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Abstract—Ultrasound image plays an important role in many
medical applications. However, images acquired in ultrasound
imaging system are always corrupted by a kind of speckle
noise, which seriously affects the images’ qualities. In this
paper, by exploiting image nonlocal similarities, we estab-
lish a maximum a posteriori (MAP) estimation-based matrix
rank minimization model for speckle noise reduction, and
design an alternating proximal gradient algorithm to solve
the nonconvex optimization model. The convergence of the
alternating proximal gradient algorithm is analyzed and proved.
A image denoising method is finally developed by using the
rank minimization model and its solving algorithm. Numerical
experiments illustrate that the proposed denoising method can
outperform some state-of-the-art methods for speckle noise
removal in images.

Index Terms—ultrasound image denoising, speckle noise, low-
rank minimization, proximal gradient algorithm.

I. INTRODUCTION

IMAGE denoising has long-time been a fundamental prob-
lem in image processing and computer vision [1], [2].

In the literatures, efficient denoising methods are always
developed for the additive white Gaussian noise removal [3]–
[8]. In many practical applications, however, images are often
corrupted by different kinds of non-Gaussian noises, such
as Poisson noise, impulse noise and multiplicative speckle
noise, etc [9]–[15]. For instance, ultrasound image plays an
important role in the applications of clinical examination and
diagnose [16]–[18]. Due to the coherent nature of ultrasound
imaging system, the obtained images are often contaminated
by a speckle noise, in which the noise reduces the image’s
qualities by a point-wise multiplication of image pixels. In
mathematics, the degraded ultrasound image is represented
by

g = f +
√
fv, (1)

where g is the observed noisy image, f is the ideal clean
image and ν is the zero mean white Gaussian noise, respec-
tively.

Since almost all of pixels in f may be contaminated, the
restoration of f from g is a very challenging image denoising
problem. In the past decades, various of methods have been
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studied to suppress this kind of noise. For instance, the
earliest class of methods are the filter methods, such as the
local statistical properties-based filter methods [19], adaptive
filter methods [20], weighted median filter methods [21], and
wavelet-based filter methods [22]–[24]. Nevertheless, these
methods lack the abilities to reconstruct high quality images
and often result lower spatial resolution images with over
smoothed edges and textures. The other class of popular
methods for ultrasound image denoising is the total variation
(TV)-based methods. The TV method was firstly proposed
for the additive white Gaussian noise removal problem [3].
Since it has the advantages to reduce image noise and
preserve image details well. In [25], Rudin et al. extended
the TV method to speckle noise removal and designed effi-
cient image restoration methods for images contaminated by
Gaussian multiplicative noise. Later, the Gamma distribution
multiplicative speckle noise removal problem was further s-
tudied, and Aubert and Aujol [26] developed a nonconvex TV
model via the maximum a posteriori (MAP) estimation. Jin
and Yang [27] similarly established a MAP-based nonconvex
TV model for ultrasound image denoising. Huang and Yang
further improved the nonconvex model [27] and developed
a convex TV model by replacing the MAP data-fitting term
with a generalized Kullback-Leibler distance [28]. Besides,
to improve the classical TV-based methods, the high-order
total variation (HTV) [29], total generalized variation (TGV)
[30], [31], and some hybrid regularization methods have been
also proposed for ultrasound image denoising. For example,
in [32], Mei et al. developed a second-order TGV method
to suppress speckle noise in ultrasound images. In [33],
Wang et al. investigated a HTV-based variational model
for speckle noise reduction. In [34], Abrahim and Kadah
proposed a hybrid framework combing wavelet shrinkage and
total variation for clinical ultrasound image denoising.

The above mentioned methods are all local prior-based
methods, which suppress image noise only using local
information in image. In recent years, there are nonlocal
structural sparsity and low-rank priors that have been widely
exploited for image denoising and restoration [4]–[7], [35]–
[37]. For instance, the block matching and 3D filtering
(BM3D) method [7], which uses the stack of nonlocal similar
image patches to form collaborative filters, has been extended
to ultrasound image denoising and obtained significant image
denoising improvements [38]. Moreover, based on image
nonlocal similarities [4], [5], image nonlocal low-rank prior
has been also exploited for ultrasound image denoising. The
nonlocal low-rank prior on images is exploited by stacking
similar patches into a stacked patch matching matrix. Due to
the similarity of image patches, the patch matching matrix
should be low-rank [35] and thus many image denoising
and restoration problems are converted into the matrix low-
rank minimization (LRM) problems [39]–[42]. Owing to
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the direct matrix rank minimization is NP-hard problem, it
always uses nuclear norm minimization to relax the problem.
Because nuclear norm is defined to be the sum of a matrix’s
all singular values and proved to be the convex envelope
of matrix rank function [39]. Later, by introducing different
weights in nuclear norm, the more accurate approximation
weighted nuclear norm minimization (WNNM) was further
proposed and applied to image denoising and and many
low-level vision tasks [40]–[42]. Some recent LRM methods
for speckle noise reduction can be referenced as follows.
In [43], Liu et al. investigated multiplicative speckle noise
removal and developed a nonconvex logdet-based nonlocal
LRM model. In [44], Lv et al. proposed a patchwise WNNM
method based on MAP estimation for speckle noise removal,
and developed its alternating direction method with multipli-
ers (ADMM). In [45], Bo et al. studied the WNNM-based
model and algorithm for SAR image denoising. In [46], Yang
et al. developed a WNNM framework combined with a data
derived model for restoration of ultrasound images.

In this paper, we utilize the direct matrix rank mini-
mization to develop a LRM-based method for speckle noise
removal. Based on image nonlocal similarities, we firstly
propose a matrix rank minimization (RM) model for patch
matching matrix denoising. The RM model consists of a RM
regularization term and a MAP estimation-based date fidelity
term, which is in fact a nonconvex and nonsmooth opti-
mization problem. We then design an alternating proximal
gradient (APG) method to solve the nonconvex RM model
and further analyze the convergence for the APG method.
By adopting the RM model and its APG method to denoise
all patch matching matrices formed in the noisy image
and rearrange these denoised patches into image, we finally
obtain the RM-based ultrasound image denoising method.
Numerical experiments show that the proposed method can
overcome some current state-of-the-art methods for reducing
speckle noise in images.

The paper is organized as follows. In Section II, the RM
speckle noise reduction model is introduced. In Section III,
the APG solving algorithm is developed for the RM model.
In Section IV, convergence theorems of the APG algorithm
are presented. Numerical experiments are given in Section
V to show the denoising effects of the proposed RM-based
speckle noise reduction method. Some conclusions are finally
made in Section VI.

II. PROPOSED RANK MINIMIZATION MODEL

Suppose gr is a s-by-s reference patch in noisy image
g. Based on image nonlocal similarities, there must exist t
most similar patches to gr in the image. By aggregating these
similar patches to be a s2-by-t patch matching matrix X , the
image degradation model (1) implies that

Y = X +
√
XV, (2)

where X and V are the s2-by-t patch matching matrix
formed in clean image f , and corresponding noise matrix,
respectively. In [44], Lv et al. established a patch-based
WNNM model to denoise V in (2), which is

min
X

∑
i,j

(Xi,j − Yi,j)
2

Xi,j
+ ∥X∥w,∗, (3)

where
∑

i,j
(Xi,j−Yi,j)

2

Xi,j
is the MAP estimation-based date

fidelity term. ∥X∥w,∗ = Σwlσl is the weighted unclear norm
regularization term, with σl and wl to be the l-th singular
value of X and which corresponding weight parameter.

In this paper, we improve the LRM model (3) by replacing
the weighted unclear norm with matrix rank,

min
X

∑
i,j

(Xi,j − Yi,j)
2

Xi,j
+ ωRank(X), (4)

where Rank(·) represents the matrix’s rank and ω is a regu-
larization parameter. By introducing an auxiliary variable Z
to X , (4) can be converted into the unconstraint optimization
problem

min
X,Z

Q(X,Z), (5)

and

Q(X,Z) =
∑
i,j

(Zi,j − Yi,j)
2

Zi,j
+
θ

2
∥X − Z∥2F +ωRank(X),

where θ is a positive penalty parameter. As θ → ∞, Z → X
and the solution of (5) tends to that of (4). Thus, the solution
of (4) can be obtained by solving problem (5).

III. ALTERNATING PROXIMAL GRADIENT METHOD

In this section, we design a novel alternating proximal
gradient method to solve the nonconvex problem (5). De-
noted by Φ(X) = ωRank(X), Ψ(Z) =

∑
i,j

(Zi,j−Yi,j)
2

Zi,j
,

H(X,Z) = θ
2 ∥X − Z∥2F , the objective function Q(X,Z)

in (5) can be represented as

Q(X,Z) = Φ(X) +H(X,Z) + Ψ(Z).

Since H(X,Z) has second order differentiable with respect
to variables X and Z. We can design an alternating proximal
gradient scheme to solve (5).

For some initial gauss
(
X(0), Z(0)

)
, the k-th iteration of

the scheme is to obtain

X(k) ∈ argmin
X

⟨
∇XH

(
X(k−1), Z(k−1)

)
, X −X(k−1)

⟩
+

α

2

∥∥∥X −X(k−1)
∥∥∥2
F
+Φ(X),

Z(k) ∈ argmin
Z

⟨
∇ZH

(
X(k), Z(k−1)

)
, Z − Z(k−1)

⟩
+

β

2

∥∥∥Z − Z(k−1)
∥∥∥2
F
+Ψ(Z),

(6)
where α, β > 0 are larger than the Lipschitz constant of H,
⟨·⟩ and ∇ denotes the inter product of vectors and gradient
operator of the function.

In fact, (6) can be transformed into

X(k) ∈ argmin
X

Φ(X)+

α

2

∥∥∥∥X −X(k−1) +
1

α
∇XH

(
X(k−1), Z(k−1)

)∥∥∥∥2
F

,

Z(k) ∈ argmin
Z

Ψ(Z)+

β

2

∥∥∥∥Z − Z(k−1) +
1

β
∇ZH

(
X(k), Z(k−1)

)∥∥∥∥2
F

,

(7)
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and

X(k) ∈ argmin
X

α

2

∥∥∥∥X −
(
θ

α
Z(k−1) +

α̃

α
X(k−1)

)∥∥∥∥2
F

+ ωRank(X),

Z(k) ∈ argmin
Z

β

2

∥∥∥∥∥Z −

(
θ

β
X(k) +

β̃

β
Z(k−1)

)∥∥∥∥∥
2

F

+
∑
i,j

(Zi,j − Yi,j)
2

Zi,j
,

(8)
where α̃ = α− θ and β̃ = β − θ.

For solution of X(k) in (8), suppose the singular val-
ue decomposition (SVD) of

(
θ
αZ

(k−1) + α̃
αX

(k−1)
)

to be
U (k)Σ(k)(V (k))T , the SVD-based hard threshold algorithm
in [47] implies that,

X(k) = U (k)Dω
α

(
Σ(k)

)(
V (k)

)T
.

Where Dω
α

(
Σ(k)

)
is the hard threshold algorithm defined

on diagonal matrix Σ(k) = diag(σ1, σ2, · · · ), and each of its
diagonal element is given by

Dω
α

(
Σ(k)

)
ll
=

 σl, for σl >
√

2ω
α ,

0, for σl <
√

2ω
α .

Since the function Ψ(Z) in (8) has second order differential
about Z and every element of Z is independent to each other.
Therefore, Z(k) can be solved element-by-element via the
Newton iteration method from

min
Zi,j

(Zi,j − Yi,j)
2

Zi,j
+

β

2

(
Zi,j −

β̃

β
X

(k)
i,j − θ

β
Z

(k−1)
i,j

)2

.

The entire alternating proximal gradient method can be
concluded in Algorithm 1.

Algorithm 1 : Alternating proximal gradient algorithm for
solving (5).

1. Initialize X(0), Z(0), and parameters θ, ω, α, β.
2. For k = 1, 2, · · · , do
1) update X(k) from

min
X

α

2

∥∥∥∥X − θ

α
Z(k−1) − α̃

α
X(k−1)

∥∥∥∥2
F

+ ωRank(X);

2) update Z(k) from

min
Zi,j

β

2

(
Zi,j −

θ

β
X

(k)
i,j − β̃

β
Z

(k−1)
i,j

)2

+
(Zi,j − Yi,j)

2

Zi,j
,

1 ≤ i ≤ s2, 1 ≤ j ≤ t;
end for until the stopping criterion is satisfied.

IV. CONVERGENCE ANALYSIS

In this section, the convergence theorems of the proposed
alternating proximal gradient Algorithm 1 are presented. We
simply denote ∂F(x) as the subdifferential [48] of function
F at a point x, and call the point which subdifferential
contains 0 as critical point, where 0 is the zero point. Suppose

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 1. Original clean simulation images. The left column: (a) Monarch,
(c)Barbara, (e) Villa, (g) Plane, (i) Baby; and the right column: (b) Boat,
(d) Parrot, (f) Cameraman, (h) House, (j) Peppers; respectively.
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critF is the set of critical points of F , ∥ · ∥ is the Euclidean
norm, the convergence theorems are given as follows.

Theorem 1: Suppose
{
W (k)

}
to be a sequence obtained

by the alternating proximal gradient Algorithm 1, W (k) =((
X(k)

)T
,
(
Z(k)

)T)T
, then, for k ≥ 1, Q

(
W (k)

)
does not

increase,

Q
(
W (k)

)
+

α̃

2

∥∥∥X(k) −X(k−1)
∥∥∥2
F

+
β̃

2

∥∥∥Z(k) − Z(k−1)
∥∥∥2
F
≤ Q

(
W (k−1)

)
, (9)

and
lim
k→∞

∥∥∥W (k) −W (k−1)
∥∥∥2
F
= 0. (10)

Proof: Since it has the Taylor expansions

H
(
X,Z(k−1)

)
= H

(
X(k−1), Z(k−1)

)
+
⟨
∇XH

(
X(k−1), Z(k−1)

)
, X −X(k−1)

⟩
+

θ

2

∥∥∥X −X(k−1)
∥∥∥2
F

and

H
(
X(k), Z

)
= H

(
X(k), Z(k−1)

)
+
⟨
∇ZH

(
X(k), Z(k−1)

)
, Z − Z(k−1)

⟩
+

θ

2

∥∥∥Z − Z(k−1)
∥∥∥2
F
.

Based on (6), we can derive that

X(k) ∈ argmin
X

Q
(
X,Z(k−1)

)
+

α̃

2

∥∥∥X −X(k−1)
∥∥∥2
F
,

(11)
and

Z(k) ∈ argmin
Z

Q
(
X(k), Z

)
+

β̃

2

∥∥∥Z − Z(k−1)
∥∥∥2
F
. (12)

Therefore,

Q
(
X(k), Z(k−1)

)
+

α̃

2

∥∥∥X(k) −X(k−1)
∥∥∥2
F

≤ Q
(
X(k−1), Z(k−1)

)
,

and

Q
(
X(k), Z(k)

)
+
β̃

2

∥∥∥Z(k) − Z(k−1)
∥∥∥2
F
≤ Q

(
X(k), Z(k−1)

)
.

Combining the above two formulas,

Q
(
W (k)

)
+

α̃

2

∥∥∥X(k) −X(k−1)
∥∥∥2
F

+
β̃

2

∥∥∥Z(k) − Z(k−1)
∥∥∥2
F
≤ Q

(
W (k−1)

)
.

Thus, Q
(
W (k)

)
does not increase with the increase of k.

By summing each inequality (9) from k = 1 to K0, it
satisfies that

K0∑
k=1

(
α̃

2

∥∥∥X(k) −X(k−1)
∥∥∥2
F
+

β̃

2

∥∥∥Z(k) − Z(k−1)
∥∥∥2
F

)
≤ Q

(
W (0)

)
−Q

(
W (K0)

)
. (13)

Since α̃ and β̃ are bounded constants, it follows by (13) that

lim
K0→∞

K0∑
k=1

∥∥∥W (k) −W (k−1)
∥∥∥2
F
< +∞,

and
lim
k→∞

∥∥∥W (k) −W (k−1)
∥∥∥2
F
= 0.

Algorithm 2 : The ultrasound image denoising method.
1. Input the noisy image g, initialize parameters s, t, θ,

ω, α, β, and set k = 1 and the maximum iteration
number K.

2. Divide p reference patches in g, and initialize the s2×
t initial patch matching matrices Y

(0)
1 , Y

(0)
2 , · · · , Y (0)

p

by conducting the image block matching schemes on
g.

3. When k < K, do
1) for ζ = 1, 2, · · · , p, apply alternating proximal gradi-

ent Algorithm 1 to solve X
(k)
ζ from

min
Xζ

∑
i,j

(
Xζ − Y

(k−1)
ζ

)2
i,j

Xi,j
+ ωRank(Xζ),

end for;
2) aggregate X

(k)
1 , X

(k)
2 , · · · , X(k)

p to form the denoised
image f̂ (k);

3) update the patch matching matrices Y
(k)
1 , Y

(k)
2 , · · · ,

Y
(k)
p from f̂ (k);

4) if k > K, stop, else k := k + 1 and go back to the
step 3;
end for and output the finally denoised image f̂ (k).

Theorem 2: Suppose
{
W (k)

}
to be a sequence obtained

by the alternating proximal gradient Algorithm 1, W (k) =((
X(k)

)T
,
(
Z(k)

)T)T
, denote by

X̂(k) = θ
(
Z(k−1) − Z(k)

)
− α

(
X(k) −X(k−1)

)
,

and
Ẑ(k) = −β̃

(
Z(k) − Z(k−1)

)
.

Then, for k ≥ 1,

Ŵ (k) =

((
X̂(k)

)T
,
(
Ẑ(k)

)T)T

∈ ∂Q
(
W (k)

)
,

and ∥∥∥Ŵ (k)
∥∥∥
F
≤ c

∥∥∥W (k) −W (k−1)
∥∥∥
F
, (14)

where c is a bounded constant.

Proof: For all k ≥ 1, the solving of X(k) in (7) suggests
that

0 ∈ α
(
X(k) −X(k−1)

)
+ θ

(
X(k) − Z(k−1)

)
+ ω∂Rank

(
X(k)

)
,

where 0 ∈ Rs2×t and ∂Rank (·) is the subdifferential of the
matrix rank function. By adding −θZ(k) at both sides of the
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above equation,

− θZ(k) ∈ α
(
X(k) −X(k−1)

)
+ θ

(
X(k) − Z(k−1) − Z(k)

)
+ ω∂Rank

(
X(k)

)
,

and for k ≥ 1, which implies that

X̂(k) = θ
(
Z(k−1) − Z(k)

)
− α

(
X(k) −X(k−1)

)
∈ θ

(
X(k) − Z(k)

)
+ ω∂Rank

(
X(k)

)
. (15)

Analogously, for all k ≥ 1, the solving of Z(k) in (7) also
implies that

0 = ∇ZQ
(
X(k), Z(k)

)
+ β̃

(
Z(k) − Z(k−1)

)
,

and

Ẑ(k) = −β̃
(
Z(k) − Z(k−1)

)
= ∇ZQ

(
X(k), Z(k)

)
, (16)

where ∇Z denotes the derivation of the function
Q
(
X(k), Z(k)

)
about Z. The subdifferential calculation for-

mulations of variable separated functions [48] imply that, for
any W =

(
XT , ZT

)T ∈ domQ,

∂Q(W ) = ∂XQ(W )× ∂ZQ(W )

= [θ(X − Z) + ω∂Rank(X)]×∇ZQ(W ).

Therefore, it can be derived by (15) and (16) that

Ŵ (k) =

((
X̂(k)

)T
,
(
Ẑ(k)

)T)T

∈ ∂Q
(
W (k)

)
,

and∥∥∥Ŵ (k)
∥∥∥
F

≤ θ
∥∥∥Z(k) − Z(k−1)

∥∥∥
F
+ α

∥∥∥X(k) −X(k−1)
∥∥∥
F

+β̃
∥∥∥Z(k) − Z(k−1)

∥∥∥
F

≤ c
∥∥∥W (k) −W (k−1)

∥∥∥
F
, ∀k ≥ 1,

where c =
(
θ + α+ β̃

)
is a bounded positive constant.

Theorem 3: Suppose
{
W (k)

}
to be a sequence obtained

by the alternating proximal gradient Algorithm 1, W (k) =((
X(k)

)T
,
(
Z(k)

)T)T
, Ω being the set of the limit points

of
{
W (k)

}
, then,

(1) Ω is not empty and Ω ⊂ critQ;
(2) Q is a constant on Ω and it is equal to

limk→∞ Q
(
W (k)

)
= infk∈N Q

(
W (k)

)
.

Proof: Since Q is a coercive function and Q
(
W (k)

)
is nonincreasing,

{
W (k)

}
must be a bounded sequence. By

the classical properties of the bounded sequence, Ω is a
nonempty set.

For any X,Z ∈ Rs2×t, the formulations (11) and (12)
imply that

Q
(
X(k), Z(k−1)

)
+

α̃

2

∥∥∥X(k) −X(k−1)
∥∥∥2
F

≤ Q
(
X,Z(k−1)

)
+

α̃

2

∥∥∥X −X(k−1)
∥∥∥2
F
,

and

Q
(
X(k), Z(k)

)
+

β̃

2

∥∥∥Z(k) − Z(k−1)
∥∥∥2
F

≤ Q
(
X(k), Z

)
+

β̃

2

∥∥∥Z − Z(k−1)
∥∥∥2
F
.

Adding above two inequalities and setting Z = Z(k−1),

Q
(
X(k), Z(k)

)
+

ρmin

2

∥∥∥W (k) −W (k−1)
∥∥∥2
F

≤ Q
(
X,Z(k−1)

)
+

ρmax

2

∥∥∥X −X(k−1)
∥∥∥2
F
, (17)

where ρmax and ρmin are the maximum and minimum of α̃

and β̃. Assume W ∗ =
(
(X∗)

T
, (Z∗)

T
)T

to be a point in Ω,

then there must exist a subsequence
{
W (k′)

}
of
{
W (k)

}
and{

W (k′)
}

converges to W ∗. By setting k = k′ and X = X∗

in (17),

Q
(
X(k′), Z(k′)

)
+

ρmin

2

∥∥∥W (k′) −W ((k−1)′)
∥∥∥2
F

≤ Q
(
X∗, Z((k−1)′)

)
+

ρmax

2

∥∥∥X∗ −X((k−1)′)
∥∥∥2
F
.

Since Q is continuous about Z, then the above inequality
implies

lim
k′→∞

infQ
(
X(k′), Z(k′)

)
≤ Q (X∗, Z∗) .

Owing to Q is a lower semicontinuous function,

lim
k′→∞

infQ
(
W (k′)

)
≥ Q (X∗, Z∗) .

Therefore,

lim
k′→∞

Q
(
W (k′)

)
= Q (X∗, Z∗) = Q (W ∗) .

Suppose Ŵ (k′) =

((
X̂(k′)

)T
,
(
Ẑ(k′)

)T)T

with X̂(k′) and

Ẑ(k′) as the same definition in that of Theorem 2, then,

Ŵ (k′) =

((
X̂(k′)

)T
,
(
Ẑ(k′)

)T)T

∈ ∂Q
(
W (k′)

)
,

and it follows by (10) and (14) that,

lim
k′→∞

Ŵ (k′) = 0.

Since Q(W ∗) is a closed set, 0 ∈ ∂Q(W ∗). Therefore,
W ∗ ∈ Ω is a critical point of Q and Ω ⊂ critQ.

For any point W ∗ ∈ Ω, it has been proved that there must
exist a subsequence

{
W (k′)

}
with Q

(
W (k′)

)
→ Q (W ∗)

as k′ → ∞. By the nonincreasing property of Q
(
W (k)

)
,

lim
k→∞

Q
(
W (k)

)
= inf

k∈N
Q
(
W (k)

)
= lim

k′→∞
Q
(
W (k′)

)
.

Since the matrix rank is a semialgebraic and Kurdyka-
Łojasiewicz function [49]–[52]. The objective function Q
in (5) is the composition of finite Kurdyka-Łojasiewicz
functions, and thus a Kurdyka-Łojasiewicz function [53],
[54]. Based on Theorems 1-3 and Theorem 2.9 in [53],
the global convergence of the alternating proximal gradient
Algorithm 1 is as follows.
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TABLE I
THE DENOISED PSNRS FOR NOISE LEVEL δ = 1.

Images Method
TV HTV BM3D WNNM RM

Mon. 32.36 32.54 32.45 33.91 33.88
Boat 31.30 31.49 31.32 32.53 32.54
Bar. 31.16 31.15 33.65 34.04 34.08

Parrot 31.63 31.54 32.14 32.86 32.79
Villa 30.32 30.58 30.27 31.53 31.76

C.man 31.82 31.36 32.85 33.75 33.70
Plane 30.83 31.59 31.83 33.04 33.08
House 32.69 33.16 35.51 35.89 35.75
Baby 32.10 33.03 34.82 35.24 35.24
Pep. 32.52 30.75 33.61 33.85 33.93
Ave. 31.67 31.72 32.85 33.66 33.67

TABLE II
THE DENOISED SSIMS FOR NOISE LEVEL δ = 1.

Images Method
TV HTV BM3D WNNM RM

Mon. 0.9149 0.9263 0.9453 0.9525 0.9518
Boat 0.8677 0.8857 0.8766 0.9009 0.9016
Bar. 0.8700 0.8768 0.9309 0.9339 0.9354

Parrot 0.8774 0.8976 0.8976 0.9145 0.9117
Villa 0.8096 0.8677 0.8800 0.9065 0.9109

C.man 0.8535 0.8735 0.9090 0.9248 0.9240
Plane 0.8096 0.8677 0.9120 0.9267 0.9271
House 0.8169 0.8465 0.8945 0.9012 0.8998
Baby 0.8227 0.8795 0.9456 0.9486 0.9496
Pep. 0.8786 0.8919 0.9149 0.9159 0.9175
Ave. 0.8521 0.8813 0.9106 0.9225 0.9229

Theorem 4: Suppose
{
W (k)

}
to be a sequence obtained

by the alternating proximal gradient Algorithm 1, W (k) =((
X(k)

)T
,
(
Z(k)

)T)T
, then,

{
W (k)

}
has finite length, i.e.,

+∞∑
k=0

∥∥∥W (k+1) −W (k)
∥∥∥
F
< +∞,

and
{
W (k)

}
converges to a critical point of Q.

TABLE III
THE DENOISED MAES FOR NOISE LEVEL δ = 1.

Images Method
TV HTV BM3D WNNM RM

Mon. 5.21 4.66 4.88 3.75 3.56
Boat 6.26 6.04 5.80 4.56 4.46
Bar. 6.11 5.78 4.80 3.71 3.69

Parrot 5.32 5.26 5.18 3.98 3.95
Villa 6.41 5.66 5.27 4.97 4.81

C.man 5.13 4.72 4.64 3.56 3.47
Plane 5.11 5.00 4.24 3.99 3.97
House 4.01 3.95 3.13 3.03 3.00
Baby 4.79 3.68 3.45 2.97 2.96
Pep. 5.59 4.75 3.73 3.73 3.69
Ave. 5.32 4.95 4.51 3.83 3.76
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Fig. 2. The histograms of recovered average measures: (a) PSNR, (b) SSIM,
and (c) MAE by “TV”, “HTV”, “BM3D”, “WNNM” and our proposed
“RM” methods, respectively.
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TABLE IV
THE DENOISED PSNRS FOR NOISE LEVEL δ = 2.

Images Method
TV HTV BM3D WNNM RM

Mon. 28.18 28.93 29.53 29.80 29.84
Boat 27.55 28.13 28.37 28.41 28.70
Bar. 27.83 28.28 29.36 30.02 29.92

Parrot 27.71 28.27 28.34 28.63 28.55
Villa 26.57 27.23 27.59 27.61 28.01

C.man 23.15 28.05 29.57 29.72 29.68
Plane 27.63 28.36 28.43 29.28 29.30
House 30.51 30.32 32.11 32.83 32.78
Baby 29.62 30.13 30.42 31.18 31.34
Pep. 28.87 27.65 29.43 29.86 30.02
Ave. 27.76 28.54 29.32 29.73 29.81

TABLE V
THE DENOISED SSIMS FOR NOISE LEVEL δ = 2.

Images Method
TV HTV BM3D WNNM RM

Mon. 0.8691 0.8846 0.9083 0.9040 0.9053
Boat 0.7673 0.7995 0.7942 0.7966 0.8075
Bar. 0.7927 0.8122 0.8460 0.8561 0.8546

Parrot 0.8168 0.8448 0.8289 0.8410 0.8365
Villa 0.7658 0.7968 0.8122 0.8101 0.8251

C.man 0.5261 0.8165 0.8534 0.8418 0.8522
Plane 0.8139 0.8185 0.8601 0.8753 0.8763
House 0.8142 0.7988 0.8472 0.8593 0.8587
Baby 0.8294 0.8437 0.8793 0.8789 0.9001
Pep. 0.8443 0.8448 0.8505 0.8604 0.8617
Ave. 0.7840 0.8260 0.8480 0.8524 0.8578

TABLE VI
THE DENOISED MAES FOR NOISE LEVEL δ = 2.

Images Method
TV HTV BM3D WNNM RM

Mon. 6.90 6.50 6.42 5.61 5.53
Boat 7.67 7.84 7.21 6.83 6.70
Bar. 7.47 7.41 6.26 5.90 5.89

Parrot 6.97 6.67 6.37 6.16 6.09
Villa 8.47 8.35 7.32 7.29 7.06

C.man 6.68 6.49 5.72 5.34 5.19
Plane 7.21 6.73 6.13 6.12 5.85
House 5.19 5.10 4.45 4.05 3.94
Baby 5.77 5.13 5.11 4.84 4.53
Pep. 6.33 6.22 5.85 5.59 5.48
Ave. 6.87 6.64 6.08 5.76 5.64

TABLE VII
THE DENOISED PSNRS FOR NOISE LEVEL δ = 4.

Images Method
TV HTV BM3D WNNM RM

Mon. 22.47 25.27 25.40 25.27 25.52
Boat 23.86 24.92 24.99 25.02 25.13
Bar. 24.32 25.49 25.65 25.74 25.90

Parrot 23.47 25.37 24.83 24.88 24.92
Villa 23.50 24.17 23.94 23.95 24.38

C.man 19.35 25.23 25.49 25.69 26.40
Plane 20.61 25.17 25.00 25.19 25.67
House 26.58 27.49 28.26 28.49 28.83
Baby 25.84 27.23 27.07 27.08 27.41
Pep. 24.82 24.90 25.84 26.40 26.25
Ave. 23.48 25.52 25.64 25.77 26.00

TABLE VIII
THE DENOISED SSIMS FOR NOISE LEVEL δ = 4.

Images Method
TV HTV BM3D WNNM RM

Mon. 0.7122 0.7256 0.7896 0.8024 0.8080
Boat 0.5860 0.6698 0.6703 0.6713 0.6742
Bar. 0.6559 0.7251 0.7204 0.7115 0.7329

Parrot 0.6238 0.6875 0.7014 0.7610 0.7524
Villa 0.6438 0.7032 0.6652 0.6673 0.7967

C.man 0.4852 0.7715 0.6498 0.7762 0.7828
Plane 0.7252 0.7770 0.7576 0.7597 0.7882
House 0.7310 0.7844 0.7717 0.7965 0.8059
Baby 0.7432 0.8003 0.7610 0.7195 0.8155
Pep. 0.6852 0.6993 0.7453 0.7492 0.7848
Ave. 0.6592 0.7354 0.7232 0.7415 0.7741

TABLE IX
THE DENOISED MAES FOR NOISE LEVEL δ = 4.

Images Method
TV HTV BM3D WNNM RM

Mon. 10.87 9.65 9.37 9.40 8.99
Boat 10.85 10.39 10.28 10.17 10.06
Bar. 10.63 9.72 9.60 9.61 9.23

Parrot 9.94 9.83 9.65 9.78 9.18
Villa 11.82 11.13 11.08 11.15 10.66

C.man 9.36 8.70 8.97 7.53 7.36
Plane 10.44 9.49 9.46 9.26 8.95
House 8.00 7.55 6.82 6.07 5.57
Baby 8.32 7.67 7.82 7.99 7.06
Pep. 9.32 9.03 8.91 8.53 8.17
Ave. 9.96 9.32 9.30 8.95 8.52
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Denoised results of Boat image for noise level δ = 1; (a) noisy
image, (b)-(f) denoised images by “TV”, “HTV”, “BM3D”, “WNNM” and
our proposed “RM” methods, respectively.

V. NUMERICAL RESULTS

In this section, numerical experiments on both clean image
simulation and real ultrasound image denoising are present-
ed to illustrate the performance of the proposed method.
For clean image simulation, ten constantly used 256-by-
256 images adopted in the experiments are shown in Fig.
1. They are Monarch, Barbara, Villa, Plane, Baby in the
left column, and Boat, Parrot, Cameraman, House, Peppers,
in the right column, respectively. Three different levels of
Gaussian noises with standard deviation δ = 1, 2, 4 are
considered based on image degradation model (1).

To evaluate the image denoising performances, peak
signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [55], and mean absolute-deviation error (MAE)
are used as quantitative measurements. For a m-by-
n clean image f , the PSNR and MAE of its de-
noised image f̃ are calculate by formulations PSNR =

10 log10
mn·|max(f)−min(f)|2

∥f̃−f∥2
2

(dB) and MAE = ∥f̃−f∥1

mn , re-
spectively. Five excellent denoising methods including total

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Denoised results of Boat image for noise level δ = 2; (a) noisy
image, (b)-(f) denoised images by “TV”, “HTV”, “BM3D”, “WNNM” and
our proposed “RM” methods, respectively.

variation method “TV” [27], high-order TV method “HTV”
[33], block matching and 3D filtering method “BM3D”
[38], and patch-based weighted nuclear norm minimization
method “WNNM” [44] are also conducted in the experiments
to make comparisons.

A. Image Denoising Algorithm and Parameters

Suppose the noisy image is divided into p overlapped
reference patches, and there are subsequently formed p patch
matching matrices Y1, Y2, · · · , Yp. By adopting model (4)
and its alternating proximal gradient algorithm to denoise
each matrix Yζ (ζ = 1, 2, · · · , p), a noise clean image f̂
can be recovered by rearranging the corresponding denoised
image patches into an image. By introducing an iteration
scheme to update Y1, Y2, · · · , Yp from the latest iteration
denoised image f̂ , the residue noises existed in f̂ can
be finally removed. The whole image denoising method is
concluded in Algorithm 2.

In Algorithm 2, the image block matching schemes [4],
[5] are adopted to construct the patch matching matrices Yζ
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Denoised results of Boat image for noise level δ = 4; (a) noisy
image, (b)-(f) denoised images by “TV”, “HTV”, “BM3D”, “WNNM” and
our proposed “RM” methods, respectively.

(ζ = 1, 2, · · · , p). The similarity between a reference patch
and its similar patches measured by the matrix Frobenius
norm, reference to [44], [47]. The size of reference patch is
considered as 6-by-6 and its 70 most similar patches are used
to aggregate the patch matching matrix, namely, s = 6 and
t = 70. θ is a penalty parameter in model (5) and its selection
depends on the different noise levels. For noise levels σ = 1,
σ = 2, and σ = 4, the optimal value of θ are selected
as 10, 15, and 25 respectively. By the same consideration
introduced in [40], [44], [47], [56], ω = 2

√
2tδ2 and where

δ represents the estimated noise variance of the image. The
parameters α, β is selected as θ + 10−5 and K is selected
as 25. Parameters in five compared methods are selected as
those suggested by their authors, or to obtain the best image
denoising quantitative measurements.

B. Image Denoising Results

The PSNR, SSIM, and MAE measures of all denoised
images are shown in Tables I-III, Tables IV-VI, Tables VII-
IX with respect to different noise levels δ = 1, δ = 2

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Denoised results of Barbara image for noise level δ = 1; (a) noisy
image, (b)-(f) denoised images by “TV”, “HTV”, “BM3D”, “WNNM” and
our proposed “RM” methods, respectively.

and δ = 4, respectively. The best denoised measures for
each image recovery are shown in boldface in these tables.
Clearly, the “WNNM” method and our proposed “RM”
method obtained all of the best denoised measures. The
proposed “RM” method obtain most of the best PSNRs
and SSIMs, and all of the best MAEs in these tables. The
average PSNRs, SSIMs, and MAEs of all tested images with
respect to different noise levels δ = 1, δ = 2 and δ = 4
are shown in the last line of each Table. The best average
PSNRs, SSIMs, and MAEs are shown in boldface and they
all obtained by our proposed “RM” method for different
noise levels δ = 1, δ = 2 and δ = 4. Specifically, for
noise level δ = 4, the proposed “RM” method outperform
the “TV”, “HTV”, “BM3D” and “WNNM” methods on
best average PSNR, SSIM and MAE by significant margin-
s 2.52, 0.48, 0.36, 0.23 (dB), 0.1149, 0.0387, 0.0509, 0.0326,
and 1.44, 0.80, 0.78, 0.43, respectively. Moreover, the his-
tograms of these average PSNRs, SSIMs, and MAEs are
shown in Fig. 2.

In addition to PSNR, SSIM and MAE evaluations, the
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Denoised results of Barbara image for noise level δ = 2; (a) noisy
image, (b)-(f) denoised images by “TV”, “HTV”, “BM3D”, “WNNM” and
our proposed “RM” methods, respectively.

denoised Boat, Barbara, Plane, and Baby images are shown
respectively in Figs. 3-5, Figs. 6-8, Figs. 9-11 and Figs. 12-14
to make a comparison of the visual qualities. In these figures,
the images denoised by patch-based “BM3D”, “WNNM” and
our proposed “RM” methods exhibit significant better visual
effects compared to those denoised by “TV” and “HTV”
methods. To check the recovered details, we encircle one
small block with a white square box and then show it in
an enlarged version in each image in these figures. From
these enlarged blocks, it is shown that the denoised images
by proposed “RM” method have slightly better visual effects
than those denoised by excellent “BM3D” and “WNNM”
methods. For instance, the enlarged blocks in “RM” method
recovered Plane images in Figs. 9-11 and Baby images in
Figs. 12-14 are shown clearly more details than those in
images recovered by “BM3D” and “WNNM” methods.

For the computational time, the nonlocal low-rank prior-
based “WNNM” and our proposed “RM” methods require
much longer time. Since their image blocking matching
schemes and SVD-based image denoising operations are

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Denoised results of Barbara image for noise level δ = 4; (a) noisy
image, (b)-(f) denoised images by “TV”, “HTV”, “BM3D”, “WNNM” and
our proposed “RM” methods, respectively.

more time consuming, see, [40], [44], [47].
The experiments on denoising of two real ultrasound im-

ages are also conducted to show the effects of our proposed
method. The real noisy images and their denoised images by
methods “TV”, “HTV”, “BM3D”, “WNNM” and “RM” are
shown in Figs. 15-16, respectively. In figures, the left column
lists the noisy image and its denoised versions by different
methods; the right column lists the enlarged versions of
small blocks, marked in the left column images by a white
box, to show the details of those denoised images more
clearly. From these figures, we can see that the recovered
images of “TV” and “HTV” methods are over smoothed,
and the recovered images of “BM3D”, “WNNM” and our
proposed “RM” methods obtain better visual effects. The
“HTV”, “BM3D” and “WNNM” methods are all current
state-of-the-art methods for ultrasound image denoising. The
above numerical results on clean image simulation and real
ultrasound image denoising illustrate that the proposed “RM”
method can perform better than those excellent methods for
speckle noise removal in ultrasound images.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Denoised results of Plane image for noise level δ = 1; (a) noisy
image, (b)-(f) denoised images by “TV”, “HTV”, “BM3D”, “WNNM” and
our proposed “RM” methods, respectively.

VI. CONCLUSION

In this paper, we develop a novel LRM-based method
for ultrasound image denoising. Taking advantage of im-
age nonlocal similarities, we firstly propose a matrix rank
minimization model for speckle noise removal. Then, we
design an alternating proximal gradient method to the non-
convex and nonsmooth rank minimization model. The global
convergence theory of the algorithm is well analyzed. By
adopting the proposed speckle noise removal model and its
solving algorithm, we finally establish an ultrasound noise
reduction method. Numerical experiments show that the
proposed matrix rank minimization-based method can well
compete with the current start-of-art methods for ultrasound
image denoising.
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Fig. 15. Image denoising results for the first real ultrasound image; (a) the
noisy image, (c), (e), (g), (i), (k) are its denoised images by “TV”, “HTV”,
“BM3D”, “WNNM” and the proposed “RM” methods; (b), (d), (f), (h), (j),
(l) are the enlarged versions of small blocks marked in (a), (c), (e), (g), (i),
(k) images; respectively.
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Fig. 16. Image denoising results for the second real ultrasound image;
(a) the noisy image, (c), (e), (g), (i), (k) are its denoised images by “TV”,
“HTV”, “BM3D”, “WNNM” and the proposed “RM” methods; (b), (d), (f),
(h), (j), (l) are the enlarged versions of small blocks marked in (a), (c), (e),
(g), (i), (k) images; respectively.
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