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 Abstract—Bat algorithm is a popular solution in 

numerous engineering contexts, owing to its 

straightforward implementation and the minimal 

number of parameters required. However, it is prone to 

local optima, and exhibits limited population diversity. 

This paper proposes a multi-strategy Bat optimization 

algorithm to address the aforementioned problems. 

Firstly, a point set method that can be said to be both 

good and effective is adopted for the purpose of 

initializing the population and improving the diversity of 

the bat population. Secondly, a nonlinear inertia weight is 

proposed to update the position of the bat population and 

to adaptively adjust its position based on the 

characteristics of the bat population. The purpose of this 

adjustment is to improve the optimization performance 

of the bat algorithm. Subsequent to this, the crisscross 

optimization that is both horizontal and vertical is 

introduced in order to circumvent the possibility of the 

algorithm becoming trapped in a local optimum. In 

conclusion, a total of 12 benchmark test functions have 

been selected for the purposes of experimentation. A 

comparative analysis of seven distinct algorithms is then 

undertaken, with the objective of substantiating the 

feasibility and efficacy of the novel algorithm proposed in 

this study. 

 
Index Terms—bat algorithm, good point set, crisscross 

optimization, numerical analysis  

I. INTRODUCTION 

n recent years, a significant focus of research has emerged 

on intelligent algorithms inspired by social behavior 

metaphors and natural phenomena. The efficacy of intelligent 
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algorithms in the resolution of complex problems is 

well-documented. Notable examples include the particle 

swarm algorithm [1-2], bat algorithm [3], differential 

evolution algorithm [4-5], artificial bee colony algorithm [6], 

gravitational search algorithm [7], whale optimization 

algorithm [8-9], genetic algorithm [10] and so on. 

The concept of the bat algorithm was initially introduced 

by the British scholar Yang [11] in 2010. This algorithm has 

gained significant popularity in various engineering 

applications due to its straightforward implementation and 

minimal number of parameters. In the seminal paper by 

Zhang Wei et al. [12], the bat algorithm was introduced as a 

means of optimizing variational modal decomposition 

(VMD). This pioneering work led to significant 

advancements in the field of composite fault feature 

extraction for rolling bearings, significantly enhancing the 

performance of the process. Zhang Kexue et al. [13] 

pioneered a novel approach by fusing a support vector neural 

network with a bat algorithm. This innovative fusion enabled 

the construction of an intelligent comprehensive evaluation 

model, which exhibited superior efficacy in addressing the 

critical issue of coal seam impact. Xie et al. [14] introduced 

an adaptive bat algorithm for indoor RFID localization, 

utilizing a tent map and an adaptive weighting factor to 

formulate a position evaluation function. This approach was 

shown to reduce the time taken for localization whilst 

concomitantly enhancing the accuracy of the results. Li et al. 

[15] combined the improved bat algorithm with 

complementary integrated empirical modal decomposition to 

optimize the microgrid load forecasting model. The bat 

algorithm introduces a reverse learning mechanism to 

increase the diversity of the population, thereby avoiding the 

risk of falling into local optimums and improving the 

convergence performance with the help of dynamic adaptive 

inertia weights and Lagrange interpolation. Consequently, 

the performance of the microgrid load forecasting model has 

been enhanced. 

In light of the challenges encountered by the bat algorithm, 

a number of domestic and international scholars have put 

forward various solutions. Zhao et al. [16] introduced the bat 

algorithm into the particle swarm algorithm to construct a 

collaborative optimization algorithm. They applied Gaussian 

perturbation to the bat population and introduced Gaussian 

weights in the process of generating locally optimal solutions 

for the bat population. The aim was to improve the 

performance of the bat algorithm as a whole. The bat 

algorithm was built upon in this study, incorporating 

elements of the traditional bat algorithm. Li [17] proposed a 

chaotic mechanism for optimizing the initialization of the bat 

population, which has been shown to retain superior 

performance as a new solution. In addition, they proposed a 

learning factor with inertia weights to enable the bat 
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population to adaptively adjust its speed in order to avoid 

falling into a local optimum. In their seminal work, Du et al. 

[18] pioneered the integration of Levy flight and Gaussian 

variation strategy with the bat algorithm. The employment of 

Levy flight facilitates the adjustment of bats in suboptimal 

positions, while the utilization of Gaussian variation strategy 

introduces a Gaussian factor at the position. This innovative 

approach serves to circumvent the pitfalls of local optima and 

enhance the convergence accuracy. YLIDIZDAN, GULNUR 

et al. [19] sought to enhance the efficacy of the bat algorithm 

through the judicious application of weight factor and 

frequency optimization strategies, drawing upon the 

well-established principles of the traditional bat algorithm. It 

is evident that the aforementioned enhancements have been 

effective in averting the population from entering a local 

optimum. Nevertheless, the collective outcomes remain 

unsatisfactory. IIn summary, a bat optimization algorithm 

(Good point-set Crisscross Bat Algorithm, abbreviated as 

GCBA) is proposed. This algorithm incorporates good point 

set and crisscross optimization. The introduction of good 

point set is intended to enhance the diversity of the 

population. Crisscross optimization is employed to 

circumvent the bat population from attaining a local optimum. 

It has been hypothesized that the proposed scheme has the 

potential to enhance the efficacy of the Bat algorithm. 

Moreover, it has been demonstrated that the update formula 

for the population position is optimized by means of 

nonlinear weight factors. Consequently, this leads to an 

improvement in both the convergence speed and the 

performance of the GCBA algorithm in terms of seeking 

optimization. 

II. STANDARD BAT ALGORITHM 

The Bat Algorithm is a swarm intelligence optimization 

algorithm that has been designed to take advantage of the 

biological behavior of bats while foraging. Bats utilize the 

properties of echolocation, which are based on the emission 

of ultrasound pulses and the subsequent reception of bounced 

sound waves, to navigate and capture prey during nocturnal 

hours. In the process of detecting prey and navigating 

obstacles, bats typically reduce their acoustic output 

following the identification of prey, concurrently increasing 

their pulse emission rate. The idealized process of a bat 

searching for prey is as follows. 

In the D-dimensional search space, the position and 

velocity of bat in the Tth iteration are updated according to the 

following formulas: 

( )min max min ,if f f f = + −                        (1) 

( )1 1 ,T T T

i i i iv v X X f− − = + −                         (2) 

1 ,T T T

i i iX X v−= +                             (3) 

In this context, the symbol β denotes a random number that 

is distributed uniformly within the interval [0, 1]. if is the 

pulse frequency at iX .  min max,if f f ; X 
 indices the 

current optimal solution. Nevertheless, it must be noted that 

the efficacy of the algorithm is not yet optimal. A persistent 

tension persists between the capacity to explore algorithms 

and the capacity to develop them. Furthermore, it has been 

observed that the accuracy of the algorithm is reduced at the 

subsequent stages of the iteration. Consequently, there is a 

significant need to enhance the performance and efficiency of 

the algorithms and expand their applications through various 

improvement methods. 

III. IMPROVED BAT ALGORITHM 

A. Good Point Set 

The distribution of the initial population in the search 

space exerts a direct influence on two key aspects: the 

efficiency of the intelligent optimization algorithm and the 

accuracy of the search. However, the execution steps of the 

bat algorithm demonstrate that the initial population 

uniformity and traversal of the randomized distribution are 

poor, and it is easy to be trapped in the local optimum. The 

GCBA algorithm introduces good point set [20] in order to 

generate the initial bat population, thereby improving both 

the uniform distribution and the diversity of the population. 

The good point set of N points taken in D-dimensional 

space is denoted as follows. 

 1( ) , , , , ,i D

NP k b k b k b k=                         (4) 

where k=1, …, N, ( )2cos 2 /ib i p= ,1 i D  ; p is the 

smallest prime number satisfying (p-3)/2≥D. 

 

 
(a)  Good point set 

 
(b)  Randomization 

Fig. 1 The initialization of the population 

 

As illustrated in Fig 1, the initial population distributions 

were generated within the interval [0,100] using 

randomization and good point set, respectively. A 

comparison of the node distributions reveals that the 
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uniformity, diversity and traversal of the population 

distribution initialized by good point set are significantly 

superior to those of a random distribution. Random 

population distributions are characterized by uneven 

densities, gaps in areas that are not searched, or overly dense 

distributions in individual areas. 

B. Position Update Based on Inertia Weights 

In this paper, a novel formulation for the bat position 

update is proposed. This is based on nonlinear inertial 

weights, with the aim of adjusting the global and local search 

capabilities. It is argued that this provides a significant 

improvement in the performance of the standard bat 

algorithm. The improved bat position update formula is as 

follows. 

When rand > r, the position is updated according to Eq. 

(5). 

max

max
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Otherwise, the position is updated according to Eq. (6). 
1
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                   (6) 

where   indices the inertia weighting factor; max  is the 

maximum value of inertia weights; min  is the minimum 

value of inertia weights;
T

iA  denotes the loudness of the 

sound wave emitted by the bat at the current moment; maxT  

indices the maximum number of iterations; r is the pulse rate 

of the bat;r0 denotes the initial pulse rate of the bat. 

C. Crisscross Optimization 

Crisscross optimization [21] is a population-based 

stochastic search algorithm with two types of crossover: 

horizontal and vertical. This algorithm has been shown to be 

more effective in overcoming the issue of bat algorithms 

falling into local optimum. 

1) Horizontal Crossover 

As with the crossover operation of genetic algorithms, 

horizontal crossover is defined as an arithmetic crossover 

between the same dimensions of two different bat individuals 

in a bat population. The horizontal crossover operation has 

been demonstrated to enhance the global search capability of 

the algorithm by allowing bat individuals to be perturbed 

between different dimensions. Assuming lateral crossing 

between the D th dimension of bat individuals 
T

iX and 
T

jX , 

the update formula is as follows. 

, 1 , 1 , 1 , ,(1 ) ( ),T T T T T

i d i d j d i d j dNX r X r X c X X=  + −  +  − (7) 

 

, 1 , 1 , 1 , ,(1 ) ( ),T T T T T

j d j d i d j d i dNX r X r X c X X=  + −  +  − (8) 

Where r1 is a random number between [0,1] and c1 is a 

random number between [-1,1]; 
,

T

i dX ,
,

T

j dX  denote dth 

dimension bat individuals of individuals 
T

iX and
T

jX , 

respectively, in the bat population; 
,

T

i dNX  and 
,

T

j dNX  are dth 

dimensional bat individuals produced by 
,

T

i dX  and 
,

T

j dX  

through horizontal crossover. 

2) Vertical Crossover 

Vertical crossover is defined as an arithmetic crossover 

between two different dimensions for the same bat individual. 

This approach facilitates the escape of one dimension from 

the local optimum in a given time frame without 

compromising the social behavior of the other dimension. 

Furthermore, it prevents the system from becoming trapped 

in a local optimum while ensuring the diversity of the 

population. 

Assuming a vertical crossover between the d1 and d2 

dimensions of the bat individual
T

iX , the optimal solution is 

generated according to Eq. (9). 

1 1 2

1 1

, 2 , 2 ,

, ,

(1 ) ,
,

,

T T T

i d i d i d

T T

i d i d

VX r X r X r rand

VX X otherwise

 =  + −  


=

               (9) 

Where ( )1 2, 1,d d N D ,  2 0,1r  ;
1,

T

i dVX  denotes the d1 

and d2 dimensions of 
T

iX produced by longitudinal crossing 

of the d1 dimension bat individual. 

The fitness value and loudness are utilized as constraints to 

assess the superiority of the local solution. Consequently, this 

enables the update iteration of the local optimization, which 

is implemented as follows: The fitness value and loudness are 

used as constraints to assess the superiority of the local 

solution. 

, , , ,

, ,

,   ( ) ( ) &
,

,     

T T T T T

i d i d i d i d i

T T

i d i d

X NX F NX F X A rand

X X otherwise

 =  


=

(10) 

Where 
,( )T

i dF NX  denotes the fitness value for individual 

,

T

i dNX ;
,( )T

i dF X is the fitness value for individual 
,

T

i dX . In the 

event of a decrease in the fitness value of an individual bat 

following a vertical crossover, when compared with the 

current bat's value, and a concomitant decrease in loudness, 

this is indicative of the bat signaling the detection of prey. It 

is imperative that the relevant bat individual positions be 

updated in a punctual manner to ensure the integrity of the 

original positions. 

The bats are engineered to generate perturbations at a 

specific height within a localized area. These perturbations 

are generated by crossing the area horizontally. If the bats 

receive an acoustic response, they will continue to generate 

perturbations at different heights by crossing the area 

vertically in an upward or downward direction. This process 

constitutes a crisscross search path, which the bats will 

continue to follow until they locate the prey. The method is 

more efficient and accurate, but at the same time increases the 

time complexity of the algorithm. 

D. Algorithm Steps 

In summary, this paper sets out the steps to improve the bat 

algorithm as follows. 

1) Set the relevant parameters, including the population 

size M, the maximum number of iterations maxT , the search 
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dimension D, the search range ub, lb, and the pulse frequency 

range 
minf , 

maxf . 

2) Population initialization. The objective is to generate bat 

population individuals in the search space using the method 

of good point sets, and to determine the optimal bat location 

X 
in the current population. The fitness function calculates 

the fitness value of each individual in the population and then 

ranks them according to the magnitude of their fitness value. 

3) Generate random number r3, if r3> r, update the bat 

position according to Eq. (5), otherwise update the bat 

position according to Eq. (6). 

4) The vertical and horizontal crossover strategy is to be 

introduced, and the position is to be updated according to Eq. 

(7) to (9) to the extent that the algorithm is prevented from 

falling into a local optimum. 

5) Generate a random number r4. If r4<
T

iA  and also satisfy 

the better fitness value of the new position, Eq. (10) is moved 

to the new position, otherwise the position is kept intact. 

6) Determine whether the algorithm satisfies the 

termination condition. If satisfied, the algorithm ends and 

outputs the global optimal solution and the corresponding 

convergence curve. Otherwise, return the target value for the 

next search. 

IV. EXPERIMENTAL DATA AND SIMULATION ANALYSIS 

The paper proposes a comparison and analysis of the 

GCBA algorithm with BA, FOSBA[22] and BBA[23]. This 

is achieved by means of a benchmarking function, the 

purpose of which is to test the performance of GCBA in 

relation to other bat algorithms. Moreover, the GCBA is 

compared with WOA, PSO and ABC in order to ascertain the 

performance of GCBA in relation to the other algorithms. 

A. Parameters of the Algorithm 

In order to ensure the objectivity of the test, the basic 

parameters will be kept consistent, and the specific settings 

are as follows. The maximum number of iterations maxT is 

1000; Number of populations M is 20; The pulse amplitude r0 

is 0.5; The maximum value of the inertia weights ωmax is 0.9. 

The minimum value of inertia weight ωmin is 0.2; The pulse 

frequency increase factor fmax is 2; The pulse frequency 

attenuation factor is 0. 

B. Test Results and Analysis 

The paper aims to evaluate the performance of the GCBA 

algorithm in optimization. To this end, 12 benchmark test 

functions have been selected for 30 experiments. The 

functions selected for this study are as follows: F1-F6 are 

single-peak functions and F7-F12 are multi-peak functions. 

All tests were conducted using the software MATLAB 2017. 

The test is divided into two sections. On the one hand, the 

GCBA was subjected to longitudinal testing in comparison 

with other enhanced bat algorithms. Conversely, a 

side-by-side comparison was conducted in which the GCBA 

algorithm was pitted against a range of other intelligent 

optimization algorithms. Finally, the test results were 

subjected to statistical analysis. 

1) Comparison with Several BAs  

The test data of the standard bat algorithm and several bat 

optimization algorithms for the 10 benchmark test functions 

are analyzed in Table I. The findings of this study 

demonstrate that three bat optimization algorithms are 

effective and more closely approximate the ideal value than 

the standard bat algorithm. As illustrated in Figure 1, a clear 

disparity emerges between the theoretical optimum and the 

observed values for BA and FOSBA. Notably, BBA exhibits 

a standard deviation of 0, indicating minimal relative 

variability. It is evident that among the six single-peak 

functions designated F1-F6, four single-peak functions of 

GCBA attain the ideal optimum with a standard deviation of 

0, thereby demonstrating stability and reliability. Three of 

F7-F10 reach the theoretical optimum, and two of them have 

standard deviations of 0. It is evident that three of the F7-F10 

variables reach the theoretical optimum, and two of them 

have standard deviations of 0. However, GCBA was found to 

be the closest to the ideal value when compared to FOSBA 

and BBA. Furthermore, it exhibits minimal standard 

deviation, which can attain a value of 0. The stability and 

aggregation of the optimization search process is optimal. 

 

TABLE I Comparison Tests of FOSBA、BA、BBA、GCBA 

Function 
BA FOSBA BBA GCBA 

avg std avg std avg std avg std 

F1 7.23E+04 8.11E+03 8.12E-05 2.62E-04 2.80E+00 1.56E+00 0.00E+00 0.00E+00 

F2 2.50E+13 3.36E+13 1.92E-04 1.76E-04 3.00E+00 1.18E+00 0.00E+00 0.00E+00 

F3 8.86E+01 3.10E+00 3.58E+00 2.21E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 

F4 2.78E+08 5.80E+07 2.76E+01 8.16E+00 7.45E+02 2.10E+02 2.85E+01 2.31E-01 

F5 7.18E+04 8.86E+03 3.20E+00 2.56E+00 2.83E+00 1.37E+00 0.00E+00 0.00E+00 

F6 1.30E+02 2.55E+01 8.74E-02 2.99E-02 3.67E+01 1.64E+01 3.91E-03 1.52E-02 

F7 4.44E+02 2.71E+01 4.58E+01 1.50E+01 1.11E+00 3.93E-01 0.00E+00 0.00E+00 

F8 6.35E+02 6.93E+01 1.39E-02 1.59E-02 1.24E-01 6.47E-02 0.00E+00 0.00E+00 

F9 6.53E+08 1.60E+08 1.06E+00 1.20E+00 4.08E-01 2.31E-01 4.45E-02 4.80E-02 

F10 3.91E-01 4.64E-01 3.14E-03 6.77E-03 1.48E-01 0.00E+00 4.50E-04 2.63E-04 
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The convergence performance of the four bat algorithms 

on the single-peak function is represented in Fig. 2. As 

illustrated by the six plots, the convergence speed of this 

algorithm compares favorably with that of the other three 

algorithms. In (a) and (e), the theoretical optimum is 

determined in advance, consequently resulting in the 

premature termination of the iteration. As demonstrated in (d), 

the convergence performance of the GCBA algorithm 

exhibits superiority over that of the FOSBA algorithm. 

Conversely, the performance in terms of optimality discovery 

is comparatively deficient. As the number of convergences 

increases, GCBA falls into local optimality at a certain point 

in time, as illustrated in (f). 

 

 
(a) 30 D-F1 

 
 (b) 30 D-F2  

 
(c) 30 D-F3 

 
(d) 30 D-F4 

 
(e) 30 D-F5  

 
(f) 30 D-F6 

Fig. 2  Convergence curves of BA, FOSBA, BBA and GCBA in the 

single peak function 

 

As illustrated in Fig. 3, the convergence performance of 

the various bat algorithms in the multi-peak function is 

demonstrated. It is evident that these algorithms exhibit 

superior performance in comparison to the randomness of the 

initial value, whilst exhibiting only a marginal discrepancy in 

their starting position. In the case of (b), the graph ceases 

iteration as the number of iterations increases, thereby 

identifying the theoretical optimal value at an earlier stage. It 

is evident from the provided data that, in comparison with 

other algorithms, the BBA exhibits minimal adaptation value 

fluctuation; this is particularly pronounced when the initial 
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value is considered. However, it should be noted that the 

overall effect is more pronounced when there is a significant 

disparity between the initial value and the other algorithms. 

 
(a) 30 D-F7 

 
(b) 30 D-F8 

 
(c) 30 D-F9 

 
 (d) 4 D-F10 

Fig. 3 Convergence curves of BA, FOSBA, BBA and GCBA in the 

multi-peak function 

 

As demonstrated in Figures 2 and 3, the GCBA algorithm 

demonstrates a certain degree of enhancement in 

convergence speed and optimization accuracy in comparison 

to the other three algorithms. The GCBA algorithm 

demonstrates a substantial enhancement in the performance 

of both single-peak and multi-peak functions, rapidly 

identifying the optimal value with a reduced number of 

iterations. Furthermore, the GCBA algorithm demonstrates 

superior performance in both low and high-dimensional test 

functions, with the iterative curve of the test function 

exhibiting a rapid decrease. 

It can be concluded that the GCBA algorithm demonstrates 

superior performance in comparison to other bat optimization 

algorithms with regard to stability and convergence accuracy. 

 

2) Comparison with Intelligent Optimization Algorithms 

The test data of the four algorithms for the 12 benchmark 

test functions are analyzed in Table II. The table has been 

established that PSO and ABC are characterized by 

substandard data quality. However, ABC demonstrates 

superiority in terms of its optimization-seeking performance 

in the multi-peak function. Furthermore, a proportion of the 

data attains the theoretical value. A comparison of the two 

algorithms reveals that WOA is superior in identifying the 

optimal solution. The test data for both single-peak and 

multi-peak functions converged to the theoretical value. 

However, the overall stability of the system was found to be 

inadequate. The GCBA proposed in this paper utilizes a more 

substantial dataset to reach the theoretical values, and the 

data is stable. 

 

 

TABLE II Comparison Tests of WOA, PSO, ABC and GCBA 

Function 
WOA PSO ABC GCBA 

Avg Std Avg Std Avg Std Avg Std 

F1 3.94E-132 1.42E-131 4.73E+02 6.10E+01 2.33E-01 2.19E-01 0.00E+00 0.00E+00 

F2 1.21E-95 6.49E-95 1.69E+02 1.66E+01 3.54E-03 1.58E-03 0.00E+00 0.00E+00 

F3 3.30E+01 2.59E+01 9.80E+00 1.20E+00 6.35E+01 4.49E+00 0.00E+00 0.00E+00 

F4 2.77E+01 5.72E-01 1.90E+06 3.94E+05 7.46E+04 7.12E+04 2.85E+01 2.31E-01 
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F5 0.00E+00 0.00E+00 4.98E+02 6.60E+01 1.57E+00 9.89E-01 0.00E+00 0.00E+00 

F6 2.30E-03 3.31E-03 1.14E+02 2.31E+01 3.27E-01 8.99E-02 3.91E-03 1.52E-02 

F7 0.00E+00 0.00E+00 4.36E+02 2.32E+01 2.39E+00 7.71E-01 0.00E+00 0.00E+00 

F8 9.26E-03 3.51E-02 1.13E+00 1.43E-02 7.21E-01 1.18E-01 0.00E+00 0.00E+00 

F9 4.10E-02 9.80E-02 4.92E+01 7.80E+01 4.22E+05 4.91E+05 4.45E-02 4.80E-02 

F10 4.55E-01 1.93E-01 9.64E+01 3.68E+01 2.15E+05 1.89E+05 1.98E+00 8.32E-01 

F11 7.74E-04 4.18E-04 1.69E-02 1.88E-02 7.91E-04 6.46E-05 4.50E-04 2.63E-04 

F12 3.00E+00 1.90E-04 1.17E+01 2.59E+01 3.00E+00 1.64E-04 3.00E+00 5.83E-06 

 

 
(a) 30 D-F1 

 
 (b) 30 D-F2 

 
(c) 30 D-F3 

 
(d) 30 D-F4 

 
(e) 30 D-F5 

 
 (f) 30 D-F6 

Fig. 4 Convergence curves of WOA, PSO, ABC and GCBA in 

single peak function 
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As illustrated in Fig. 4, the convergence performance of 

diverse intelligent algorithms on the single-peak function is 

demonstrated. The convergence of the algorithms is 

terminated by the early identification of the theoretical 

optimum in plots (a), (c) and (e). The GCBA experiences a 

brief descent into a local optimum in (f), and the performance 

of the GCBA algorithm is found to be inferior to that of the 

WOA algorithm when the number of iterations is in the range 

of 100-200 iterations. However, the GCBA algorithm's 

discrepancy with the theoretical optimum is much smaller. 

 
(a) 30 D-F7 

 
(b) 30 D-F8 

 
(c) 30 D-F9 

 
(d) 30 D-F10 

 
(e) 4 D-F11 

 
(f) 2 D-F12 

Fig. 5 Convergence curves of WOA, PSO, ABC and GCBA in the 

multi-peak function 

 

As illustrated in Fig. 5, the convergence performance of 

multiple intelligent algorithms on multi-peak functions is 

demonstrated. As demonstrated by the figures, the GCBA 

circumvents the tendency towards local optimality and the 

subsequent stagnation. It is notable that both the GCBA and 

WOA in (b) are able to identify the theoretical optimum in 

advance and consequently terminate the optimization search. 

In scenario (d), GCBA demonstrates superior convergence 
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speed in comparison to WOA. However, it should be noted 

that the efficacy of the optimization search is diminished. 

As illustrated in Figs. 4 and 5, PSO and ABC demonstrate 

analogous convergence trends. However, it is important to 

note that each algorithm possesses distinct advantages and 

disadvantages when applied to diverse test functions. It is 

evident that both algorithms are more suitable for 

low-dimensional scenarios. A comparative analysis reveals 

that WOA exhibits superior convergence performance, 

facilitating the identification of the optimal solution and its 

subsequent approach with a reduced number of iterations. 

The GCBA algorithm has been demonstrated to exhibit the 

fastest descending iterative curve for the test function in 

comparison to the other three algorithms, and requires the 

least number of iterations to identify the optimal solution. 

It can be concluded that the GCBA proposed in this paper 

exhibits superior performance in comparison to other 

intelligent optimization algorithms with regard to stability 

and convergence accuracy. 

V. CONCLUSION 

The present paper proposes a bat optimization algorithm 

that incorporates both good point set and  crisscross 

optimization.  The algorithm introduces good point set with a 

view to enhancing the diversity of the population and 

providing beneficial conditions for the subsequent 

optimization search. The employment of nonlinear weight 

factors facilitates the adaptive adjustment of bat population 

positions, thereby expediting the identification of the optimal 

solution and maintaining it in closer proximity. Crisscross 

optimization is employed with the objective of ensuring that 

the population of the algorithm evolves sufficiently in order 

to avoid a local optimum and attain a global optimum in a 

satisfactory amount of time. A side-by-side comparison of 

the experiments reveals that the test data of the GCBA is 

more closely aligned with the ideal value, exhibiting a 

reduced standard deviation. The stability and aggregation of 

the algorithm are better, and the optimal value can be found 

in fewer iterations with faster convergence, which verifies the 

effectiveness of the algorithmic improvement strategy. The 

results of the longitudinal comparison experiments show that 

the test data of the GCBA algorithm outperforms the other 

three intelligent algorithms in terms of stability and 

aggregation. The algorithm has faster convergence speed, 

higher accuracy of optimization search and the least number 

of iterations to find the global optimal solution, which 

verifies the feasibility of the GCBA algorithm. The main 

work in the next phase is to apply the GCBA algorithm to 3D 

wireless sensor networks in order to improve the coverage 

and enhance the comprehensive performance of the network. 
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