
 

  

Abstract—The study of the propagation properties of 

Pearcey-Gaussian beams in photorefractive media is essential 

for understanding the dynamics of special beams. However, the 

specific effects of different parameters, such as the truncation 

factor, chirp factor, refractive coefficient, and beam spacing, on 

the propagation properties of a single Pearcey-Gaussian beam 

and the interactions between two Pearcey-Gaussian beams need 

to be clarified. This paper analyzes the dynamical properties of 

Pearcey-Gaussian beams and their interactions using a stepwise 

Fourier method. The results show that the truncation factor 

regulates the intensity distribution of the optical field, the initial 

chirp factor controls the deflection direction, and the refractive 

coefficient modulates the spatial soliton respiration period of a 

single beam. In a double-beam setup, the refractive coefficient 

and beam spacing affect the repulsive force, while the chirp 

factor alters the number of solitons. This study provides a 

theoretical basis for understanding the exceptional beam 

propagation dynamics. 

 

Index Terms—Pearcey-Gaussian; Propagation; Interaction; 

Photorefractive Media 

 

I. INTRODUCTION 

n 1946, T. Pearcey [1] analyzed the structure of cylindrical 

electromagnetic waves' focal dispersion line field through 

many mathematical calculations and described this field with 

an integral expression, i.e., the Pearcey function. With the 

continuous development of science and technology, in 2012, 

Ring [2] and others applied the Pearcey function to research 

in optics and further explored the propagation theory of the 

Pearcey beam. The study showed that Pearcey beams exhibit 

unique propagation properties, such as form invariance, 

self-focusing, and self-healing. Inspired by these unique 

optical properties, many studies have been reported. Since 

2018, many scholars have made circular Pearcey beams [3], 

ring Pearcey beams [4], vortex Pearcey beams [5], elliptical 

Pearcey beams [6], and odd Pearcey beams [7] by 

continuously improving the design of Pearcey beams. In 
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experiments, Pearcey-Gaussian beams can be generated by 

modulating Pearcey beams with Gaussian beams to obtain 

Pearcey beams with finite energy without losing their 

properties [8, 9, 10]. In 2021, analytical solutions describing 

the dynamic behavior of Pearcey-Gaussian beams 

propagating in free space were provided by Zang [11] et al. 

Their study focused on the double-focusing behavior of 

one-dimensional quadratically chirped Pearcey-Gaussian 

beams, highlighting the complex nature of the propagation of 

these beams. In 2023, Wen [12] et al. explored the generation 

of periodic evolutionary modes of Pearcey-Gaussian beams 

with side flaps in the presence of parabolic potential 

interactions, revealing their complex evolutionary patterns. 

These studies help to deeply explore the dynamic properties 

of Pearcey beams and open up new possibilities for 

applications in optics. In recent years, researchers have 

conducted in-depth studies on the propagation properties of 

Pearcey beams in different fiber media, which include linear 

media [13], Kerr media [14], parabolic media [15], strongly 

nonlocal media [16], multimode fibers [17], and Gaussian 

potential media [18]. However, studies have yet to be 

reported on the propagation properties of Pearcey-Gaussian 

beams in photorefractive media. 

A photorefractive medium is a medium that is capable of 

producing light-sensitive refractive coefficient changes by 

light-induced periodic changes within the crystal [19]. This 

material provides a good platform for studying the 

propagation of light beams in nonlinear media [20]. 

Photorefractive media have unique effects [21, 22, 23], as the 

photorefractive effect causes the refractive index to change 

when light shines on the medium, allowing control over light 

propagation through phenomena like self-acceleration, 

self-focusing, and self-defocusing. And Pearcey beams, as a 

new type of special beams, have a wide range of prospects for 

practical applications. Therefore, it is of great theoretical 

value to investigate the propagation of Pearcey-Gaussian 

beams in photorefractive media.  

Previously, researchers have discussed the propagate 

properties of different beams in photorefractive media, such 

as Airy beams [24] and initial elliptically polarized Gaussian 

beams [25]. However, studies on the evolutionary properties 

of oscillating solitons of Pearcey-Gaussian beams in 

photorefractive media have yet to be reported. To better 

understand the evolution of the peak power and residual part 

of the detached soliton generated by the Pearcey-Gaussian 

beam in the photorefractive medium, as well as to manipulate 
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the detached soliton more efficiently, this paper analyzes in 

detail the effects of the refractive coefficient of the 

photorefractive medium, the chirp factor and the truncation 

factor of the Pearcey-Gaussian beams, as well as the impact 

of the double-beam spacing of the trailing-in-front versus the 

trailing-in-front on the evolutionary characteristics of the 

detached soliton. The results of this paper provide some 

theoretical basis for applying photorefractive media in 

all-optical control. 

II. THEORETICAL MODEL AND CALCULATION METHOD 

Considering the one-dimensional case, the normalized 

Nonlinear Schrödinger Equation(NLSE) for the propagation 

of a beam along the z-axis in a photorefractive medium under 

the paraxial approximation can be described as [23]: 
2
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Where q(η,ξ) is the normalized complex amplitude envelope 

of the light wave, η = x/x0 and ξ = z/x0
2 are the dimensionless 

transverse and longitudinal coordinates normalized by the 

beam width x0 and the Rayleigh distance kx0
2, respectively, k 

= 2πne/λ0 is the number of waves in the crystal, ne is the 

refractive coefficient of the crystal when it is unperturbed, 

and λ0 is the wavelength of the light wave in free space; 

-βq/(1+|q|2) describes the nonlinear drift of the crystal, with 

the parameter β = (k0x0)2(ne
4reff/2)E0 is the refractive 

coefficient; reff is the effective electro-optical coefficient , and 

E0 is the applied electric field. 

To study the propagation characteristics of a single beam, 

the wave function expression for the initial input 

Pearcey-Gaussian beam is given as follows: 

( ) ( ) ( ) ( )2,0 0 exp - expx Pe x x icx = ，  (2) 

Where σ is the truncation factor, c is the chirp factor, and 

Pe(x,0) is the one-dimensional Pearcey function. The 

expression of Pe(x,0) is as follows: 

( ) ( )4 20 exp /Pe x ds i as s x b
+

−

 = +
 ，  (3) 

Where a is the coefficient of the integral term and b is the 

scaling factor. 

Fig. 1(a) demonstrates the effect of different truncation 

factors σ on the intensity distribution of the Pearcey-Gaussian 

beam. The beam's intensity distribution exhibits an 

asymmetric trailing oscillation feature, in which the central 

peak has the highest energy intensity and multiple attenuated 

side flaps on the left side, forming a long trailing tail. As σ 

increases, the beam gradually converges to a Gaussian-type 

distribution from the multi-peak structure, and the energy of 

the side flaps gradually decreases. This indicates that the 

truncation factor σ can regulate the relative intensity and 

distribution characteristics of the central peak and the side 

flaps. Fig. 1(b) shows the Pearcey-Gaussian beam's peak 

intensity and peak position as a function of the logarithm of 

the truncation factor σ. The black curve in the figure indicates 

the peak intensity, and the red curve indicates the peak 

position. As the logarithmic value of σ increases from -4 to 

-2.5, the peak intensity slowly and gradually decreases from 

6.9 to 6.7. As the logarithmic value of σ increases from -2.5 

to -1.2, the peak intensity accelerates and decreases from 6.7 

to 4.5. At the same time, as the logarithmic value of σ 

increases from -4 to -2.5, the peak position slowly increases 

from -2.2 to -2.1. As the logarithmic value of σ -2.5 increases 

to -1.2, the peak position accelerates from -2.1 to -1.4. The 

results show that when the logarithm of σ is small, the effects 

on the peak power and peak position are minor, while when 

the logarithm of σ is large, the effects are significant. Fig. 1(c) 

demonstrates the impact of different chirp coefficients c on 

the phase distribution of the Pearcey-Gaussian beam. The 

phase of each flap varies continuously from -π to π. The 

positive or negative chirp coefficient determines whether the 

phase change is overtaken or lagged. Positive chirp (blue and 

cyan lines) leads to phase overshooting, while negative chirp 

(red line) leads to phase lag. This phase variation reflects the 

modulation of the phase front within the beam and affects the 

propagation characteristics of the beam, such as focusing 

ability and self-similarity. The properties of phase 

modulation are essential for shaping and controlling the beam 

in optical communication systems and can be used to regulate 

the beam's propagation characteristics and improve the 

system's propagation performance. 

A more complex incident beam should be constructed to 

study the interaction of Pearcey-Gaussian beams. The beam 

is composed of Pearcey-Gaussian beams with leading and 

trailing tails, emitted in parallel [Fig. 2 (a)]. Pe+(x,0) is the 

one-dimensional tails leading Pearcey function. The 

expression is as follows: 

( ) ( )4 20 exp /Pe x ds i as s x b
+

+
−

 = +
 ，  (4) 

Pe-(x,0) is the one-dimensional tails trailing Pearcey function 

[Fig. 2 (b)]. The expression is as follows: 

( ) ( )4 20 exp /Pe x ds i as s x b
+

−
−

 = −
 ，  (5) 

The expression for two Pearcey-Gaussian beams incident in 

parallel is as follows: 
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Where A1 and A2 are the amplitudes of the two 

Pearcey-Gaussian beams with trailing tails in front and 

behind, respectively, A1 = A2 = 1; B is the spacing parameter 

of the two Pearcey-Gaussian beams; φ is the relative phase of 

the two beams, φ = 0 indicates that the two Airy beams are 

in-phase, and φ = π indicates that the two Airy beams are 

in-phase. To better reflect the propagation characteristics of 

the Pearcey-Gaussian beams, the variations of the center of 

gravity xc and the intensity I are chosen for the description. 
2
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The Split-Step Fourier Method (SSFM) is a widely used 

numerical method for solving the NLSE, especially in the 

field of fiber-optic communication for simulating the 

propagation of optical pulses. According to SSFM, the above 

equation is decomposed into a linear part and a nonlinear 

part: 
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At the initial position ξ = 0, the input light field q(0,η) is 

Fourier transformed into the frequency domain: 

ˆ { (0, )}(0, )q q =  (11) 

Where ℱ denotes the Fourier transform operation and ω is the 

frequency variable. Next, in the frequency domain, the linear 

part is half-stepped and the half-step propagation of the linear 

part is computed, by multiplying it by the corresponding 

phase shift factor: 
2
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In this equation △ξ is the step size along the direction of ξ. 

The inverse Fourier transform of the frequency-domain 

light field q̂ (ξ+△ξ/2, η), which has undergone a half-step 

linear process, is returned to the time domain: 

1{ˆ( / 2, ) ( / 2, )}q q     −+  + =  (13) 

Where ℱ-1 denotes the inverse Fourier transform operation. 

In the time domain, the nonlinear part is processed, and the 

light field is adjusted in phase accordingly by directly 

calculating the influence of nonlinear effects: 
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The time-domain light field q(ξ+△ξ, η), which has been 

nonlinearly processed, is again Fourier transformed into the 

frequency domain to obtain: 

ˆ { ( , )}( , )q q    +  = +   (15) 

In the frequency domain, the linear part is again half-stepped 

to complete the calculation of the complete one-step △ξ: 
2
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The above steps are repeated for each step △ξ, iteratively 

computed from ξ = 0 to the final position until the entire 

propagation process is complete. 

III. ANALYSIS OF RESULTS 

A. Propagation properties of Pearcey-Gaussian beam in 

photorefractive media 

    It has been found that photorefractive spatial solitons can 

be formed when diffraction-induced broadening is balanced 

with compression caused by the modulation effect of the 

photorefractive medium. The light beam incident into the 

photorefractive medium will be localized at a certain position, 

thus suppressing the diffraction phenomenon to a certain 

 
Fig. 1 Modulation of Pearcey-Gaussian beam intensity and position by truncation factor and phase distribution by chirp. When β = 4, c = 0, a = b = 1, (a) 

intensity profiles of Pearcey-Gaussian beams with three different truncation factors truncation factor; (b) plot of the relative energy of the main peaks of the 
Pearcey-Gaussian beams vs. their positions as a function of the logarithmic variation of the truncation factors; and (c) plot of the phase distributions of the 

Pearcey-Gaussian beams with different chirp factors c when σ = 0.0005. 

 
Fig. 2 Comparison of intensity distributions for leading and trailing Pearcey-Gaussian beams. (a) Intensity distribution of the Pearcey-Gaussian beam when β 

= 4, c = 0, σ = 0.001, b = 1; (b) Intensity distribution of the Pearcey-Gaussian beam when β = 4, c = 0, σ = 0.001, b = -1. 
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extent and forming a spatial optical soliton. The 

Pearcey-Gaussian beam undergoes a compression phase at 

the beginning of the propagation due to the combined effect 

of diffraction and the nonlinear modulation effect of the 

photorefractive medium, resulting in an increase in the peak 

power and an enhancement of the nonlinear modulation 

effect. The nonlinear effect caused by the photorefractive 

medium leads to the shedding of a soliton at the main peak of 

the Pearcey-Gaussian beam, called the shedding refractive 

breathing soliton. The transverse acceleration of the 

individual flaps of the beam tends to increase further away 

from the main flap, leading to the aggregation of the main 

flap and the side flaps at a propagation distance equal to two. 

Once this position is crossed, the direction of acceleration 

becomes negative along the x-axis, and the beam starts to 

decelerate in the transverse direction. The more outward the 

para flap decelerates, the greater the acceleration, leading to 

the separation of the main flap and the para flap and the 

inversion of the intensity distribution, which eventually 

forms the evolution pattern of focusing flip [Fig. 3(a)]. The 

truncation factor σ is an important parameter affecting a 

Pearcey-Gaussian beam's waveform. A numerical simulation 

study was carried out to investigate the effect of the 

truncation factor on the generation of breathing solitons in 

Pearcey-Gaussian beams. Fig. 3 demonstrates the spatial 

evolution characteristics of the Pearcey-Gaussian beam in the 

photorefractive medium with different values of the 

truncation factor σ under the conditions that the refractive 

coefficient β = 4, the chirp factor c = 0 and the coefficients of 

the integral term a and the scaling factor b are both 1. As seen 

in Fig. 3(a), the initial state beam shape is an asymmetric 

trailing structure with the highest energy of the central peak. 

When the Pearcey-Gaussian beam is propagated in the 

photorefractive medium, a breathing soliton is shed out of the 

 
Fig. 3 Spatial evolution of the Pearcey-Gaussian beams with four different truncation factors when β = 4，c = 0，a = b = 1: (a) σ = 0.0005, (b) σ = 0.005 , (c) 

σ = 0.05, and (d) σ = 0.5; (e) Plot of the evolution of the peak intensity of the Pearcey-Gaussian beams; and (f) Pearcey-Gaussian plot of the evolution of the 

main peak position of the beam: σ = 0.0005 (black line), σ = 0.005 (red line), σ = 0.05 (blue line) and σ = 0.5 (green line). 

 

 
Fig. 4 Spatial evolution of the Pearcey-Gaussian beams with four different chirps when β = 4, σ = 0.0005, and a = b = 1: (a) c = -0.3, (b) c = -0.1, (c) c = 0.1, 

and (d) c = 0.3; (e) Plot of the evolution of the peak intensity of the Pearcey-Gaussian beams; and (f) Pearcey-Gaussian evolution of the central peak position 

of the beam: c = -0.3 (black line), c = -0.1 (red line), c = 0.1 (blue line), and c = 0.3 (green line). 
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central peak, and at the same time, due to its self-recovery 

property, a long trailing tail is formed. As σ increases, the 

beam gradually transitions from a multi-peak structure to a 

single-peak structure close to a Gaussian distribution. At the 

same time, the parapet energy in the trailing region 

significantly decreases and further concentrates in the main 

peak region, with the total energy remaining constant. 

Especially when σ is small [Fig. 3(a)-(d)], the paraflap energy 

distribution is more significant. When σ increases further, the 

beam gradually shows a linear deflection trend, the paraflap 

disappears, the main peak energy reaches the maximum value, 

and the beam loses the lateral self-acceleration property [Fig. 

3(c)-(d)]. This indicates that the beam with a smaller 

truncation factor has a significant trailing effect and 

multi-peak characteristics. In comparison, the larger 

truncation factor weakens these characteristics. It 

concentrates the energy more in the main peak region, 

resulting in a more concentrated and symmetric intensity 

distribution of the beam. In addition, the effect of σ on the 

peak intensity and position is shown in Fig. 3(e)-(f). 

Specifically, when σ is small, the beam produces significant 

focusing at a propagation distance of about 2, and deflection 

occurs after crossing this propagation distance. At this point, 

the deflection angle decreases following σ. When σ is large, 

the focusing property of the beam at the propagation distance 

of 2 is weakened, and a stable deflection state is presented. 

The above characteristics indicate that σ can significantly 

regulate the beam's intensity distribution and affect its 

deflection behavior, providing a feasible strategy for 

realizing beam modulation. 

The chirp factor c is an important characteristic parameter 

of Pearcey-Gaussian beams, and numerical simulations were 

carried out to investigate its effect on the generation of 

breathing solitons. Figs. 4(a)-4(d) demonstrate the spatial 

evolution diagrams of Pearcey-Gaussian beams in 

photorefractive media with different chirp factors c under the 

conditions of β = 4, σ = 0.0005, a = b = 1. The results show 

that the soliton is deflected counterclockwise when c < 0 

[Figs. 4(a)-4(b)], and in the clockwise direction when c > 0 

[Figs. 4(c)-4(d)], and the angle of the deflection increases 

with the increase of | c |. In Fig. 4(e), the beam is focused here 

at a propagation distance of about 2, and the peak intensity 

can reach about 8. However, once it crosses 2, the peak 

intensity decreases sharply and then shows periodic 

fluctuations. In addition, the figure reveals that c has no 

significant effect on the oscillation period and peak intensity 

of the soliton, indicating that the variation of c mainly affects 

the beam deflection rather than the intensity. In Fig. 4(f), the 

overall dispersion of the beam under different chirp factor 

parameters demonstrates the difference in the deflection 

angle of the central peak for different c values. The beam is 

collectively deflected with different intensities at a 

propagation distance of about 2, up to the propagation 

distance of 3. After crossing this position, the beam recovers 

and is deflected again. This deflection phenomenon provides 

the possibility of directional beam modulation in optical 

communication, i.e., by adjusting the chirp factor, precise 

control of the beam deflection direction can be achieved, 

which optimizes the optical device's beam propagation path. 

The refractive coefficient β is a critical characteristic 

parameter of Pearcey-Gaussian beams. Fig. 5 illustrates the 

evolutionary properties of the Pearcey-Gaussian beam in four 

different refractive coefficients β. As shown in Fig. 5(a)-(d), 

the increase of β significantly enhances the peak intensity. 

Correspondingly, the nonlinear effect in the center region 

increases, the photorefractive medium has a more remarkable 

ability to bind the Pearcey-Gaussian beam, and the beam 

width decreases, which accelerates the breathing frequency 

of the beam. Fig. 5(e) quantitatively demonstrates the 

evolutionary trend of the peak intensity, where the beam 

focuses when the propagation distance is about 2. At the same 

time, the smaller β is, the higher the peak intensity is. 

However, when the propagation distance crosses 2, the beam 

is in a regular breathing state, at which time the smaller β is, 

the smaller the peak intensity of the beam is. Fig. 5(f) 

demonstrates the modulation effect of the refractive 

coefficient on the soliton deflection angle, showing that a 

larger β decreases the beam deflection angle and thus 

 
Fig. 5 Spatial evolution of the Pearcey-Gaussian beams with four different refractive index when σ = 0.0005，c = 0 and a = b = 1: (a) β = 2，(b) β = 3，(c) β 

= 4 and (d) β = 5; (e) evolution of the peak intensity of the Pearcey-Gaussian beams; (f) evolution of the central peak position of the Pearcey- Gaussian beam 
main peak position evolution plots: β = 2 (black line), β = 3 (red line), β = 4 (blue line) and β = 5 (green line). 
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enhances the focusing characteristics of the beam. This 

modulation effect of the refractive coefficient provides a 

feasible strategy for the dynamic control of the soliton 

behavior in the photorefractive medium, optimizing the 

periodic evolution of the beam by adjusting β in practical 

applications. 

B. Interaction of symmetric Pearcey-Gaussian beams in 

photorefractive media 

Fig. 6 demonstrates the in-phase and anti-phase 

interactions of a symmetric Pearcey-Gaussian beam with the 

trailing tail in front and the trailing tail in the photorefractive 

medium for different refractive coefficients β. The two beams 

are in-phase and anti-phase. In the in-phase propagation, the 

spacing between the two beams is small. When the 

interaction of the nonlinear focusing effect and the diffraction 

effect of the photorefractive medium reaches equilibrium, an 

attractive force arises between the beams, leading to the 

aggregation of the beams and shedding of a bundle of 

breathing solitons, i.e., the main flap forms a single soliton in 

the bound state [Fig. 6(a1)]. As the β value gradually 

increases, the period of the breathing soliton shortens, and its 

width narrows [Figs. 6(a2)-6(a4)]. In the case of anti-phase 

propagation, repulsive forces are generated between the 

beams, forming a pair of breathing solitons linearly deflected 

in opposite directions at gradually increasing distances [Fig. 

6(b1)]. When the value of β gradually increases, the repulsive 

force is weakened, the deflection angle of the breathing 

soliton decreases, the distance between the two beams of 

breathing solitons decreases, the width decreases, and the 

respiration period is shortened [Fig. 6(b2) - (b4)]. The results 

show that β has a key role in the two-beam interaction, and its 

magnitude directly determines the breathing dynamics and 

width of the soliton and the degree of attraction or repulsion 

between the beams. In the case of in-phase transmission, the 

larger the refractive coefficient, the shorter the breathing 

period, and the narrower the width. In anti-phase 

transmission, the refractive coefficient can control the change 

of repulsive force between the breathing soliton pairs; the 

larger the refractive coefficient, the smaller the deflection 

angle, and the smaller the repulsive force. Therefore, by 

adjusting the refractive coefficient, the interaction mode of 

the beam can be effectively controlled in the photorefractive 

medium, which provides a theoretical basis for realizing the 

 
Fig. 6 Interaction of symmetric Pearcey-Gaussian beams in (a1)-(a4) in-phase and (b1)-(b4) anti-phase configurations at different refractive coefficients (σ = 

0.0005, c = 0, B = 0, a = b = 1): (a1)-(b1) β = 6, (a2)-( b2) β = 8, (a3)-(b3) β = 10, and (a4)-(b4) β = 12. 

 
Fig. 7 Interaction of symmetric Pearcey-Gaussian beams in (a1)-(a4) in-phase and (b1)-(b4) anti-phase configurations at different chirps (B = 0, σ = 0.0005, β 

= 4, a = b = 1): (a1)-(b1) c= -0.4, (a2)-(b2) c = 0, (a3)-(b3) c = 0.4, (a4)-(b4) c = 0.5. 
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transmission control of multiple beams. 

Fig. 7 demonstrates the interaction of two 

Pearcey-Gaussian beams in the photorefractive medium at 

different chirp factors c for both in-phase and anti-phase. 

When positive and negative Pearcey-Gaussian beams are 

propagated in the same phase in the photorefractive medium, 

an attractive force is generated between the beams when c = 0 

and the beam spacing is small. When the attractive force is 

balanced with the photorefractive effect, a beam of breathing 

solitons is shed [Figs. 7(a1)-7(a2)]. When c ≠ 0, the 

equilibrium between the attractive force and the 

photorefractive effect is broken due to the introduction of the 

chirp factor deflection effect, and the breathing soliton 

undergoes folding [Figs. 7(a3)-7(a4)]. The results show that 

the chirp factor c can control the production of an odd number 

of breathing solitons for positive and negative 

Pearcey-Gaussian beams propagated in the same phase. In 

anti-phase propagation, when c = 0, a repulsive force is 

generated between the beams, forming a pair of breathing 

solitons linearly deflected in opposite directions with 

gradually increasing distance [Fig. 7(b2)]. When c < 0, the 

breathing soliton shed by the positive Pearcey-Gaussian light 

on the right is deflected in the counterclockwise direction, 

and the breathing soliton shed by the anti- Pearcey-Gaussian 

light on the left is deflected in the opposite direction, 

resulting in a decrease in the distance between the pairs of 

breathing solitons [Fig. 7(b1)]. When c > 0, the respiratory 

soliton shed by the positive Pearcey-Gaussian light on the 

right is deflected in the clockwise direction, while the 

respiratory soliton shed by the anti- Pearcey-Gaussian light 

on the left is again deflected in the opposite direction, leading 

to an increase in the distance between respiratory soliton 

pairs [Figs. 7(b3)-7(b4)]. It follows that the chirp factor can 

control the variation of the repulsive force between the 

breathing solitons when the double Pierce-Gaussian beam is 

transmitted in antiphase in the photorefractive medium, i.e., 

the chirp factor can control the distance between the 

breathing soliton pairs. When c＜0, the distance gradually 

decreases; when c＞0, the distance gradually increases. The 

phenomenon indicates that the directional quantitative 

regulation of beam solitons can be realized by adjusting the 

chirp factor. This behavior has potential application to beam 

transmission in optical communication, i.e., by controlling 

the chirp factor, the number of beams and interaction modes 

can be changed, thus realizing the precise control of beams. 

Fig. 8 illustrates the interaction of two Pearcey-Gaussian 

beams in the photorefractive medium at different spacings B 

in both in-phase and antiphase. In the in-phase transmission 

[Fig. 8(a1)-(a4)], when the spacing is small, the beams 

produce strong attraction and form narrow breathing solitons, 

and the width of the breathing solitons reaches a minimum at 

B = 2. Subsequently, the spacing is further increased, which 

makes the attraction between the beams gradually weaken, 

and the width of the breathing soliton gradually increases. 

That is, centered on B = 2, the period of the breathing soliton 

is shortened when the value of |B| gradually decreases. In 

anti-phase transmission [Fig. 8(b1)- (b4)], the repulsive force 

between the beams and the nonlinear effect combine to form 

a pair of gradually separated breathing solitons linearly 

deflected in opposite directions [Fig. 8(b2)]. With B = 2 as 

the center of symmetry, when the value of |B| is small, the 

deflection angle is also small; as the spacing increases, the 

repulsive force is enhanced, and the soliton deflection angle 

increases. In particular, the beams in Fig. 8(b4) are first 

attracted upon interaction and then repel each other after 

elastic collisions, mainly due to the larger spacing. The 

results show that during in-phase transmission, centered at B 

= 2, the larger the value of |B|, the longer the period and the 

wider the width of the breathing soliton. In anti-phase 

transmission, with B = 2 as the center of symmetry, the larger 

the value of |B|, the larger the deflection angle of the 

breathing soliton. This phenomenon suggests that B not only 

controls the breathing period and width among the solitons 

but also affects the deflection behavior of the solitons, 

providing the possibility of realizing precise control of the 

beam transmission characteristics by adjusting the beam 

spacing.   

IV. CONCLUSION 

This study numerically investigates the propagation 

dynamics of Pearcey-Gaussian beams in photorefractive 

 

  
Fig. 8 Interaction of dual Pearcey-Gaussian beams in (a1)-(a4) in-phase and (b1)-(b4) anti-phase configurations at different spacings (σ = 0.0005, c = 0, β = 4, 

a = b = 1): (a1)-(b1) B = -2, (a2)-(b2) B = 0, (a3)-(b3) B = 2, and (a4)-(b4) B = 4. 
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media. The results show that the truncation factor of the 

Pearcey-Gaussian beam can regulate the distribution of its 

light field intensity during propagation in photorefractive 

media, and a more significant truncation factor σ 

significantly reduces the parabolic energy and concentrates it 

in the central peak region. The chirp factor determines the 

soliton deflection direction: clockwise for c > 0 and 

counterclockwise for c < 0. The refractive coefficient 

significantly affects space solitons' breathing period and 

deflection behavior. More significant refractive coefficients 

enhance the binding effect of the photorefractive medium, 

which produces higher-frequency breathing cycles and 

reduces the soliton's deflection angle during the beam's 

propagation. In the symmetric Pearcey-Gaussian beams with 

the trailing tail in the front and the trailing tail in the back, the 

refractive coefficient can effectively control the 

characteristics of the soliton in both in-phase and anti-phase 

propagation. In in-phase propagation, the larger the refractive 

coefficient is, the shorter the breathing period and the 

narrower the width of the breathing soliton; in anti-phase 

propagation, the larger the refractive coefficient is, the 

smaller the repulsive force between the solitons and the 

smaller the deflection angle. In addition, the chirp factor can 

change the number of solitons during in-phase propagation, 

while the number remains constant during anti-phase 

propagation. The solitons' period, width, and deflection angle 

can be further controlled by adjusting the beam spacing B. 

For in-phase propagation, centered on B = 2, the larger the 

value of |B|, the longer the period and the wider the width of 

the breathing soliton; for in-phase propagation, centered on B 

= 2, the larger the value of |B|, the larger the deflection angle 

of the breathing soliton. These findings not only deepen the 

understanding of nonlinear beam dynamics in photorefractive 

media but also open avenues for practical applications. By 

precisely tuning the refractive coefficient and chirp factor, 

our results suggest a novel strategy for multi-beam 

manipulation in optical communication systems. For instance, 

adjusting β could enable dynamic control of soliton binding 

strength and transmission stability, while modulating c may 

facilitate directional beam steering or signal routing. Such 

capabilities hold potential for optimizing high-speed data 

transmission, designing reconfigurable photonic devices, or 

developing advanced all-optical switching architectures. 

Future studies could explore experimental validations of 

these theoretical predictions and further integrate 

parameter-tuning mechanisms into practical optical setups. 

These findings provide a solid theoretical foundation for 

applying photorefractive media in the field of all-optical 

control and provide an important reference for studying the 

propagation dynamics of special light beams in complex 

media and the development of applications. 
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