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Abstract—To address the optimization modeling and
economic cost issues of microgrids in specific regions, this
paper proposes an improved rat swarm optimization (RSO)
algorithm to solve the optimization problem of off-grid hybrid
renewable energy systems. In response to the low optimization
efficiency, insufficient stability and premature convergence
issues in the traditional RSO algorithm during the path
planning process, this paper introduces six nonlinear
attenuation factors, including cubic attenuation factor, cube
root attenuation factor, exponential-binomial distribution
attenuation factor, logarithmic attenuation factor, sine
attenuation factor and cosine attenuation factor, which are
respectively used as global search factors to regulate the
convergence speed and distribution characteristics of the
search strategy, thereby enhancing the algorithm's search
capability within the feasible domain. The optimized
algorithm is applied to the optimal design of hybrid renewable
energy systems. Experimental results show that in the three
case studies, the system with nickel-iron batteries performs
best, with a minimum life cycle cost of $1,015,118 and an
energy cost reduced to $0.2134/kWh, significantly improving
the economic and feasibility of the system.

Index Terms—renewable energy system, microgrid, rat
swarm optimization algorithm, Nonlinear factor

1. INTRODUCTION

W ith the rapid evolution of the global energy market,
the focus on sustainable and environmentally
friendly energy sources has been increasing. Although
various renewable energy sources have become important
alternatives, their inherent intermittency still poses
reliability challenges for scholars around the world. To
address this issue, hybrid energy systems integrating
multiple renewable energy sources and energy storage
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technologies have been widely studied and are regarded as
an effective solution [1].

This study examines a combination of renewable energy
sources that is mostly utilized for producing electricity in
remote locations; It may be thought of as an off-grid
microgrid. Common methods in this field can be roughly
classified into three categories. The first category is the
analysis method based on simulation software. Sinha et al.
systematically introduced 19 simulation tools commonly
used in the design of hybrid energy systems in Ref [2],
such as HOMER and HYBRID 2. However, this type of
method is relatively limited in the selection of system
components, and users find it difficult to intwitively match
the optimal configuration. Moreover, it is impossible to
directly access the specific details of the calculation process
or the optimization algorithm. The second category is
deterministic methods, including traditional mathematical
methods such as probability analysis [3]. Although these
methods can provide high accuracy in specific scenarios,
their solution performance is strongly related to the
complexity of the microgrid problem and they are prone to
getting stuck mn local optima. The third category 1s
meta-heuristic algorithms, which are considered the most
promising optimization methods at present. This method
regards the optimization problem as a black box, relying
only on input and output, without the need to calculate the
gradient of the search space, thereby effectively avoiding
local optima through a gradient-free mechanism. However,
according to the No-Free-Lunch theorem, no algorithm can
maintain optimal performance in all optimization problems.
A specific meta-heuristic algorithm may perform well in a
certain type of problem but be inefficient in others. To
increase the solution capacity of microgrid scale
optimization, this research suggests an enhanced rat swarm
optimization technique.

Researchers have established various renewable energy
systems using different methods so that these systems can
be applied to a wider range of regions. Different
configurations of renewable energy are outlined in various
literatures, which can be either single-source systems or
hybrid systems [4]. They can be composed of photovoltaic
panels [5], wind turbines, etc. [6-8] or renewable energy
systems with multiple mixed energy sources. Marocco et al.
developed the cost-emission Pareto front of different HRES
configurations by using the particle swarm optimization
algorithm to study systems including photovoltaic panels,
wind turbines, batteries, hydrogen-based systems and diesel
generators, with the levelized cost of electricity (LCOE) as
the objective function, to better understand the potential of
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renewable energy-based systems in off-grid applications [9].
The hybrid system established by Nallolla 1s composed of
solar photovoltaic systems, wind turbines, diesel generators,
battery storage systems, converters, electrolyzers and
hydrogen storage tanks to provide uninterrupted power and
meet the different load demands of different communities
in the village of Chittoor Doddipalli, Andhra Pradesh, India.
Then, the HOMER software was used to optimize and
conduct technical and economic analysis of this system
[10]. The technologies included in the system designed by
Viole are photovoltaic, concentrated solar power, diesel
generators, batteries, and hydrogen storage, etc. The power
system optimization model was applied to this case study to
predict energy demand, cost assumptions for 2030 and
capacity factors for specific sites [11]. Avodele et al
explored an off-grid renewable energy system composed of
solar photovoltaic and wind turbines, with a hydrogen
storage scheme by using the particle swarm algorithm for
optimal sizing planning and control to meet the electricity
demand of a clinic [12]. Arabzadeh et al. investigated the
integration of a large amount of wind and solar power
generation capacity into Luxembourg's energy framework
to address challenges such as variability, intermittency, and
wind curtailment. It delved into scenarios including
power-to-heat and vertical agriculture technologies to
enhance system flexibility and promote the integration of
renewable energy [13].

Nonlinear factors, as one of the important strategies for
improving optimization algorithms, play a key role in
enhancing algorithm performance and have been widely
studied by scholars at home and abroad. Sun et al. designed
a nonlinear decreasing strategy related to the exponential
function to replace the linear convergence factor, enabling
the improved whale optimization algorithm to effectively
avoid local optimal solutions [14]. Li et al. used a set of
nonlinear scaling factor functions to improve the genetic
algorithm and proved that it could make accurate
performance predictions for engines under a wide range of
conditions [15]. Zhang et al. introduced nonlinear adaptive
weights to improve the whale algorithm, allowing search
agents to adaptively explore the search space and balance
the exploration and exploitation phases [16]. Majumdar et
al. used nonlinear adaptive weight factors to adaptively
explore the search space to improve the honey badger
optimization algorithm [17]. Zhang M et al used a
nonlinear control parameter strategy based on the sine
function and a nonlinear control parameter combination
strategy to improve the grey wolf algorithm, which was
verified on benchmark functions [18].

The hybrid renewable energy system adopted in this
paper is based on the regional data of a certain area in India
provided by Ref [19], including hourly solar radiation,
environmental temperature, wind speed, and needs for
water throughout year. The structure includes a diesel
generator, solar power generation, wind turbines, biomass
electricity generation, a diesel generator, battery packs
(lead-acid batteries, lithium batteries and nickel-iron
batteries), and reciprocal converters to supply power to
local residents and support the operation of reverse osmosis
seawater desalination systems. Compared with Ref. [19], in
order to improve system stability and lessen the impact of

variations in renewable energy, this study also incorporates
wind energy and diesel generators. Residents' demand-side
data 1s cited in Ref. [20], which proposes three demand-side
management schemes: low-cost high-power rated
appliances (HPRALC), medium-cost medium-power rated
appliances (MPRAMC) and high-cost low-power rated
apphances (LPRAHC). This paper selects the HPRALC
scenario, mainly based on two considerations: first, this
type of appliance is relatively common in the local area;
second, this paper focuses on optimizing the hybrid
renewable energy system and energy management
strategies to reduce life cycle costs, while Ref. [20] mainly
studies the impact of demand-side management schemes on
costs and does not involve the algorithm optimization part.

To sum up, this paper's significant innovations are listed
here. In the rat swarm optimization algorithm, six nonlinear
decay factors, including cubic decay factor, cube root decay
factor, exponential-binomial distribution decay factor,
logarithmic decay factor, sine decay factor and cosine
decay factor, are respectively used as global search factors
to regulate the convergence speed and distribution
characteristics of the search strategy, thereby enhancing the
algorithm's search capability within the feasible domain.
Additionally, it is used to address the optimization issue
with renewable energy systems.

The overall structure of this paper is as follows. Section
IT introduces the components of the hybrid renewable
energy system and the related objective functions. Section
III explains the rat swarm optimization algorithm and the
proposed improved method. Section 1V validates the
improved algorithm in test functions. Section V applies the
improved algorithm to an engineerin background, verifies
three cases using the improved rat swarm algorithm SIRSO,
and compares 1t with other algorithms. Section VI
summarizes the full text and presents prospects.

II. MATHEMATICAL MODELING OF THE SYSTEM AND
OBIJECTIVE FUNCTION

In the simulation of off-grid green power systems, we
usually start from four core aspects. Firstly, from the
perspective of energy sources, we consider the uncertainty
and volatility of renewable energy and build a reasonable
energy supply model. The types of renewable energy in this
paper include solar energy [21], wind energy [22] and
biomass energy [23]. To enhance the stability of the system,
a diesel generator is added on this basis to improve system
stability. Secondly, from the perspective of energy load, we
analyze the demand characteristics of different load types.
The energy load in this paper can be divided into residential
demand-side load and seawater desalination device load
[24-26], the former is for the daily life needs of residents,
and the specific data can be found in reference [20], while
the latter is to provide the required electricity for the
seawater desalination device, and the specific data can be
found in Ref. [29], in order to ensure its normal operation
to provide fresh water for residents. Next, from the
standpoint of storing electricity, we investigate how devices
for storing energy help balance the supply and demand for
energy and create a model of energy storage that is both
inexpensive and efficient. This paper mainly adopts three
types of batteries, namely lead-acid batteries, lithium-ion
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batteries and nickel-iron batteries [29]. Finally, from the
perspective of energy management, we propose a
scheduling and management strategy based on optimization
algorithms to achieve the rational allocation and efficient
operation of various resources.

A. Diesel Generator System

For the specific types of solar energy, wind energy and
biomass energy adopted and the modeling formulas, please
refer to Ref. [29]. The newly added diesel generator serves
as a continuous power supply unit [27], with its rated power
set at 50 kW [21]. The hourly fuel consumption of the DG
(Fpe) can be obtained by:

FDG(I):(aDGXPDG,gen(t)erDGXPDG,rat) L/h (D

The coefficients of the DG usage curve in Eq. (1) are
denoted by the numbers apc=0.246(1/kWh) and
bpg=0.08145(1/kWh). The generated power and rated
power of DG are denoted by Ppgeen(t) and Ppgradt),
respectively. The diesel generator sets yearly total fuel
consumption may be computed in liters as follows:

8760

TYFCIL = Fp () 2)

t=1

Based on the hourly fuel consumption, the estimated
hourly carbon dioxide emissions of the DG is described as
follows [28].

CO, =SEq, (kg ID)x Fp, () 1 h) (3)

where, SEcoz represents the carbon dioxide emission ratio
per liter of diesel, with a value of 2.7 kilograms per liter.
The estimated total annual carbon dioxide emissions of DG
is defined as:

8760

TY, emission = z:CO2 ®) Y]

t=1

B. Energy Management Strategies

In the energy management strategy of this system, the
coordinated control process is divided into six operation
modes. Based on the Ref. [29], mode 5 and mode 6 have
been added due to the introduction of diesel generators. The
specific schematic diagram is shown in Fig. 1.

(1) Mode 1. Under this operating mode, the system
achieves a balance between power supply and demand,
with the net energy generated being zero. Therefore, the
battery pack's energy stays constant.

(2) Mode 2. Under the mode, renewable power resources
first meet the load demand, and then the excess energy
generated is stored in the battery. At this time, the battery's

power is between its maximum and minimum storage limits.

To supply energy is to the load.

(3) Mode 3. The excess energy is transferred to the
dumping load after the battery has reached its maximum
capacity and the renewable energy sources have met the
load requirement. The transmitted power is referred to as
Eaump.

(4) Mode 4. The battery fills the energy gap in this mode
of operation when the energy produced by renewable

energy sources is less than the load requirement. Ea stands
for energy discharged from the battery.

(5) Mode 5. The diesel generator set will run at its rated
power to satisfy the load requirement and charge the battery
pack if the energy produced by renewable energy sources
and batteries is not enough to meet the demand for load.
The DG shuts off when the renewable energy begins to
provide enough power to fulfill the entire load need.

(6) Mode 6. The battery's internal power is depleted in
this operating mode because the energy from renewable
sources 1s less than the necessary load demand. At this
point, a gap occurs, and the program outputs NAN.

C. Objective Function: Life Cycle Cost

The objective function of this paper adopts life cycle cost.
The cost composition of solar power generation, wind
power generation and biomass power generation
components can be found in Ref. [29]. The load loss rate
(LPSP) 1s used as the reliability evaluation index, where
LPSP is the percentage of the total load loss to the total
demand load.
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min

LCC(N,, Ny N

— (LCC) &)

PV WT BMG DG BAT ROD BDC -CC

where, Ngp Nyr. Ny are the independent variables of the
system, representing thenquantities of solar power plants,
wind turbines, and batteries. The composition of LCC is
defind as follows:

LCC=ICCHERECHP 50y, t Propot Prpsy (6)

where, ICC represents the initial capital cost, FREC
represents the installation cost, Posus represents the
operation and maintenance cost, Frer represents the
replacement cost and Pryzr represents the current value of
the fuel cost.

{1) Life cycle cost of diesel generator system

Diesel generators are typically composed of a diesel
engine and a generator (usually an alternator). Their life
cycle costs consist of five parts: initial cost, installation cost,
replacement cost, operation and maintenance cost, and fuel
cost.

ICC,, =ICCHERECHE, 4+ Py, +P

FIEL

= (CDG,CQP )+ [CDG,erec! x %(ler—)PNC:] + [(C’DG,H’DM ¥ EN &J

3 A+ p) = 1+
d+x)" TAFCT %J
{ e Z (1+y)"N°I' [ IDGX%‘ + v

Y

where, TAFCIL,; 15 the entire amount of fuel consumed m
liters per vear, Cree is the initial cost of the diesel
generator, Coseer 15 the installation cost each time, Cog ron is
the cost of keeping it running during the life of the system,
as well asCrge is the price of reset each time.

D. Energy Cost

The energy cost (COE) is calculated through LCC (Life
Cyele Cost), with the unit of dollars per kilowatt-hour. COE
1s one of the most commonly used indicators when
evaluating the economic benefits of Hybrid Renewable
Energy Systems (HRES). Its calculation is realized by:

rce
COE(S | kWh) =| —=——— xCRF (8)

S0

where, CRF 1s the capital recovery factor, and its
calculation formula is difined as:

_ y><(l+y)N
(1+y)" -1

where, ¥ denotes the paper interest rate and N denotes the
project's duration.

©

E. Constraint Conditions

The constraints of this paper mainly include four aspects:
solar panels, wind turbines, batteries and diesel generators.
The first three have been described in Ref. [29]. Under high
load conditions, diesel generators (DG) have higher

efficiency [30]. As a result, 40% of the diesel generator's
rated capacity is the minimum load required for operation.
That 1s, the operation of diesel generators needs to follow
the following restrictions [19].

E (t) =40% P <At (10)

ﬁConv

where, the hourly demand for electricity is represented by
E:(f), the bidirectional converter's effectiveness by #a.. ,
the diesel generator's rated output by FPpe, and the
operational time period by Af

III. RAT SWARM OPTIMIZATION ALGORITHM BASED
ON NONLINEAR ATTENUATION FACTOR

A. Rat Swarm Optimization Algorithm

Rat  swarm optimization algorithm [31] is a
meta-heuristic optimization algorithm, which is inspired by
the hunting behavior of rats in nature. The optimization
process of this algorithm mainly consists of two core stages:
prey tracking and prey capture.
(1) Prey fracking

When the prey is discovered by the nearest individual in
the population (the current optimal individual),
remaining ndividuals will dynamically adjust their
movement trajectories based on their current positions and
gradually approach the optimal individual. This process is
driven by a group collaborative competition mechanism,
enabling each individual mouse to continuously optimize
its position within the search space to enhance global
search efficiency and improve the optimization ability. The
position update formula for this prey tracking mechanism is
as follows:

PV:AquJrC(XW qu) (1)

where, P, represents the updated position of the rat, X
defines the current position of the #-th rat in the #th
generation, and Xe. i3 the global optimal position. The
calculation formulas for 4 and C are as follows:

A=R-txR/t__ (12)

C =2xrand(0.1) (13)

Let t be the current iteration count and fme be the
maximum iteration count. Therefore, R and C are random
numbers within the intervals [1, 3] and [0, 2], respectively.
{2) Prey capture

After the group of mice approaches the prey, individuals
seek the optimal attack point by constantly updating their
positions to capture the prey more effectively. This process
ensures that the mice can quickly approach and ultimately
capture the prey in a dynamically changing environment
through continuous adjustment of positions, thereby
achieving the optimization goal. The mathematical model
of this attack behavior can be specifically described by the
following equation.

P(t+1)=|X,. -F, (14)
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where, P; (++1) represents the position of the i-th mouse at
the (#+1)-th time.

B. Rat Swarm Optimization Algorithm Based on Nonlinear
Attenuation Factor

In the original rat swarm algorithm, the linearly
decreasing method of parameter 4 significantly affects the
capacity to search globally. Due to the lack of sufficient
adaptive coordination ability in the decreasing process of
the global search factor 4, this limits the algorithm's
effective exploration and global optimization in complex
solution spaces. To address this issue, this paper proposes
an improvement to parameter 4 by adopting six different
nonlinear attenuation factors. Specifically, the mproved
attenuation factors include: cubic attenuation factor, cube
root attenuation factor, exponential-binomial distribution
attenuation factor, logarithmic attenuation factor, sine
attenuation factor, and cosine attenuation factor.

Each attenuation factor dynamically adjusts the
parameter 4 according to its specific mathematical form,
thereby enhancing the algorithm's adaptability at different
search stages. The cubic attenuation factor causes 4 to
decrease rapidly at first, then gradually, and then rapidly
again. The cube root function makes 4 decrease rapidly in
the middle of the iteration count. The exponential-binomial
distribution factor oscillates and attenuates 4 slowly at the
beginning, rapidly in the middle, and then gradually. The
logarithmic attenuation factor causes A4 to decrease rapidly
at first and then gradually. The sine attenuation factor
uniformly oscillates and attenuates 4 globally. The cosine
attenuation factor causes 4 to decrease gradually at first and
then rapidly. The specific improved formulas and
attenuation curves are shown in Table I and Fig. 2. The
introduction of these nonlinear attenuation factors enables
the rat swarm algorithm to fully explore a broader solution
space and effectively improves the convergence speed of
the algorithm, especially demonstrating stronger global
search ability and higher solution quality in complex
optimization problems.

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS
OF TEST FUNCTION

The CEC2022 optimization function test set is a
commonly used benchmark test function set. This test set

includes 12 single-objective functions, among which F1 is a
classic unimodal function, F2-F5 are multimodal functions
with multiple local extremum points, aiming to examine the
global search ability of the algorithm in complex solution
spaces. F6-F8 are composite functions that mix the
properties of numerous optimization problems to evaluate
the algorithm's adaptability and resilience across diverse
contexts. F9-F12 are composite functions with varying
weights and bias values, which complicates the technique's
optimization process and necessitates the algorithm's ability
to tackle multilevel and multidimensional situations.

To verify the effectiveness of the improved algorithm,
this experiment utilized the CEC2022 optimization function
test set. In the experiment, each function was tested with
500 iterations and a population size of 50, and the average
value was taken from 30 independent experiments to ensure
the statistical reliability of the experimental results. The
simulation process was divided into two stages: Firstly, the
first part verified the rehiability of the nonlinear attenuation
factor. Secondly, through comparative analysis with other
optimization algorithms, the experimental results fully
demonstrated the advantages of the proposed improved
algorithm in terms of solution efficiency and accuracy,
showing strong global search ability and faster convergence
speed, thereby verifying the effectiveness and adaptability
of the improved algorithm in complex optimization
problems.

To verify the effectiveness of the improved algorithm,
this experiment utilized the CEC2022 optimization function
test set. In the experiment, each function was tested with
500 iterations and a population size of 50, and the average
value was taken from 30 independent experiments to ensure
the statistical reliability of the experimental results. The
simulation process was divided into two stages: Firstly, the
first part verified the reliability of the nonlinear attenuation
factor. Secondly, through comparative analysis with other
optimization algorithms, the experimental results fully
demonstrated the advantages of the proposed improved
algorithm in terms of solution efficiency and accuracy,
showing strong global search ability and faster convergence
speed, thereby verifying the effectiveness and adaptability
of the improved algorithm in complex optimization
problems.

TABLE I. THE FORMULA OF THE IMPROVED ATTENUATION FACTOR A

Number Decay factor Improved algorithm name Parameter equation
t
1 Cubic attenuation factor CURSO A =rx(-[(2x P 1’ +1]x 2.5
: I3
2 Cubic root attenuation factor RORSO A, =r(-[ ’lx r——l +1]x 2.5
3 Exponential-binomial distribution attenuation factor EXRSO Ay =47 {1+ ™) | binornd(l, 0.5)
. . . 7
4 Logarithmic attenuation factor LORSO A;=rxlog(t/t,)+log(l/2.1)x 5
.~ !
5 Sinusoidal attenuation factor SIRSO A =prx(2x SIH(TX r—) +2)%2.5
T !
6 Cosine attenuation factor CORSO A =rx COS(EX r—)>< 2.5

max
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SIRSO i functions such as F1, F4, F5 and Fé 1
significantly lower than that of other algorithms, especially
in F6, where its best value 1s 3.946E+03, far lower than the
optimal values of other algorithms. This indicates that
SIRSO can better handle complex optimization problems
with boundary constraints.

By comparing the standard deviations of various
algorithms, it can be observed that STRSO not only has an
advantage in the average value but also has smaller

volatility, indicating its higher stability. The standard
deviations of other algorithms are generally larger,
especially in complex problems such as F6 and F9, where
the search processes of other decay factors are less stable
than that of SIRSO. The improved rat swarm optimization
algorithm, particularly SIRSO, by introducing a nonlinear
decay factor, not only improves the convergence speed but
also enhances its adaptability and robustness in various
complex optimization problems.

TABLE II. SIMULATION RESULTS OF THE TEST FUNCTION

Function Meteic RSO CURSO RORSO LORSO CORSO SIRSO EXRS0O
Ave 2.961E+03 2.103E+03 2.184E+03 9.870E+05 2.706E+03 1.934E+03 4.378E+03
Fl Std 1.576E+03 5.470E+02 9.820E+02 4.518E+06 9468E+02 3.923E+01 1.764E+03
Best 1.617E+03 9.922E+02 1.017E+03 1.351E+04 1.776E+03 1.815E+03 1.605E+03
Ave 7.591E+02 7.089E+02 7.502E+02 2.464E+03 8.209E+02 7310E+02 9.168E+02
F2 Std 2.125E+02 1.027E+02 1.265E+02 7.969E+02 2.245E+02 1.338E+02 2.592E+02
Best 5.097E+02 5.295E+02 5.023E+02 1.256E+03 5.355E+02 5.088E+02 5.046E+02
Ave 6.422E+02 6.376E+02 6.422E+02 6.900E+02 6.435E+02 6.395E+02 6.455E+02
F3 Std 6.630E+00 5.458E+00 6.321E+00 1.299E+01 5.908E+00 5.133E+00 6.655E+00
Best 6.317E+02 6.259E+02 6.291E+02 6.678E+02 6.318E+02 6.282E+02 6.325E+02
Ave 8.399E+02 8.377E+02 8.331E+02 9.177E+02 8.382E+02 8.331E+02 8.411E+02
F4 Std 7.704E+00 7.091E+00 1.009E+01 1.336E+01 8.906E+00 7.130E+00 7.534E+00
Best 8.286E+02 8.219E+02 8.198E+02 8.923E+02 8.236E+02 8.150E+02 8.246E+02
Ave 1.278E+03 1.236E+03 1.276E+03 4.095E+03 1.322E+03 1.228E+03 1.409E+03
F5 Std 1.271E+02 9.443E+01 1.246E+02 6.937E+02 9.167E+01 9.145E+01 1.545E+02
Best 1.124E+03 1.043E+03 1.062E+03 2.783E+03 1.092E+03 1.088E+03 1.152E+03
Ave 2.529E+06 2.563E+05 3 984E+04 7.186E+08 3.568E+05 3.154E+03 3.701E+05
F6 Std 7.852E+06 2.797E+05 1.848E+05 4.874E+08 3.539E+05 1.029E+03 4.701E+05
Best 3.946E+03 2.624E+04 2.197E+03 2.866E+07 4.701E+04 1.857E+03 1.390E+04
Ave 2.075E+03 2.067E+03 2.062E+03 2.213E+03 2.076E+03 2.057E+03 2.084E+03
F7 Std 1.104E+01 1.050E+01 9.056E+00 5.898E+01 1.291E+01 1.092E+01 1.380E+01
Best 2.056E+03 2.050E+03 2.043E+03 2.086E+03 2.056E+03 2.031E+03 2.059E+03
Ave 2.255E+03 2.246E+03 2.247E+03 2.491E+03 2.250E+03 2.243E+03 2.246E+03
F8 Std 2.987E+01 5.731E+00 9.390E+00 1.233E+02 7.846E+00 8.100E+00 6.978E+00
Best 2.232E+03 2.233E+03 2.232E+03 2.272E+03 2.236E+03 2.227E+03 2.235E+03
Ave 2.645E+03 2.607E+03 2.636E+03 2.917E+03 2.628E+03 2.623E+03 2.660E+03
F9 Std 3.719E+01 2.268E+01 3.656E+01 1.143E+02 4.151E+01 3.546E+01 4.139E+01
Best 2.557E+03 2.565E+03 2.555E+03 2.705E+03 2.570E+03 2.569E+03 2.587E+03
Ave 2.512E+03 2.508E+03 2.506E+03 3.172E+03 2.509E+03 2.506E+03 2.514E+03
F10 Std 3.975E+00 2.842E+00 3.063E+00 6.442E+02 3.366E+00 3.036E+00 5.542E+00
Best 2.508E+03 2.503E+03 2.501E+03 2.539E+03 2.501E+03 2.502E+03 2.507E+03
Ave 3.035E+03 2.964E+03 3.065E+03 4.361E+03 3.107E+03 2.978E+03 3.053E+03
Fl11 Std 1.888E+02 1.419E+02 1.665E+02 6.562E+02 1.877E+02 1.229E+02 1.354E+02
Best 2.840E+03 2.786E+03 2.877E+03 3.179E+03 2.879E+03 2.846E+03 2.849E+03
Ave 2.888E+03 2.876E+03 2.876E+03 3.112E+03 2.875E+03 2.874E+03 2.883E+03
F12 Std 1.882E+01 1.113E+01 7.017E+00 9.433E+01 5.619E+00 3.689E+00 1.060E+01
Best 2.872E+03 2.869E+03 2.871E+03 2.960E+03 2.871E+03 2.871E+03 2.871E+03
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Fig. 3 Simulation results of the test functions.

B. Comparison and Verification Results with Other
Algorithms

In this section, we compare the original RSO algorithm
with the improved SIRSO algorithm. Additionally, we also
compare several other optimization algorithms, including
the Waterwheel Plant Algorithm (WWPA), Butterfly
Optimization  Algorithm  (BOA), Frilled Lizard
Optimization Algorithm (FLO), Greater Cane Rat
Algorithm (GCRA) and Reptile Swarm Optimization
Algorithm (RSA). The specific parameter settings for each
comparison algorithm are shown in the Table III. The
performance of these algorithms is comprehensively
evaluated through test functions and compared with
existing optimization methods to verify their improvement
effects. The population size is set to 50 and the algorithm is
iterated 500 times. The average value of 30 runs is taken
for plotting.
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According to the results in Table IV and Fig. 4, SIRSO
achieved the best average values in F1-F12, demonstrating
its outstanding stability and optimization capability in
handling various optimization problems. Particularly in F1,
F6 and F7, SIRSO showed significant advantages, with the
smallest average values, standard deviations, and optimal
solutions. Additionally, SIRSO also obtained the smallest
standard deviations in F2, F3, F8, F10 and F12, indicating
its good search stability and consistent performance across
multiple experiments. In summary, SIRSO algorithm
performed excellently in all test functions, both in terms of
optimization accuracy and convergence stability, with
strong global search ability and low solution volatility. This
makes SIRSO highly potential and valuable in solving
various optimization problems, especially in complex
optimization problems with high requirements for accuracy
and stability.

TABLE III. PARAMETER SETTING OF EACH ALGORITHMS

Number Algorithm Parameter settings
1 RSO and its variants A€][0,5), C=[0,2], RE[L1,5]
2 WWPA K=exprnd (1, 1), r=[0,2], r=[0,1]
3 BOA p=08, a=0.1, ¢=0.01
4 FLO ris a random number from a normal distribution within the range of 0 to 1, /=round(l+rand)
5 GCRA C is a random number defined within the problem space boundaries, y=rand[1,4]
6 RSA A=0.1, B=0.005
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TaBLE IV. COMPARISON RESULTS WITH OTHER ALGORITHMS

Function Meteic RSO WWPA BOA FLO RSA GCRA SIRSO
Ave 3228.9488 44921.8414 6963.3841 7245.9945 8415.9509 9465.2468 1968.8903
F1 Std 1756.4133 87686.3897 1940.7057 1548.1206 2127.4374 2174.8817 533.9148
Best 1557.9856 9624.1047 2980.6138 4500.0913 4557.5700 5009.1846 1188.3595
Ave 796.5924 3361.9089 1750.0389 1068.6251 875.6638 961.9094 743.7048
F2 Std 208.5764 1436.5384 588.2695 365.3946 362.9581 279.1190 119.5784
Best 511.2671 806.5268 675.7470 523.1106 528.8085 515.5223 583.1947
Ave 644.5004 687.1367 638.1625 638.8407 647.1069 653.4310 638.1593
F3 Std 6.1702 5.9565 5.6264 11.7032 8.0868 6.9270 5.0189
Best 633.3471 667.7987 625.7305 616.1449 630.7698 642.5747 628.5298
Ave 837.4407 887.3353 846.5912 843.5589 849.2253 855.8439 831.5306
F4 Std 7.2660 8.5138 6.8588 9.6590 5.7545 6.0425 8.2539
Best 8243194 867.2299 831.0753 817.8300 837.1843 843.9330 818.4637
Ave 1386.2896 2411.8257 1225.3202 1320.6254 1467.5919 1623.2381 1200.1160
F5 Std 143.3328 236.1862 95.5875 173.1469 159:3932 229.7205 109.0972
Best 1104.2295 1864.5037 1015.2704 1050.9925 1086.8594 1243.4166 1002.6451
Ave 2.029E+06 1.767E+08 1.621E+07 1.845E+07 7.135E+07 6.395E+08 3037.3830
Fo Std 7.832E+06 7.159E+07 4.955E+07 2.737E+07 4.002E+07 4.758E+08 1195.9644
Best 5.088E+03 4.281E+07 2.670E+05 4.799E+03 1.378E+07 2.226E+07 1890.9227
Ave 2077.8749 2216.2712 2080.2602 2084.0938 2130.6529 2131.6305 2061.3095
F7 Std 13.2156 35.0669 13.6042 20.7562 29.1317 353784 9.1741
Best 2056.8362 21441185 2055.6063 2043.4518 2057.9272 2071.8197 2040.2820
Ave 2256.3530 2391.3455 2272.8076 2245.7037 2248.9105 2259.1620 2242.1414
F8 Std 32.0475 88.8684 40.9042 25.1335 7.0573 13.7931 6.9316
Best 2231.7185 2234.7449 2235.8463 2226.0628 2234.9996 2241.2769 2229.4853
Ave 2646.8359 2880.0782 2749.2162 2722.7254 2724.7188 2717.5843 2624.2573
F9 Std 39.5516 67.9115 56.3459 38.2333 40.1336 40.8137 39.7817
Best 2571.3104 2771.3402 2640.8231 2658.0873 2646.6880 2619.5469 2553.7987
Ave 25148315 3709.6112 2506.6195 2568.0661 2614.7172 2564.6728 2502.5590
F10 Std 32.8224 786.4466 2.8604 66.5108 109.3667 40.0952 0.9060
Best 2502.4952 2585.2002 2501.3786 2503.6723 2515.6175 2529.5892 2501.5020
Ave 2975.4502 4797.6816 2962.0833 3238.4568 3220.5219 3382.9827 2924.7863
F11 Std 134.8477 309.9168 144.6324 376.9186 509.7535 163.3511 149.3450
Best 2825.8828 3858.6859 2815.0550 2804.5059 2817.3653 3015.2219 2785.3900
Ave 2894.5100 2899.1232 2906.2362 3002.2482 2950.2376 2873.8935 2873.0500
F12 Std 28.9892 2.8626 26.5801 54.8452 74.9771 2.6331 2.1791
Best 2868.8050 2888.3346 2877.5682 2916.0033 2872.0799 2872.0810 2869.0856
o wwea
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—H&—RSA
5 WWPA g 10 o Skso)]
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Fig. 4 Simulation results of test functions for each algorithm.

V. COMPUTATION EXPERIMENTS AND RESULT
EVALUATION OF OFF-GRID CLEAN ENERGY SYSTEMS

A. Basic Information of System

This paper designs a hybrid renewable energy system,
with regional data sourced from the high-cost and
low-power demand side scenario proposed in Ref. [20].
The data categories include residential power usage, hourly
sunlight during the entire year, ambient temperature,
velocity of the wind, and water consumption. The system
combines solar energy production, wind turbines, biomass
electricity generation, diesel power generation, three kinds
of battery packs and bidirectional chargers to supply power
to residents and support the operation of reverse osmosis
desalination devices.

In the system design [32], the rated power of the biomass
generator, converter, diesel generator (DG) and reverse
osmosis desalination (ROD) device is set at 5 kW, 55 kW,
50 kW and 2 kWh/m* . The optimization objective is the
life cycle cost (LCC), and the energy cost (COE) and diesel
consumption are used as environmental indicators. The
system reliability is measured by the power supply loss
probability (LPSP). The life cycle is set at 25 years, and the
battery discharge depth is 70%.

Considering the computational complexity, the
population size of the optimization algorithm is set at 50,
the maximum number of iterations is 100, and every
strategy is run ten times, with the mean value used for
displaying. The detailed information of the comparison
algorithms is presented in Table III. In the Table V, Npy+
Nyt and Npsr indicate the total amount of photovoltaic
modules, turbines for wind power, and battery packs.
TYFCIL(L) is the annual total fuel consumption, and
TYCO: is the annual carbon dioxide emissions.

The unit of LCC is US dollars, and COE is expressed as
$/kWh. LPSP reflects the proportion of hours with power
shortage to the annual load demand hours. During the
optimization process, the rated power of the biomass
generator, converter, DG and ROD are taken as fixed
parameters. The component costs are shown in Table V.
The specific models and costs of photovoltaic, wind
turbines, batteries and biomass generators are detailed in
Ref. [29].

B. Comparison Results of SIRSO with Other Algorithms

:
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It can be seen from Table VI-VIII that the power supply
losses of all algorithms are 0, and all can ensure the normal
operation of the system. The iterative diagrams of the life
cycle costs of the three types of batteries are shown in Fig
5-7. From the perspective of battery types, among the three
types of batteries, the system cost is the lowest when
nickel-iron batteries are used as energy storage components,
with the lowest life cycle cost of 1,015,118 US dollars.
Next 1s lead-acid batteries, with a cost of 1,649,446 US
dollars, and lithium batteries have the highest cost, at
2,366,645 US dollars.The cost is strongly related to the
battery's service life and replacement frequency.

Although lithium batteries have a high cycle life (3,000
times) and high efficiency (92%), which improves their
performance, it further increases their initial manufacturing
cost. In contrast, Ni-Fe batteries have the lowest capital
cost, thanks to the use of relatively cheap and durable
materials. At the same time, their extremely long lifespan
(over 30 years and 11,000 cycle life) greatly reduces their
life cycle cost, although their efficiency is relatively low
(80%) and their daily self-discharge rate is relatively high
(1%).

Although lead-acid batteries have the lowest capital cost
(410 US dollars), their lifespan is relatively short (3 years
or 800 cycle life), requiring frequent replacement. Coupled
with their relatively low efficiency (85%), their overall cost
is between nickel-iron batteries and lithium Dbatteries.
Overall, nickel-iron batteries demonstrate the lowest life
cycle cost due to their low capital cost and long lifespan,
while lithium batteries, despite their excellent performance,
have the highest life cycle cost due to their high capital
cost.

Furthermore, there are significant differences among
different algorithms in the configuration requirements for
photovoltaic panels, wind turbines, and batteries. To further
compare the performance of each algorithm in terms of the
requirements for system components, this paper ranks the
demand quantities of different algorithms on these three
independent variables from least to most by using a radar
chart shown in Fig. 8-13. The results show that the FLO
algorithm has the lowest demand for photovoltaic panels,
indicating that it has certain savings in photovoltaic
capacity configuration. In terms of the demand for wind
turbines and batteries, the improved swarm algorithm
SIRSO shows the lowest demand in both aspects,
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suggesting that it can effectively reduce the reliance on
wind energy and energy storage equipment in multi-energy
collaborative optimization and has a higher equipment
utilization efficiency. This difference reflects that each
algorithm has a certain emphasis on the configuration
strategies for different energy equipment in the energy
system optimization process, further confirming the
differences in adaptability of each algorithm under the
optimization goals and constraints.

To ensure the comprehensiveness of the analysis and the
intuitive presentation of the results, this study selects two
key indicators, namely diesel consumption and life cycle
cost, to conduct a systematic comparison of the
optimization performance of different algorithms. The
ranking results are visually presented through radar charts
shown in Fig. 8-13. The main reason for choosing these
two indicators is that there is a high positive correlation
between diesel consumption and carbon dioxide emissions,
while life cycle cost can comprehensively reflect the
long-term economic performance of the system, and the
trend of energy cost changes is basically consistent with life
cvcle cost. Therefore, diesel consumption and life cycle
cost can be regarded as representative indicators for
measuring  environmental  impact and  economic
performance.

The experimental results show that there are significant
differences in the performance of various algorithms in
these two indicators. Among them, the GCRA achieves a
better balance between diesel consumption and life cycle
cost, without extreme values in any single indicator,
demonstrating its ability to coordinate and optimize in
terms of economy and environmental sustainability. In
contrast, the WWPA has the highest life cycle cost but the
lowest diesel consumption, indicating that its optimization
strategy 1s more inclined to reduce fuel consumption, but
fails to effectively control the long-term economic
expenditure of the system. On the other hand, the improved
swarm algorithm SIRSO exhibits opposite characteristics.
Although its diesel consumption is the highest, its life cycle
cost is significantly lower than that of other algorithms,
suggesting that this algorithm has certain advantages in
reducing the overall system investment and operation costs,
but may come with a higher fuel usage demand. Therefore,
in specific applications, the selection of different
algorithms should be comprehensively considered in terms
of environmental and economic factors to meet the
optimization requirements of specific scenarios.

To enhance the algorithm, incorporating a nonlinear
decay factor to strengthen the global search capability
notably boosts its optimization performance. In lead-acid
batteries, the original algorithm cost was $1,719,948, while
the improved algorithm SIRSO cost was $1,649,446, with a
performance improvement of 4.10%. In lithium batteries,
the original algorithm cost was $2,696,973, and the
improved algorithm cost was $2.366,645, with a
performance improvement of 12.25%. In Ni-Fe batteries,
the original algorithm cost was $1,190,100, and the
improved algorithm cost was $1,015,118, with a
performance improvement of 14.70%. Moreover, from the
iteration 1images, it can be seen that the nonlinear
attenuation factor effectively accelerates the optimization

speed of the algorithm and achieves a smaller life cycle
cost.

Overall, when nickel-iron batteries are used as energy
storage components and the SIRSO algorithm is applied, a
relatively ideal balance is demonstrated in energy
optimization, especially in terms of life cycle cost (LCC)
and cost of energy (COE), showing high cost-effectiveness.

This makes it appropriate for situations where
cost-effectiveness and energy efficiency are crucial
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TABLE V. SYSTEM COMPONENT INFORMA TION

Parameters Value Parameters Value
Project lifetime 25 years ROD  cap.cost{lm?/day)[[19]] $532
Nominal interest rate 13% Initial expense of water tank[19] 256 $/m3
Inflation rate 5% Initial expense of membrane [19] 0.06 $/m>
Rated power of PV[21] l?‘;’f) Capital expense of chemicals [19] 0.06 $/m?
Lifetime of PV[21] 25 years YO&M expense of ROD [19] 0.2 $/m?
Capital expense of PV[21] $250 No.of MEM Repl./year [19] 2
YO&M cost of PV[21] $6.25 MEM Replacement cost [19] 0.06 $/m>
Rated power of WT [21] 1kW Repl.cost of chemieals [19] 0.06 $/m3
Lifetime of WT [21] 25 years Rated power of BDC-CAP.C S5kW
Hub height of WT [21] 20m Lifetime of converter [21] 10 years
Cut-in speed of WT [21] mlf.s:sec Capital and replacement cost of converter [21] $5940
Reference height of WT [21] 10m YO&M cost of converter [21] 315
Cut-out velocity of WT [21] 21 mfsec Efficiency of converter [21] 95%
Rated velocity of WT [21] 11 m/sec DG(C;%PSE??S?PTE?;’]MM“ S0KW
Capital expense of WT [21] $2500 Capital and replacement expense of DG $5715
YO&M cost of WT [21] $75 Diesel Price [19] $0.97
Rated power of BMG [21] Skw YO&M expense of DG 3% of Total annualgog]cerl'fl;tizrc hours of the diescl
Life time of BMG [21] li?go Quantity of biomass 9 tons/year
Daily operating hoursof BMG 5 hours Cost of biomass [21] 15 $/ton
BMG CAP.Cof 1 kW [21] $901 Efficiency of BMG [21] 20%
YO&M expense of 1 kW BMG $27 ) i
[21]
TABLE VI. THE OUTCOMES OF SEVERAL ALGORITHMS' OPERATIONS FOR LA BATTERIES
Algorithm Ny Ngr Npar TYFCIL TYFCIL T¥CO2 Lce Lce COE LPSP
(Number) (Number) (Number) (L) Rank {kes) ($) Rank ($/kWh) (%)
RSO 1157 4 288 23745 6 64110 1719948 2 0.3616 0
WWPA 1439 375 519 3327 1 8983 3811813 7 0.8015 0
BOA 1345 69 327 13611 3 36750 2025974 4 0.4260 0
FLO 986 128 324 19974 4 53931 2250337 6 0.4732 0
GCRA 1429 7 360 11004 2 29712 1825177 3 0.3838 0
RSA 1055 120 293 20190 5 54514 2161530 5 0.4545 0
SIRSO 1169 0 264 24178 7 65282 1649446 1 0.3468 0
TABLE VII. THE OUTCOMES OF SEVERAL ALGORITHMS' OPERATIONS FOR LITHTUM-ION BATTERIES
Alsorithm Npy Nwr Naar TYFCIL TYFCIL TYCO?2 Lee Lce COE LPSP
{Number) (Number) (Number) (L) Rank {kgs) (%) Rank ($/kWh) (%)
RSO 1168 101 240 21489 6 58021 2696973 3 0.5671 0
WWPA 2216 477 493 2416 1 6322 5935123 7 1.2479 0
BOA 1227 165 363 9865 2 26646 3502671 5 0.7365 ]
FLO 945 171 387 18280 4 49357 3690859 6 0.7761 ]
GCRA 1438 0 303 17088 3 46136 2623590 2 0.5516 ]
RSA 1088 151 246 20145 5 54393 2898927 4 0.6095 0
SIRSO 1273 1 240 26761 7 72254 2366645 1 0.4976 0

Volume 33, Issue 6, June 2025, Pages 2211-2227



Engineering Letters

TABLE VIII. THE OUTCOMES OF SEVERAL ALGORITHMS' OPERATIONS FOR NIFE BATTERIES

Alooriitim Npy Nwr Npar TYFCIL TYFCIL  TYCO2 Lce Lcc COE LPSP
& (Number) (Number) (Number) @) Rank (kgs) (%) Rank ($/kWh) (%)
RSO 1176 29 401 18131 6 48954 1190100 4 0.2502 0

WWPA 2100 158 1313 1540 1 4158 2393049 7 0.5032 0
BOA 1335 60 429 11793 3 31841 1305215 6 0.2744 0
FLO 1228 54 428 12390 4 33454 1244912 5 0.2618 0

GCRA 1503 0 490 5573 2 15047 1029697 2 0.2165 0
RSA 1178 20 347 20405 7 55094 1157692 3 0.2434 0

SIRSO 1241 0 343 15904 5 42940 1015118 1 0.2134 0

RSO NPV Rank RSO [ |TYFCIL Rank
7 NWT Rank 7 | |LCC Rank
NBAT Rank| ]
6 . . 8
SIRSO 5 WWPA SIRSO WWPA
\ 4 ;
RSA — 5 T Boa RSA — 77~ Boa
GCRA FLO GCRA FLO
Fig. 8 The Npy rank, Nwr Rank and Npar Rank of LA batteries. Fig. 11 The TYFCIL Rank and LCC Rank of LA batteries.
RSO NPV Rank RSO [ |TYFCIL Rank|
7 NWT Rank . | LCC Rank
NBAT Rank : l E—
6 6
SIRSO 5 WWPA SIRSO WWPA
\ 4 ‘
< 9 |
/ - y \ [
RSa \ BOA RSA < T~ BoA
GCRA FLO GCRA FLO

Yig. 8 Thefier rank: Mo Ranksand NaszRaok of Lithium batteties. Fig. 12 The TYFCIL Rank and LLCC Rank of Lithium batteries.
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Fig. 10 The Ney rank, Npr Rank and Nz4r Rank of NiFe batteries.
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Fig. 13 The TYFCIL Rank and LLCC Rank of NiFe batteries.
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Overall, when nickel-iron batteries are used as energy
storage components and the SIRSO algorithm is applied, a
relatively 1ideal balance 1s demonstrated in energy
optimization, especially in terms of life cycle cost (LCC)
and cost of energy (COE), showing high cost-effectiveness.
This makes it appropriate for situations where
cost-effectiveness and energy efficiency are crucial.

VI. CONCLUSION

This paper addresses the issues of slow convergence
speed and tendency to get trapped in local optima that exist
in the practical application of the rat swarm optimization
algorithm. An improved rat swarm optimization algorithm
is proposed, which employs six types of decay factors,
namely cubic decay factor, cube root decay factor,
exponential-binomial distribution decay factor, logarithmic
decay factor, sine decay factor, and cosine decay factor, as
global search factors to enhance the algorithm's
convergence speed and global search capability. The
effectiveness of this improvement is verified through the
CEC2022 test functions. Lastly, the algorithm is used in a
system for clean energy that combines wind turbines,
biomass, and solar power generation, diesel generators,
reverse osmosis seawater desalination units, battery banks,
and rechargeable bidirectional converters. A comparison is
made with WWPA, BOA FLO, GCRA and RSO, and
SITIRSO demonstrates superior optimization performance in
all cases, confirming the effectiveness of the proposed
improvement method.

This study has improved the rat swarm optimization
algorithm to address the modeling and optimization issues
of microgrid systems. The proposed strategy not only has
the potential to enhance the performance of other
optimization algorithms but can also be extended to solve
optimization problems in other fields. Future research will
further expand n the following directions:

1) In terms of battery energy storage technology, future
research will consider introducing hydrogen fuel cells. As a
storage method with high energy density and environmental
friendliness, hydrogen fuel cells are expected to play a
significant role in microgrid systems. Therefore, the
application of hydrogen fuel cells will be explored in
subsequent work to enhance the overall performance and
sustainability of the system.

2) Different energy management strategies have an
impact on the consumption of different energy sources and
life costs. In future research, we will attempt more energy
management strategies to jointly plan the modeling
problem of microgrids.
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