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Abstract—Centrality measures are used to rank the nodes of
the network. Stress is one such important centrality measure of
graphs applicable to the study of social and biological networks.
We study the stress of a few standard classes of graphs along
with a few graphs of diameter two. We have also identified the
graphs with the maximum stress in two particular families of
unicyclic graphs of order n.

Index Terms—Unicyclic graph, Windmill graph, Rooted
product graph, Half graph Subdivision graph.

I. INTRODUCTION

LET G = (V (G), E(G)) be a finite simple graph with
the set of vertex V (G) = {v1, v2, . . . , vn} and the set

of edges E(G) = {e1, e2, . . . , em}. If two vertices vi and vj
are adjacent, we write vi ∼ vj , and the edge between them
is denoted by eij .

Let P = (u = v0, v1, . . . , vk = v) be a u-v path of length
k in G with origin u = v0 and terminus v = vk. The vertices
vi, 1 ≤ i ≤ k− 1 are called the internal vertices of the path
P . The length of a shortest u-v path, denoted by d(u, v)
is called distance between u and v. The diameter of G,
denoted by diam(G), is given by max{d(u, v) : u, v ∈ V }.

A vertex centrality measure assigns a real number to
each vertex of a graph, and it quantifies the importance or
criticality of a vertex from a particular perspective. Different
centrality measures describe the importance of a vertex from
different perspectives. A few examples of vertex centrality
measures are betweenness, closeness, degree, eigenvector
centrality, and stress.

The centrality measures in a graph are used to rank the
vertices, and the vertices with the highest rank are considered
to be more important than the others. For further results
on centrality measures, the readers are referred to [6], [13],
[15] and [16]. Applications of centrality measures include
identification of the most influential person in a social
network, proteins that play a significant role in a biological
process, and key infrastructure vertices in an urban network
or internet, etc. For a brief survey of centrality measures with
emphasis on applications in the study of biological networks,
we refer to [4]. For graph-theoretic terminology we refer to
Chartrand and Lesniak [17].

In the present paper, our focus is on the study of stress,
which is a vertex centrality measure studied to some extent
in [2], [3] and [14].

Definition 1.1: Let G be a graph with V (G) =
{v1, v2, . . . , vn}. The stress of a vertex vi is the number
of shortest paths in G having vi as an internal vertex and is
denoted by st(vi) or stG(vi).
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Definition 1.2: The stress of a graph G is defined by

st(G) =
n∑

i=1

st(vi).

For recent work on stress centrality, the reader can refer
to [7]–[9].
We write st(v) instead of stG(v), whenever the graph under
discussion is clear by the context.

Stress centrality of a few graphs of diameter two is
discussed in Section 2. Section 3 deals with the stress of
some standard classes of graphs, such as the windmill graph,
the half graph, some classes of unicyclic graphs and rooted
product graphs and Section 4 contains the results related to
the maximum stress among the two families of unicyclic
graphs of order n.

II. DIAMETER TWO GRAPHS

In this section, we determine the stress of some diameter
2 graphs using Theorem 2.1.

Theorem 2.1: [7] If diam(G)=2 and deg(w) ≥ 2, then

st(w) =

(
deg(w)

2

)
−m(w),

where m(w) denotes the number of edges in the induced
subgraph G[N(w)].

Theorem 2.2: Let G = Wm,n = Km + Cn, be a general-
ized wheel graph on m+ n vertices. Then,

st(G) =


mn(m+ n− 4)

2
; n = 3

mn(m+ n− 4) + 2n

2
; n > 3

Proof: Let {v1, v2, ..., vn} be the cycle vertices and
{w1, w2, ..., wm} be the central vertices.
Then, for all 1 ≤ i ≤ m,

st(wi) =

(
n

2

)
− n.

Stress of cycle vertices is given by,

st(vj) =

(
deg(vj)

2

)
−m(vj).

where m(vj) denotes the number of edges in the induced
subgraph G[N(vj)].

Case 1:When n = 3.

st(vj) =

(
m+ 2

2

)
− 2m.

Hence,

st(G) =
mn(m+ n− 4)

2
.

Case 2:When n > 3.

st(vj) =

(
m+ 2

2

)
− (2m+ 1).
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Hence,

st(G) =
mn(m+ n− 4) + 2n

2
.

A split graph is a graph which admits a partition of its vertex
set into two parts, say V1 and V2, so that the vertices of V1

induce a co-clique, while the vertices of V2 induce a clique.
All other edges, the cross edges, join a vertex in V1 with
a vertex in V2. A threshold graph is a split graph where
the subsets of vertices V1 and V2 can be further partitioned
into h cells V1 = V1,1 ∪ V1,2 ∪ · · · ∪ V1,h and V2 = V2,1 ∪
V2,2 ∪ · · · ∪ V2,h satisfying the following nesting property:
For each vertex u ∈ V1,i, 1 ≤ i ≤ h, NG(u) = V2,1 ∪
... ∪ V2,h−i+1. If |V1,i| = mi and |V2,i| = ni, then we write
G = NSG(m1,m2, ...,mh;n1, n2, ..., nh).

Theorem 2.3: Let G = NSG(m1,m2;n1, n2) be a graph
on n vertices. Then,

st(G) =
n1(m1 +m2 − 1)(m1 +m2) + 2n1n2m2 + n2m1(m1 − 1)

2
.

Proof: The stress of vertices present in V1,1 and V1,2

are 0 as they do not lie in the shortest paths between any
vertices.

1) The stress of a vertex present in V2,1 due to shortest
paths between every two vertex in V1,1 ∪ V1,2 is given
by,

m1+m2−1∑
i=1

i.

The vertex in V2,1 also lies in the shortest paths between
vertices in V1,2 to vertices in V2,2 and this gives, m2n2.
Therefore, the stress on n1 such vertices of V2,1 is,

n1

m1+m2−1∑
i=1

i+m2n1n2.

2) The stress of n2 vertices in V2,2 due to shortest paths
between every two vertices of V1,1 is given by,

n2m1(m1 − 1)

2
.

Therefore,

st(G) =
n1(m1 +m2 − 1)(m1 +m2) + 2n1n2m2 + n2m1(m1 − 1)

2
.

Theorem 2.4: Let G = NSG(1, 1, ..., 1; 1, 1, ..., 1) be a
graph on 2n vertices with |V1| = |V2| = n. Then,

st(G) =
n(n2 − 1)

3
.

Proof: Let the vertex set of G be partitioned into
V1 = {v1, v2, ..., vn} and V2 = {w1, w2, ..., wn} with
|V1| = |V2| = n. The stress of vertices in V1 is 0 as they do
not lie in the shortest paths between any vertices. The vertex
wn is adjacent to every vertex in V1 and every vertex in V2.
Stress of wn due to shortest paths between every two vertices
in V1 is,

n(n− 1)

2
.

Stress of wn due to shortest paths between vertices in V1 to

vertices in V2 is given by,

n(n− 1)

2
.

Therefore,
st(wn) = n(n− 1).

This is true for all wx ∈ V2 with corresponding values of
x, 1 ≤ x ≤ n.
Hence,

st(G) =
n∑

x=1

x(x− 1).

Therefore,

st(G) =
n(n2 − 1)

3
.

III. STANDARD CLASS OF GRAPHS

Stress of a few standard graphs such as windmill graph
Kl

n, half graphs, DNG(m1,m2;n1, n2) and three classes
of unicyclic graphs P l

n, cycle-star graph CSk,n−k and rooted
product graphs Cn(Pm) are discussed in this section.

First we discuss the stress of a few classes of unicyclic
graphs.

Definition 3.1: Let P l
n, l < n denote the unicyclic graph

obtained by connecting a vertex of Cl with an end vertex of
Pn−l as shown in Figure 1.

Fig. 1: Graph P l
n

Theorem 3.1: Let G = P l
n, 3 ≤ l < n, be a unicyclic

graph. Then, st(G) =
4n(n2 − 1) + l(5l2 − 6l − 6nl + 4)

24
; l is even

2n(2n2 − 6n + 1) + l(5l2 − 12l − 6nl + 12n + 7)

24
; l is odd.

(1)

Proof:

Case 1: When l is even.
The stress of a cycle vertex associated with shortest
paths between two cycle vertices is

l(l − 2)

8
= p.

Then the stress of l cycle vertices due to shortest
path between cycle vertices to cycle vertices and
(n− l) path vertices is,
p+ 2(p+ (n− l)) + 2(p+ 2(n− l)) + ...+ 2(p+

(
l

2
− 1)(n− l)) + (p+ l(n− l)).

Hence, we get,

S1 =
l2(l − 2)

8
+

l(n− l)(l + 2)

4
.
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The stress of the n− l path vertices is given by,

S2 = (l + 1)(n− (l + 1)) + (l + 2)(n− (l + 2))

+ ...+ (n− 1)(n− (n− 1))

= n((l + 1) + (l + 2) + . . .+ (n− 1))

− ((l + 1)2 + (l + 2)2 + . . .+ (n− 1)2)

= n(
n−1∑
i=1

i−
l∑

i=1

i)− (
n−1∑
i=1

i2 −
l∑

i=1

i2).

Therefore, S1 + S2 gives,

st(G) =
4n(n2 − 1) + l(5l2 − 6l − 6nl + 4)

24
.

Case 2: When l is odd.
The stress of a cycle vertex associated with the
shortest paths between two cycle vertices is

(l − 3)(l − 1)

8
= q.

Then the stress of l cycle vertex due to shortest path
between cycle vertices to cycle vertices and (n− l)
path vertices is,
2q+2(q+ (n− l)) + 2(q+2(n− l)) + ...+2(q+

(
l − 1

2
− 1)(n− l)) + (q + (l − 1)(n− l)).

Hence, we get,

S3 =
l(l − 3)(l − 1)

8
+

(n− 1)(l2 − 1)

4
.

The stress of the n− l path vertices is given by,

S4 = l(n− (l + 1)) + (l + 1)(n− (l + 2)) + ...

+ (n− 2)(n− (n− 1))

= n(l + (l + 1) + . . .+ (n− 2))

− (l(l + 1) + (l + 1)(l + 2) + . . .+ (n− 2)(n− 1))

= n(
n−2∑
i=1

i−
l−1∑
i=1

i)− (
n−2∑
i=1

i(i+ 1)−
l−1∑
i=1

i(i+ 1).

Therefore, S3 + S4 gives,

st(G) =
2n(2n2 − 6n+ 1) + l(5l2 − 12l − 6nl + 12n+ 7)

24
.

Definition 3.2: A cycle-star graph, denoted by CSk,n−k,
is a graph consisting of two parts: a cycle of length k and
n− k leaf vertices, each connected to a single vertex of the
cycle.
Next, theorem discuss about stress of a cycle-star graph.

Theorem 3.2: Let G = CSk,n−k; 3 ≤ k < n, be a cycle
star on n vertices. Then, st(G) =

k2(k − 2) + 2(n− k)(2n− 2 + k2)

8
; k is even

k(k2 − 4k + 3) + 2(n− k)(2n− 2k − 3 + k2)

8
; k is odd

Proof: Let w ∈ V (G) be the vertex at which the n− k
leaf vertices are connected.

Case 1:When k is even.
The stress of a cycle vertex associated with shortest
paths between two cycle vertices is

k(k − 2)

8
= a

The stress of the k cycle vertices associated with
shortest paths between cycle vertices to other cycle
vertices and leaf vertices is
a+2(a+ (n− k)) + 2(a+2(n− k)) + ...+2(a+

(
k

2
− 1)(n− k)) + (a+ k(n− k)).

Hence, we get,

k2(k − 2)

8
+

k(n− k)(k + 2)

4
.

The vertex w has an additional stress as it lies in
the shortest path between every two leaf vertices
and this stress amounts to

(n− k)(n− k − 1)

2
.

Therefore,

st(G) =
k2(k − 2) + 2(n− k)(2n− 2 + k2)

8
.

Case 2: When k is odd.
The stress of a cycle vertex associated with the
shortest paths between two cycle vertices is

(k − 3)(k − 1)

8
= b.

The stress of the k cycle vertices associated with
shortest paths between cycle vertices to other cycle
vertices and leaf vertices is
2b+2(b+(n− k))+ 2(b+2(n− k))+ ...+2(b+

(
k − 1

2
− 1)(n− k)) + (b+ (k − 1)(n− k)).

Hence, we get,

k(k − 3)(k − 1)

8
+

(n− k)(k − 1)(k + 1)

4
.

The vertex w has an additional stress as it lies in
the shortest path between every two leaf vertices
and this stress amounts to

(n− k)(n− k − 1)

2
.

Therefore,

st(G) =
k(k2 − 4k + 3) + 2(n− k)(2n− 2k − 3 + k2)

8
.

Definition 3.3: The rooted product graph denoted by
Cn[Pm] is obtained by taking n copies of Pm and joining
each vertex of Cn with a pendant vertex of a Pm.
In the following when n is even and odd we gave stress of
the rooted product graph separately.

Theorem 3.3: Let G = Cn[Pm], n ≥ 3,m ≥ 1 be a rooted
product graph on n(m+ 1) vertices. Then,

st(G) =



n2(m+ 1)(nm+ 6m+ n− 2)

8
+

nm(m− 1)(3nm+ 3n+m+ 1)

6
; n is even

n(n− 1)(m+ 1)(nm+ 5m+ n− 3)

8
+

nm(m− 1)(3nm+ 3n− 2m− 2)

6
; n is odd.

Proof: Let {v1, v2, v3, ..., vn} be the cycle vertices.
Case 1:When n is even

The total stress of vi,1 ≤ i ≤ n is due to the
following:
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1) The stress of vi due to the shortest paths between
two vertices of the cycle is given by

n(n− 2)

8
.

2) Stress of vi due to shortest paths from m + 1
vertices of Pm + vj ,i ̸= j to other path vertices
is given by,

m(m+ 1)(n2 + 2n+ 8)

8
.

3) Stress of vi due to shortest paths from m vertices
of the Pm connected to vi to m + 1 vertices of
Pm+vj ,i ̸= j, not considered above is given by,

m(m+ 1)(n− 2)

2
.

4) Stress of vi because of shortest paths from m
vertices of the Pm connected to vi to cycle
vertices not considered above is given by,

mn(n− 2)

8
.

Therefore, stress of n such cycle vertices in Cn[Pm]
is,

S1 =
n2(m+ 1)(nm+ 6m+ n− 2)

8
.

Let {w1, w2, w3, . . . , wm} be the vertices in a Pm

with w1 ∼ vi. Note that st(wm) = 0 as it is a
pendant vertex. So, st(wi) = (m−i)(n(m+1)+i).
Then, stress of m vertices in one Pm is given by
m−1∑
i=1

(m − i)((m + 1)n + i) =
nm(m2 − 1)

2
+

m2(m− 1)

2
− m(m− 1)(2m− 1)

6
.

Hence stress of n such Pm’s is given by,

S2 =
nm(m− 1)(3mn+m+ 3n+ 1)

6

Therefore, adding S1 and S2 we get

st(Cn[Pm]) =
n2(m+ 1)(nm+ 6m+ n− 2)

8
+

nm(m− 1)(3mn+m+ 3n+ 1)

6
.

Case 2: When n is odd
The total stress of vi,1 ≤ i ≤ n is due to the
following:

1) Stress of vi due to shortest paths between two
cycle vertices is given by,

(n− 1)(n− 3)

8
.

2) Stress of vi due to shortest paths from m + 1
vertices of Pm + vj ,i ̸= j to other path vertices
is given by,

m(m+ 1)(n2 − 1)

8
.

3) Stress of vi because of shortest paths from m
vertices of the Pm connected to vi to m + 1
vertices of Pm + vj ,i ̸= j, not considered above

is given by,

m(m+ 1)(n− 1)

2
.

4) Stress of vi because of shortest paths from m
vertices of the Pm connected to vi to cycle
vertices not considered above is given by,

m(n− 1)(n− 3)

8
.

Therefore, stress of n such cycle vertices in Cn[Pm]
is,

S3 =
n(n− 1)(m+ 1)(nm+ 5m+ n− 3)

8
.

Let {w1, w2, w3, ..., wm} be the vertices in a Pm

with w1 ∼ vi. Note that st(wm) = 0 as it is a
pendant vertex.Then, stress of m vertices in one
Pm is given by

m−1∑
i=1

(m− i)((m+ 1)(n− 1) + i).

Hence stress of n such Pm’s is given by,

S4 =
nm(m− 1)(3mn− 2m+ 3n− 2)

6

Therefore, adding S3 and S4 we get st(Cn[Pm]) which is
equal to
n(n− 1)(m+ 1)(nm+ 5m+ n− 3)

8
+

nm(m− 1)(3mn− 2m+ 3n− 2)

6
.

Definition 3.4: A chain graph is a bipartite graph G(V1 ∪
V2, E) with the property that the neighborhoods of vertices
of each partite set form a chain with respect to the partial
ordering of set inclusion.
Given a chain graph G(V1∪V2, E), each of the color classes
Vi (i = 1, 2) can be further partitioned into h nonempty
cells V1 = V1,1 ∪ V1,2 ∪ . . . ∪ V1,h and V2 = V2,1 ∪
V2,2 ∪ . . . ∪ V2,h satisfying NG(u) = V2,1 ∪ · · · ∪ V2,h−i+1,
∀ u ∈ V1,i, 1 ≤ i ≤ h. In light of this nesting property,
chain graphs are called Double Nested Graphs (DNG in
short). If mi = |V1,i| and ni = |V2,i|, then we write
G = DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh).
If mi = ni = 1 for all 1 ≤ i ≤ h, then the graph is called a
half graph.

Theorem 3.4: Let G be a half graph on 2n vertices. Then,

st(G) =
n(n2 − 1)(n+ 6)

12
.

Proof: Let G be a half graph with vertex set partitioned
into V1 = {v1, v2, ..., vn} and V2 = {w1, w2, ..., wn} with
|V1| = |V2| = n. Let the vertex vn be adjacent to the n
vertices of V2.
Stress of vn due to shortest paths between every two vertices
in V2 is,

n(n− 1)

2
.

Stress of vn due to shortest paths between vertices in V2 to
vertices in V1 is given by,

(1)+(1+2)+(1+2+3)+...+(1+2+3+...+(n−1)) =
n−1∑
k=1

ak
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where
ak =

k(k + 1)

2
.

Therefore,

st(vn) =
n(n− 1)

2
+

n−1∑
k=1

ak.

This is true for all vx ∈ V1 and wx ∈ V2 with corresponding
values of x, 1 ≤ x ≤ n
Hence,

st(G) = 2
n∑

x=1

(
x(x− 1)

2
+

x−1∑
k=1

k(k + 1)

2
).

Therefore,

st(G) =
n(n2 − 1)(n+ 6)

12
.

Theorem 3.5: Let G = DNG(m1,m2;n1, n2) be a chain
graph on n vertices. Then,

st(G) =
m1n1(m1 + 2m2 + n1 + 2n2 + 4m2n2 − 2)

2
+

m1n2(m1 + n2 − 2) +m2n1(m2 + n1 − 2)

2
.

Proof: G = DNG(m1,m2;n1, n2)
Then |V1,1| = m1, |V1,2| = m2, |V2,1| = n1, |V2,2| = n2.

1) The stress of a vertex present in V1,1 due to shortest
paths between every two vertex in V2,1 ∪ V2,2 is given
by,

n1+n2−1∑
i=1

i.

The vertex in V1,1 also lies in the shortest paths between
vertices in V2,2 to vertices in V1,2 and this gives,
m2n1n2.
Therefore, the stress on m1 such vertices of V1,1 is,

m1

n1+n2−1∑
i=1

i+m1m2n1n2.

2) The stress of m2 vertices in V1,2 due to shortest paths
between every two vertices of V2,1 is given by,

m2n1(n1 − 1)

2
.

3) The stress of a vertex present in V2,1 due to shortest
paths between every two vertex in V1,1 ∪ V1,2 is given
by,

m1+m2−1∑
i=1

i.

The vertex in V2,1 also lies in the shortest paths between
vertices in V1,2 to vertices in V2,2 and this gives,
m1m2n2.
Therefore, the stress on n1 such vertices of V2,1 is,

n1

m1+m2−1∑
i=1

i+m1m2n1n2.

4) The stress of n2 vertices in V2,2 due to shortest paths
between every two vertices of V1,1 is given by,

n2m1(m1 − 1)

2
.

Therefore,

st(G) =
m1n1(m1 + 2m2 + n1 + 2n2 + 4m2n2 − 2)

2
+

m1n2(m1 + n2 − 2) +m2n1(m2 + n1 − 2)

2
.

Definition 3.5: A windmill graph K
(l)
n is obtained by

taking l copies of Kn and joining them at one vertex. So, it
has (n− 1)l + 1 vertices.

Theorem 3.6: Let G = K
(l)
n be a windmill graph on (n−

1)l + 1 vertices. Then,

st(G) =
l(l − 1)(n− 1)2

2
.

Proof: Let w ∈ V (G) be the vertex at which the l copies
of Kn are joined. Then, st(vi) = 0 for all vi ∈ V (G)−{w}
as G[N(vi)] is complete. The vertex w lies in the shortest
paths between the n− 1 vertices of any one copy of Kn to
the n− 1 vertices of all the other l − 1 copies of Kn’s. As
there are

(
l
2

)
such combinations, we get,

st(w) = st(G) =
l(l − 1)(n− 1)2

2
.

A subdivision of a graph G, denoted as S(G), is a new
graph created by subdividing each edge of G. For each edge
(u, v) in G, a new vertex w is added, and the edge (u, v)
is replaced by two new edges (u,w) and (w, v). Observe
that S(Cn) is C2n and S(Pn) is P2n−1. We obtain stress of
S(Kn) in the following. Observe that S(Kn) is a graph with
n+

(
n
2

)
vertices and n(n− 1) edges.

Theorem 3.7: Let G = Kn. Then,

st(S(G)) =
n(n− 1)(3n2 − 10n+ 9)

2
.

Proof: Let V (G) = {u1, u2, . . . , un}. Then V (S(G)) =
{u1, u2, . . . , un, v1, v2, . . . , vn(n−1)

2
}. Observe that st(ui) =

(n− 1)(n− 2)(2n− 3)

2
, 1 ≤ i ≤ n and st(vj) =

n2 − 3n + 3, 1 ≤ j ≤
(
n
2

)
. Hence, st(S(G)) =

n(n− 1)(n− 2)(2n− 3)

2
+
(
n
2

)
(n2 − 3n+ 3).

Theorem 3.8: Let G = K1,n−1. Then,

st(S(G)) = (n− 1)(4n− 7).

Proof: Let V (G) = {u1, u2, . . . , un−1, v}. Then
V (S(G)) = {v, u1, u2, . . . , un−1, v1, v2, . . . , vn−1}. Ob-
serve that st(ui) = 0, st(vi) = 2n − 3, 1 ≤ i ≤ n − 1
and st(v) = 2(n − 1)(n − 2). Hence, st(S(G)) = 2(n −
1)(n− 2) + (n− 1)(2n− 3).

IV. GRAPHS WITH MAXIMUM AND MINIMUM STRESS IN
A GIVEN FAMILY OF GRAPHS

It is necessary to understand which graphs in a given
family of graphs are with minimum or maximum stress.
Given a family F of graphs with same number of vertices,
we denote Gmax(F) (similarly, Gmin(F)) to represent the
set all graphs in the family F with maximum (minimum)
stress. In other words,

Gmax(F) = {G ∈ F : st(G) ≥ st(F ), ∀F ∈ F},

and

Gmin(F) = {G ∈ F : st(G) ≤ st(F ), ∀F ∈ F}.
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In the present paper, we consider the two family of unicyclic
graphs of order n which are P l

n and CSs,n−k.
Theorem 4.1: Let F be a family of graphs P l

n. Then,
Gmax(F) = P 4

n .
Proof: The stress of G = P l

n is given by,

st(G) =


4n(n2 − 1) + l(5l2 − 6l + 4− 6nl)

24
; l is even

2n(2n2 − 6n+ 1) + l(5l2 − 12l − 6nl + 12n)

24
; l is odd.

When l = 4 we get,

4n3 − 100n+ 240

24
= R1.

When l = 2m; m ≥ 3, we get,

4n3 − 4n+ 8m− 4m2 − 24nm

24
= R2.

Now, R1 −R2 for all m ≥ 0 is,

(m− 2)(4m+ 24n) + 240

24
≥ 0.

Therefore, highest stress when l is even is for l = 4.
Similarly, highest stress when l is odd is for l = 3 and is given by,

4n3 − 12n2 − 16n+ 27

24
= R3.

Now, R1 −R3 for all n is,

12n2 − 84n+ 213

24
≥ 0.

Hence Gmax(F) = P 4
n .

Theorem 4.2: Let F be a family of cycle star graphs
CSk,n−k. Then,

Gmin(F) = CS3,n−3

and

Gmax(F) =

{
CSn−2,2; n is even
CSn−1,1; n is odd.

Proof: The stress of G = CSk,n−k is given by,
k2(k − 2) + 2(n− k)(2n− 2 + k2)

8
; k is even

k(k2 − 4k + 3) + 2(n− k)(2n− 2k − 3 + k2)

8
; k is odd

When k = 3, we get,

4n2 − 12n

8
= C1.

When k = 2m+ 1;m ≥ 2, we get,

8m2n− 8mn− 8m3 + 4m2 + 16m+ 4n2 − 10n

8
= C2.

Now,C1 − C2 is,

4m(2m2 −m− 4)− 2n(4m2 − 4m+ 1)

8
< 0, ∀m ≥ 2.

Therefore, least stress when k is odd is for k = 3.
Similarly, least stress when k is even is for k = 4 and is given by,

4n2 + 12n− 80

8
= C3.

Now, C1 − C3, for all n ≥ 4 is,

−24n+ 8

8
< 0.

Hence, Gmin(F) = CS3,n−3.

When k = n− 2, we get,

n3 − 4n2 + 12n− 8

8
= D1.

When k = 2m; 2 ≤ m ≤ n

2
− 1, we get,

4n2 − 4n− 8m3 − 8m2 + 8nm2 − 8nm+ 8m

8
= D2.

Now, D1 −D2 is given by,

(n− 2)3 + 8m(m2 +m− nm+ n− 1)

8
> 0; 2 ≤ m ≤ n

2
− 1.

Hence, Gmax(F) = CSn−2,2 when n is even.
When k = n− 1,we get,

n3 − 5n2 + 10n− 8

8
= D3.

When k = 2m+ 1;2 ≤ m ≤ n

2
− 1, we get,

4n2 − 12n− 8m3 + 8nm2 − 12m2 + 12m+ 8

8
= D4.

Now, D3 −D4 is,

(n− 4)2(n− 1) + 4m(2m− 2n+ 3)(m− 1)

8
> 0;

2 ≤ m ≤ n

2
− 1. Hence, Gmax(F) = CSn−1,1 when n is odd.

V. CONCLUSION

In this article, we have obtained stress centrality for a few
standard classes of graphs. Also, for two classes of unicyclic
graph on a given number of vertices, we have obtained the
maximum and minimum values of stress. Recently, centrality
measures are gaining a lot of researchers’ interest. As a future
scope, many other centrality measures can also be studied
and characterized. Topological indices are gaining a lot of
interest nowadays [10]–[12]. One can also try to get stress
based topological indices of these graphs.
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