the rows represent the predicted classes [58]. The 

confusion matrix includes terms such as true positive (TP), 

true negative (TN), false positive (FP), and false negative 

(FN). This study measures architectural performance based 

on the confusion matrix by calculating accuracy, sensitivity, 

specificity, F1-score, geometric mean (G-mean), and 

Matthews correlation coefficient (MCC). The performance 

evaluations are calculated using equations (8), (9), (10), 

(11), (12), and (13) [59]–[63]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
               (8) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (9) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
              (10) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
            (11) 

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦      (12) 

𝑀𝐶𝐶 =
𝑇𝑃.𝑇𝑁−𝐹𝑃.𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
           (13) 

where, TP is the ratio of positive labels classified as 

positive, TN is the ratio of negative labels classified as 

negative, FP is the ratio of negative labels classified as 

positive, and FN is the ratio of positive labels classified as 

negative [64]. The overall method of this study can be seen 

in Fig. 8. 

 

 
Fig. 6.  Illustration of The EfficientNet Architecture 

 

 
Fig. 7.  Illustration of The ResNet-50 Architecture 
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Fig. 8.  Proposed Method for Classification of Viable and Compromised Flap 

 

III. RESULTS AND DISCUSSION 

A. Pre-processing 

 In the pre-processing stage, resizing, augmentation, and 

color enhancement are carried out. Resizing is done to make 

the image size uniform and regular. In the resizing stage, the 

image size is changed to 224×224 pixels. Augmentation is 

performed to expand the quantity of image data by varying 

the original image. The augmentation methods used in this 

study are vertical, horizontal, and vertical-horizontal flips. 

The number of images after augmentation became 3,740 

images consisting of 1,700 viable flap images and 2,040 

compromised flap images. 

 Color enhancement is carried out to clarify the 

characteristics and enhance the red color of the 

compromised flap image. In color-enhanced images, the 

SSIM and mean saturation level were measured. SSIM is 

used to assess the structural resemblance between color-

enhanced images and the original images The mean 

saturation level is used to measure the level of richness or 

intensity of color by measuring the average saturation value 

of all image pixels. The results of SSIM and mean saturation 

level measurements on color-enhanced images can be seen 

in Table 1. 

 Based on Table 1, the average SSIM value obtained is 

0.98. This indicates that the enhanced-color image closely 

resembles the original structure, as perceived by human 

vision. The mean saturation level obtained is 0.9. This 

indicates that enhanced-color images exhibit a high level of 

color saturation, resulting in a more vivid and striking 

appearance.  
 

TABLE I 
SSIM AND MEAN SATURATION LEVEL ON COLOR-ENHANCED IMAGES 

No Image SSIM Mean Saturation Level 

1 Image_1 0.976538 0.896538 

2 Image_2 0.977084 0.897084 

3 Image_3 0.980938 0.900938 

4 Image_4 0.980656 0.900656 

5 Image_5 0.979684 0.899684 

. . . . 

931 Image_931 0.974872 0.894872 

932 Image_932 0.974872 0.894872 

933 Image_933 0.976643 0.896643 

934 Image_934 0.976643 0.896643 

935 Image_935 0.976643 0.896643 

Mean 0.980353 0.900353 

B. Classification using CNN Architecture 

Original Images 

This section performs classification using the resized 

images from the pre-processing stage. Classification consists 

of two processes: training and testing. The original dataset 

includes 935 images of 425 viable flaps and 510 

compromised flaps. Before the training process, the data is 
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divided into 75% training data, comprising 701 images, and 

25% testing data, comprising 234 images. The training data 

was further separated into 80% training data, comprising 

560 images, and 20% validation data, comprising 141 

images. Classification is carried out into two labels: viable 

and compromised flaps. Classification is performed using 

several CNN architectures: DenseNet-201, Xception, 

EfficientNet, and ResNet-50. The parameters used in the 

training process with original images are 100 epochs, a 

batch size of 5, and the Adam optimizer. During training, 

the accuracy of both the training and validation data is 

measured to evaluate the performance of the proposed 

classification models. Additionally, the loss value is 

assessed to quantify the error rate between predicted and 

actual labels. Accuracy and loss graphs from the original 

image classification training process using DenseNet-201, 

Xception, EfficientNet, and ResNet-50 architectures are 

presented in Figs. 9–12. 

Based on Figs. 9–12, the original image classification 

training process using the DenseNet-201, Xception, 

EfficientNet, and ResNet-50 architectures shows fluctuating 

accuracy in both the training and validation datasets. In Fig. 

9(b) and 12(b), the accuracy values for the DenseNet-201 

and ResNet-50 architectures stabilize at 40th epoch towards 

values above 95%. In Fig. 10(b) and 11(b), the accuracy 

values for the Xception and EfficientNet architectures 

stabilize at the 40th and 65th epoch towards values above 

95%. Based on Fig. 9(a) and 11(a), the original image 

classification training process using the DenseNet-20 and 

EfficientNet architectures has a loss value that continues to 

decrease close to 0. In Fig. 10(a) and 12(a), the loss value in 

the Xception and ResNet50 architectures shows a loss value 

that fluctuates and stabilizes at the 45th epoch approaching 

0. The accuracy and loss values obtained during the training 

process show that these CNN architectures are capable of 

performing classification accurately and have a low error 

rate. 

 

 
Fig. 9.  Graphs of (a) Loss and (b)Accuracy of Original Images Classification during Training with The DenseNet-201 Architecture 

 

 
Fig. 10.  Graphs of (a) Loss and (b)Accuracy of Original Images Classification during Training with The Xception Architecture 
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Fig. 11.  Graphs of (a) Loss and (b)Accuracy of Original Images Classification during Training with The EfficientNet Architecture 

 

 
Fig. 12.  Graphs of (a) Loss and (b)Accuracy of Original Images Classification during Training with The ResNet-50 Architecture 

 

Augmented Images 

 In this section, classification is performed using resized 

and augmented images from the pre-processing stage. 

Classification includes training and testing. The augmented 

images include 3,740 images of 1,700 viable flap images 

and 2,040 compromised flap images. Before the training 

process, the data was divided into 75% training data, 

comprising 2,805 images, and 25% testing data, comprising 

935 images. The training data was further separated into 

80% training data, comprising 2,244 images, and 20% 

validation data, comprising 561 images. Classification is 

carried out into two labels, viable and compromised flaps. 

Classification is performed using several CNN architectures: 

DenseNet-201, Xception, EfficientNet, and ResNet-50.  

The parameters used in the training process with 

augmented images are 100 epochs, a batch size of 5, and the 

Adam optimizer. During training, the accuracy of both the 

training and validation data is measured to evaluate the 

performance of the proposed classification models. 

Additionally, the loss value is assessed to quantify the error 

rate between predicted and actual labels. Accuracy and loss 

graphs from the original image classification training 

process using DenseNet-201, Xception, EfficientNet, and 

ResNet-50 architectures are presented in Figs. 13, 14, 15, 

and 16.  

Based on Figs. 13–16, the augmented image classification 

training process using the DenseNet-201, Xception, 

EfficientNet, and ResNet-50 architectures shows fluctuating 

accuracy in both the training and validation datasets. In Fig. 

13(b) and 14(b), the accuracy values of the DenseNet-201 

and Xception architectures stabilize at the 45th epoch 

towards a value above 95%. In Fig. 15(b) and 16(b), the 

accuracy values on the EfficientNet and ResNet-20 

architectures stabilize at the 65th and 30th epochs toward 

values above 95%. Based on Fig. 13(a), 14(a), 15(a), and 

16(a), the training process of augmented image 

classification using the DenseNet-20, Xception, 

EfficientNet, and ResNet-50 architectures shows a loss 

value that fluctuates and is close to 0. The accuracy and loss 

values obtained during the training process show that these 

CNN architectures are capable of performing classification 

and have a low error rate. 
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Fig. 13.  Graphs of (a) Loss and (b)Accuracy of Augmented Images Classification during Training with The DenseNet-201 Architecture 

 

 
Fig. 14.  Graphs of (a) Loss and (b)Accuracy of Augmented Images Classification during Training with The Xception Architecture 

 

 
Fig. 15.  Graphs of (a) Loss and (b)Accuracy of Augmented Images Classification during Training with The EfficientNet Architecture 

 

 
Fig. 16.  Graphs of (a) Loss and (b)Accuracy of Augmented Images Classification during Training with The ResNet-50 Architecture
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Color-enhanced Images 

In this section, classification is performed using resized 

and color-enhanced images from the pre-processing stage. 

Classification includes training and testing. The color-

enhanced images include 935 images of 425 viable flaps and 

510 compromised flaps. Before the training process, the data 

was divided into 75% training data, comprising 701 images, 

and 25% testing data, comprising 234 images. The training 

data was further separated into 80% training data, 

comprising 560 images, and 20% validation data, 

comprising 141 images. Classification is carried out into two 

labels, viable and compromised flaps. Classification is 

carried out using several CNN architectures: DenseNet-201, 

Xception, EfficientNet, and ResNet-50 architectures. The 

parameters used in the training process with color-enhanced 

images are 100 epochs, a batch size of 5, and the Adam 

optimizer. During training, the accuracy of both the training 

and validation data is measured to evaluate the performance 

of the proposed classification models. Additionally, the loss 

value is assessed to quantify the error rate between predicted 

and actual labels. Accuracy and loss graphs from the 

original image classification training process using 

DenseNet-201, Xception, EfficientNet, and ResNet-50 

architectures are presented in Figs. 17, 18, 19, and 20.  
 

 
Fig. 17.  Graphs of (a) Loss and (b)Accuracy of Enhanced Images Classification during Training with The DenseNet-201 Architecture 

 

 
Fig. 18.  Graphs of (a) Loss and (b)Accuracy of Enhanced Images Classification during Training with The  Xception Architecture 

 

 
Fig. 19.  Graphs of (a) Loss and (b)Accuracy of Enhanced Images Classification during Training with The  EfficientNet Architecture 
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Fig. 20.  Graphs of (a) Loss and (b)Accuracy of Enhanced Images Classification during Training with The ResNet-50 Architecture 

 

Based on Figs. 17–20, the color-enhanced image 

classification training process using the DenseNet-201, 

Xception, EfficientNet, and ResNet-50 architectures shows 

fluctuating accuracy in both the training and validation 

datasets.  In Fig. 17(b), 18(b), 19(b), and 20(b), the accuracy 

values of the DenseNet-201, Xception, EfficientNet, and 

ResNet-50 architectures stabilize at the 25th, 65th, 35th, and 

45th epochs, respectively, reaching values above 95%. 

Based on Fig. 17(a), the training process of color-enhanced 

images classification using the DenseNet-201 architecture 

has a loss value that continues to decrease close to 0. Based 

on Fig. 18(a), 19(a), and 20(a), the training process of color-

enhanced images classification using the Xception, 

EfficientNet, and ResNet-50 architectures shows a loss 

value that fluctuates and stabilizes at 65th and 45th epochs 

close to 0. The accuracy and loss values obtained during the 

training process show that these CNN architectures are 

capable of performing classification and have a low error 

rate. 

C. Discussion and Analysis 

In this study, a classification of viable and compromised 

flap images was carried out, consisting of training and 

testing stages. During training, classification using original, 

augmented, and color-enhanced images for each architecture 

achieved an accuracy above 98%. The loss value obtained is 

also close to 0. In the testing process, performance 

evaluations such as accuracy (Acc), sensitivity (Sen), 

specificity (Spe), and F1-score (F1) values for each group of 

images on each CNN architecture are measured. The overall 

performance evaluation results obtained in this study can be 

seen in Table 2. 

Based on Table 2, it can be seen that the results of the 

classification of viable and compromised flap images have 

performance evaluation results such as good accuracy, 

sensitivity, specificity, and F1-score, namely above 98%. 

The accuracy value shows the proportion of labels that are 

predicted correctly. The sensitivity indicates the degree to 

which the proportion of viable flap labels is correctly 

predicted as viable flap labels by the model. Specificity 

indicates the degree to which the proportion of 

compromised flap labels is correctly predicted as 

compromised flap labels by the model. The F1-score shows 

the model's ability to perform classification by considering 

the balance between predicting all labels and minimizing 

prediction errors. This shows that the CNN architecture is 

able to classify viable and compromised flap images 

precisely and accurately. G-mean and MCC were also 

measured. The performance evaluation results for G-Mean 

and MCC are presented in Table 3.  
 

TABLE II 

PERFORMANCE EVALUATION ON VIABLE AND COMPROMISED FLAP IMAGES 

CLASSIFICATION WITH CNN ARCHITECTURES 

No Image 

 

CNN 
Architecture 

Performance  

Evaluation (%) 

Acc Sen Spe F1 

 

1 

 

Original 
 Images 

DenseNet-201 99 99 99 99 

Xception 99 98 98 99 
EfficientNet 99 99 99 99 

ResNet-50 99 99 99 99 

 
2 

 
Augmented Images 

DenseNet-201 99 99 99 99 
Xception 99 99 99 99 

EfficientNet 99 99 99 99 

ResNet-50 99 99 99 99 

 
3 

 
Color-enhanced 

Images 

DenseNet-201 99 99 99 99 
Xception 99 99 99 99 

EfficientNet 99 99 99 99 
ResNet-50 99 99 99 99 

 

TABLE III 
G-MEAN AND MCC EVALUATION ON VIABLE AND COMPROMISED FLAP 

IMAGES CLASSIFICATION WITH CNN ARCHITECTURES 

No Image 

 
CNN Architecture 

Performance 
 Evaluation (%) 

G-mean MCC 

 

1 

 

Original 

 Images 

DenseNet-201 99 94.5 

Xception 98 93.5 

EfficientNet 99 95 

ResNet-50 99 93.6 

 

2 

 

Augmented  
Images 

DenseNet-201 99 97.5 

Xception 99 96.3 
EfficientNet 99 94 

ResNet-50 99 97.5 

 

3 

 

Color-enhanced 
 Images 

DenseNet-201 99 94 

Xception 99 94 
EfficientNet 99 96 

ResNet-50 99 96 

 

 Based on Table 3, the evaluation results indicate that the 

classification performance for viable and compromised flap 

images demonstrates excellent G-mean results, consistently 

exceeding 97%. This finding underscores the efficacy of the 

CNN model in accurately classifying both viable and 

compromised flaps. Furthermore, the MCC evaluation 

reveals similarly strong performance, with values surpassing 
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93%, highlighting the model's ability to differentiate 

between the two label categories in a balanced and reliable 

manner. Collectively, these results confirm that the CNN 

model exhibits robust and accurate performance in 

classifying viable and compromised flap images. 

IV. CONCLUSION 

The pre-processing method used in this study includes 

resizing, augmentation, and color enhancement. The 

classification of viable and compromised flap images using 

several CNN architectures was carried out for each of the 

pre-processed images, namely original resized images, 

augmented images, and color-enhanced images. The 

classification of flap images was carried out using two 

labels, namely viable and compromised flaps. The CNN 

architectures used in the study include DenseNet-201, 

Xception, EfficientNet, and ResNet-50. The average 

performance evaluation results obtained by the CNN 

architectures in classifying each group of images resulting 

from pre-processing have a value above 98%. However, 

based on the accuracy and loss graphs obtained by each 

CNN architecture in the training process, it can be seen that 

the training process experienced overfitting in several 

epochs. The results of this study can be used to improve or 

further develop the CNN model in classifying viable and 

compromised flap images to provide better results and avoid 

overfitting. Good and precise flap image classification 

results can assist medical personnel in obtaining a more 

accurate diagnosis early when observing flap vitalility. 
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