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Abstract—Cancer gene expression data presents substantial
challenges due to its high dimensionality, large sample sizes,
and the need for multi-class classification. These complexities
make efficient analysis difficult, requiring advanced techniques
for meaningful data reduction and accurate classification.
Feature selection (FS) is essential for addressing these
challenges, as it helps minimize the dimensionality of the dataset
while preserving the most crucial features for classification. In
this context, this study introduces an innovative FS method, the
ReliefF-guided binary Pelican Optimization Algorithm
(RGBPOA), designed specifically to handle the complexities of
high-dimensional cancer gene expression data. The key
innovation of RGBPOA lies in integrating the ReliefF guidance
strategy, which adjusts feature selection by weighing features
based on their importance. This strategy allows the algorithm to
effectively identify and retain the most significant features,
while simultaneously eliminating redundant or irrelevant ones,
thus improving classification accuracy. The approach is
validated through a two-phase simulation process. In the first
phase, the original Pelican Optimization Algorithm (POA) is
adapted into its binary form and combined with the ReliefF
strategy. Eight transfer functions are introduced to generate
different algorithm variants, ensuring a broad exploration of
potential configurations. The variant that demonstrates the
highest performance is chosen as the most effective
ReliefF-guided binary POA. In the second phase, this optimized
version of RGBPOA is benchmarked against several other
binary optimization algorithms to gauge its relative
performance. The method is tested across 12 diverse cancer
gene expression datasets, each with varying sample sizes,
feature counts, and class distributions. To ensure the robustness
of the results, statistical tests, including the Friedman test and
Wilcoxon rank-sum test, are applied to validate the statistical
significance of the findings. Ultimately, this highlights
RGBPOA as a powerful and promising tool for feature selection
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in high-dimensional cancer gene expression data, offering
significant potential for improving both the accuracy and
efficiency of classification models in this domain.

Index Terms—Feature Selection, Pelican
Algorithm, ReliefF, Cancer Gene Expression

Optimization

1. INTRODUCTION

R ecent advancements in technology and measurement
techniques have significantly increased the volume of

data, presenting considerable challenges in fields such as
cancer prediction, scientific analysis, and diagnosis. The
exponential growth of data, especially in cancer research, has
highlighted the need for efficient management and
processing of large datasets. Cancer gene expression datasets,
in particular, often involve high-dimensional features that
create a vast search space, complicating both the efficiency
and accuracy of data analysis [1]. These datasets typically
contain numerous irrelevant or redundant features, making it
difficult to extract meaningful insights. As a result, feature
selection (FS) has become a critical step in cancer gene
expression analysis, aimed at identifying the most relevant
genes while discarding the irrelevant ones. Developing
efficient methods that use minimal subsets of genes to
accurately classify samples is crucial for improving the
performance of these analyses [2].

Data mining plays a crucial role in extracting valuable
insights from large datasets, particularly in identifying
important genes within complex biological data. Feature
selection (FS) techniques are essential for reducing the
dimensionality of data, making it more manageable and
allowing for more efficient analysis of high-dimensicnal
datasets [3]. The main goal of FS is to reduce the number of
features while maintaining or improving classification
accuracy. To achieve this, FS methods often rely on binary
optimization approaches, which help streamline the feature
selection process by minimizing the number of features and
simultaneously enhancing classifier performance [4]. In
high-dimensional datasets, where the number of features can
be immense, the search space for finding the optimal set of
features becomes vast and increasingly difficult to navigate
[5] This challenge highlights the need for sophisticated
search strategies that can enhance the efficiency and
effectiveness of the FS process, enabling better identification
of the most relevant features for classification tasks.

A commonly adopted approach to solve this issue involves
the use of heuristic algorithms, which provide practical
solutions within reasonable time and space limits [6].
Although these algorithms do not always guarantee the
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discovery of the optimal solution, they adapt their search
process based on individual or collective experiences,
leading to feasible and effective solutions [7]. Various
heuristic algorithms have been applied to FS problems,
including Atom Search Optimization (ASO) [8], Salp Swarm
Algorithm (SSA) [9], Differential Evolution (DE) [10], Grey
Wolf Optimizer (GWO) [11], Harris Hawk Optimizer (HHO)
[12], and Equalization Optimizer {EQO) [13]. More recently,
novel heuristic algorithms such as the AVOA algorithm [14]
and the Pelican Optimization Algorithm (POA) [15] have
emerged as promising alternatives for FS tasks.

Hybrid filter and wrapper FS methods have gamered
significant attention due to their versatility and effectiveness.
Wang et al. introduced a new framework for nominvasive
blood pressure estimation using single-channel PPG signals,
employing a hybrid filter-wrapper FS method to eliminate
redundant and irrelevant features [16]. Similarly, Got et al.
proposed a hybrid FS approach combining filter and wrapper
techniques, utilizing the Whale Optimization Algorithm
(WOA), a multi-objective algorithm designed to optimize
both stages of feature selection. Their experimental results
showed that this approach could generate smaller feature
subsets without sacrificing classification accuracy [17].
Zhang et al introduced the ReliefF-guided binary
equilibrium optimization algorithm, integrating filter and
wrapper methods to address FS challenges [18]. Despite the
widespread use of the Relief algorithm in conjunction with
swarm intelligence methods and classifiers, these approaches
often suffer from limitations, such as susceptibility to local
optima, which can prevent finding the optimal feature subset
[19]. To overcome these challenges, Zhang et al. developed
an interactive FS algorithm that combines filtering and
wrapping methods, improving the overall efficiency of
feature selection.

In a similar vein, Piri et al. proposed a binary multi-target
filter-wrapper Chimpanzee Optimization-based FS method to
predict the health status of COVID-19 patients [20], while Lu
et al presented a hybrid filter-wrapper method using
information gain and Spearman correlation for feature
evaluation, combined with a water wave optimization
algorithm during the wrapping stage [21]. These hybrid
approaches have proven effective in improving FS efficiency
and classification performance.

In this paper, we propose a novel approach to feature
selection (FS) that leverages a binary version of the Pelican
Optimization Algorithm (POA), guided by the ReliefF
strategy. The ReliefF method 1s incorporated into the POA to
refine the selection process by prioritizing features based on
their relevance to the classification task. This selective
addition and removal of features aim to boost classification
accuracy by focusing on the most impactful features.

To thoroughly assess the effectiveness of the proposed
algorithm, eight distinct transfer functions are employed to
guide the binary conversion process. These transfer functions
help in optimizing how feature weights are mapped to binary
values, which 1s crucial for balancing exploration and
exploitation 1n the optimization process. Extensive
simulation experiments were conducted to evaluate the
performance of wvarious algorithm variants, and the
best-performing variant was then converted into its binary
form.

The final algorithm, which integrates the ReliefF' guidance
strategy with several transfer functions, successfully reduces
the number of selected features while enhancing both the
fitness values and overall classification accuracy. This
feature reduction not only makes the model more
computationally efficient but also minimizes the nisk of
overfitting, particularly in high-dimensional datasets. The
results indicate that this method is highly effective in
mproving feature selection, making it a promising tool for
working with complex data, especially in areas like cancer
gene expression analysis, where the data 1s typically
characterized by many features and relatively few samples.

II. PELICAN OPTIMIZATION ALGORITHM (POA)

The Pelican Optimization Algorithm (POA) is an
mnovative computational technique inspired by the foraging
behaviors of pelicans in nature. Recent research suggests that
POA effectively mimics the dvnamic hunting strategies
employed by these birds when searching for and capturing
prey. The algorithm mirrors the natural balance between
exploration and exploitation that pelicans use in their hunting
process, adapting these two components to enhance the
algorithm's  ability to navigate complex optimization
landscapes. This dynamic adjustment enables POA to
maintain a balance between searching broadly for new
solutions and exploiting known good solutions, resulting in
more efficient and accurate optimization.

In the POA framework, a group of pelicans foraging in the
environment 1s simulated, with each pelican representing a
potential solution to the optimization problem. The collective
behavior of the group, driven by interactions between
individual pelicans, plays a key role in guiding the group
toward the optimal solution. A significant strength of POA
lies 1n its ability to adaptively modify its search parameters
based on the fitness of the solutions encountered. This
self-adjustment creates a robust search mechanism that not
only avoids getting trapped in local optima but also facilitates
convergence toward a global optimal solution, making it
particularly effective in complex optimization tasks.

When compared to traditional optimization algorithms,
POA  offers several advantages, including enhanced
efficiency and solution quality. Its performance in a variety
of optimization problems has made it a competitive and
appealing choice, gaining significant attention in the research
community. The POA's novel approach enriches the field of
swarm intelligence and opens up new possibilities for its
application in diverse areas such as engineering, data analysis,
machine learning, and beyond. As the algorithm continues to
evolve, it 1s expected to offer even more effective solutions
across a broad range of domains, further advancing the
capabilities of optimization techniques.

During the exploration phase of POA, pelicans identify the
location of their prey and move toward that area. The
movement is modeled through an equation, represented in Eq.
(1), which simulates how the pelicans adjust their trajectory
based on the location of the prey. This phase is critical as it
ensures the algorithm explores the search space thoroughly,
increasing the likelihood of finding global optima.

ol [xl-”,- + rand - (pj,- —1I- xl-”,-) F,<F;
"} x;; +rand - (xilj - pj)

M

else
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where, [ 1s a random number that can take the value of either
1 or 2.

In the POA, if the objective function value at the new
position shows improvement, the pelican's position is
updated accordingly. This update process is represented by
fa @ Pl @P1

X, = {Xi FI' < F, o
X; else

In the developmental phase, the prey-hunting behavior of
the pelicans 1s modeled to enhance the local search and
exploration capabilities of the POA. This process is
mathematically represented by Eq. (3), where R=0.2.

t
xf}z =x;+R- (1 _F) (2 rand — 1) x;;  (3)

At this stage, valid updates are applied to either accept or
reject the new positions of the pelicans. This process is
represented by Eq. (4).

P2 pr2 .
Xi:[X‘ FP? < F, @
X; else
III. RELIEFF GUIDED BINARY POA BASED TO S3CLVE
FEATURE SELECTION

A. Transfer Functions

A widely adopted method for converting continuous
optimization problems into discrete ones 1s through the use of
transfer functions. These functions are instrumental in
transforming continuous search spaces into discrete sets,
enabling more efficient and effective problem-solving,
Specifically, in feature selection (F3) tasks, transfer functions
play a pivotal role in evaluating and quantifying the relevance
or mmportance of different features. By mapping the
continuous feature values into a more interpretable and
manageable scale, transfer functions help streamline the
feature selection process, making it easier to identify the most
critical features that contribute to the overall classification
accuracy.

Transter functions, especially the commonly used
S-shaped and V-shaped variants, have been extensively
studied in the literature for their ability to facilitate this
transformation. These functions are particularly valuable in
feature selection because they allow for a clear distinction
between relevant and irrelevant features, which is crucial for
improving the performance of machine learning algorithms.
S-shaped transfer functions are known for their smooth and
gradual mapping, making them suitable for problems where
features exhibit a continuous but nonlinear relationship with
the target variable. On the other hand, V-shaped functions
provide a more abrupt transition, which can be useful when
features have a more discrete or binary relevance to the
classification task.

In this research, we examined eight different transfer
functions, categorized into two groups: S and V-shaped.
These functions were specifically selected to assess their
performance in the context of feature selection (FS) tasks. By
integrating these transfer functions into the FS process and
running simulations, we aimed to understand how they affect
both the efficiency and accuracy of the algorithm. The
outcomes of these simulations offer crucial insights into the
role of various transfer functions in the feature selection
process, highlighting theirr potential to enhance the

identification of relevant features and improve the overall
effectiveness of FS methods. The first operation involves
initializing the population and changing the input quantity to
binary encoding, as shown below:

yi — {1, if rand > 0.5

i = 0, else d=12,.N,d=12..D (%

The following discussion delves into the process of
transforming the continuous Pelican Optimization Algorithm
{(POA) into its binary form by applying S-type and V-type
transfer functions. The S-shaped transfer function, which is
characterized by its Sigmoid curve, provides a smooth
transition between low and high feature importance levels.
This type of transfer function is particularly effective in
feature selection (FS) tasks, as it enables the algorithm to
dynamically adjust the selection of features based on their
relevance, while maintaining stability. The S-type transfer
function, as represented in Eq. (6), is a key component of the
transfer function family, and it plays a central role in updating
the concentration of particles (or potential solutions) by
utilizing probability values derived from Eq. (7).

One of the primary advantages of the S-shaped transfer
function is its ability to place greater emphasis on features
with moderate importance, while simultaneously reducing
the influence of extreme values. This characteristic makes the
function highly beneficial in scenarios where the dataset
includes noisy or irrelevant features, as it prevents extreme
values from disproportionately affecting the feature selection
process. By providing a gradual, controlled response to
variations 1n feature relevance, the S-shaped function
enhances the overall stability of the FS process and ensures a
more balanced and effective selection of features. This
approach 1s particularly useful in high-dimensional data,
where many features may be irrelevant or noisy.

Furthermore, the integration of the S-shaped into POA
conversion process optimizes the feature selection
mechanism, enabling a more robust approach for handling
complex optimization tasks. In addition to the S-shaped, the
V-shaped also plays a critical role in the binary conversion of
POA. Together, these transfer functions provide a versatile
framework for effectively managing feature selection,
enhancing both the accuracy and efficiency of the algorithm.

Table I presents the mathematical formulas for both the S
and V-shaped transfer functions, while Fig. 1 illustrates their
respective schematics, offering a visual representation of
how these functions operate within the binary POA
framework. By incorporating these transfer functions, the
transformation of POA into its binary form 1s refined, leading
to a more powerful and effective FS mechanism that is
capable of handling the complexities inherent in real-world
datasets.

(%) =—=3 (©)

1+e
" 1, If rand < T(Xf)
X = 0 7 d N
, If rand = T(Xt)

The V-shaped transfer function offers a more abrupt
transition compared to its S-shaped counterpart, making it
highly effective in prioritizing features that meet a specific
threshold of importance while discarding those that do not
meet the criteria. This sharp distinction between relevant and
irrelevant features is particularly advantageous in situations
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where decisive feature differentiation is crucial. The
V-shaped function quickly converges on the most pertinent
features, streamlining the selection process by efficiently
focusing on those that contribute most to the overall
optimization task. Its binary-like response is especially useful
when working with high-dimensional datasets, as it
accelerates the dimensionality reduction process by filtering
out less relevant or redundant features.

The V-shaped transfer function's sharp transition ensures
that only the most significant features are selected, which is
critical when dealing with large-scale datasets where
irrelevant or noisy data could otherwise degrade the
performance of the optimization algorithm. By employing
the mathematical framework provided by Eq. (6) and Eq. (7),
continuous variables are effectively mapped to binary
variables, enabling a smooth conversion from a continuous
search space to a discrete one. A prominent example of a
V-type transfer function is the hyperbolic tangent function,
which exhibits the desired binary-like behavior, making it
particularly suitable for feature selection tasks.

Furthermore, the wupdate process for the particle
concentration is governed by probability values calculated
from Eq. (7). This mechanism ensures that the algorithm
remains focused on the most pertinent features by iteratively
refining the feature subset throughout the optimization. By
integrating the sharp transition behavior of the V-shaped
transfer function with this dynamic updating process, the
algorithm’s performance is significantly improved. This
combination enhances the overall efficiency of the feature
selection process, making it more capable of handling
high-dimensional datasets. As a result, the approach not only
helps in identifying the most important features but also
ensures that the selection process is both swift and precise,
making it well-suited for complex optimization challenges.

T(x¢) = |tanh(x?)| (8)
o = —Xx¢, If rand < T(X{)
) x4 1f rand > T(x9)

B. ReliefFF Guided Strategy

The ReliefF algorithm is a well-established filtering
feature selection (FS) method that assigns a weight to each
feature, with these weights serving as indicators of feature
importance. By evaluating these weights, it becomes possible
to rank features according to their relevance to the
classification task. However, the ReliefF algorithm has
limitations, particularly due to the independence of
classification algorithms, which makes it challenging to
capture the combinatorial interactions between features. This
limitation can restrict the algorithm’s effectiveness,
especially when dealing with complex datasets in future
applications. In order to address this issue, a ReliefF-guided
strategy has been introduced to enhance the traditional
ReliefF algorithm. This strategy aims to incorporate features
with higher weights and eliminate those with lower weights,
which not only improves classification accuracy but also
reduces redundancy, thereby enhancing the performance of
feature selection.

The ReliefF-guided approach utilizes a bootstrap strategy
that involves two primary processes: feature addition and
feature removal. Initially, a weight vector is constructed,
which contains the weights for all features calculated through

%)

the ReliefF algorithm. This weight vector serves as the
foundation for evaluating the importance of features. During
the feature selection phase, a binary position vector is
generated using the Particle Optimization Algorithm (POA),
which reflects the current selection of features. The weights
of the unselected features in the binary vector are then
computed according to a specified equation shown in Eq.
(10). To minimize errors during this update process, the
feature corresponding to the highest median weight in the
weight vector is assigned a high probability of inclusion,
while the feature with the second highest median weight is
assigned a slightly lower probability.
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Fig. 1 S-shaped and V-shaped transfer functions.

TABLE I. S-SHAPED AND V-SHAPED TRANSFER FUNCTIONS

S-shaped and V-shaped Transfer Functions

Function ID Equations
1
S1 b .
(x) 1 +16.72x
S2 T(x) = ———
© 1+e*
83 T(x) =——-=x
1472
S4 T(x) = =
147
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V2 T(x) = |tanh(x)|
x
V3 ) = | —lI
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The newly generated particle, which includes the selected
feature, is then evaluated against the original particle. If the
new particle results in a lower fitness value, the feature is
retained, and the guided feature addition process continues as
described mn Eq. (11). This iterative approach ensures that
features with greater relevance are gradually incorporated
into the solution, leading to enhanced classification accuracy
and overall performance.

Conversely, the feature removal process focuses on
reducing the dimensionality of the feature set while striving
to maintain or even enhance classification accuracy. This
process mirrors the feature addition step, with the weights of
unselected features in the binary vector being recalculated
according to Eq. (12). To prevent issues related to feature
dependency and ensure smooth updates, the feature with the
lowest median weight is assigned a high probability of being
excluded, while the feature with the second lowest weight is
given a slightly lower exclusion probability. After generating
the updated particle, it is compared to the original particle. If
the new particle’s fitness value is equal to or better than that
of the original, the removed features are retained in the subset.
However, if the fitness value of the updated particle is worse,
the decision to exclude the features 1s confirmed, and those
features are permanently removed from the subset. This
feature removal procedure is formalized in Eq. (13), ensuring
that the feature selection process eliminates irrelevant or
redundant features and refines the feature set.

The integration of the ReliefF-guided strategy with the
feature addition and removal processes creates a more
adaptable and efficient feature selection approach. By
carefully balancing the inclusion and exclusion of features
based on their relevance, this method not only improves
classification performance but also simplifies the feature set,
making it particularly advantageous when dealing with
high-dimensional data. This approach enhances the
robustness of the feature selection process, ensuring that only
the most important features remain for further analysis,
ultimately leading to a more effective and accurate model.

Vuw = }?i ® Vweight (10)
1
Xi ind max = 1. d 2=
X, = (1.n EX (rnax] (Vo)) ran ? an
Xi(indeXpao,,y) = 1, rand < 3
sz = Xi ® Vweight (12)
1
X(indeXcpimqv,,y) = 0, rand = -
X, = | (min1(Vsyw)) 3 a3
Xi(indeXpimaqv_yy) = 0, rand < 3

C. K-Nearest Neighbor Classifier (KNN)

K-Nearest Neighbors (KNN) is a fundamental and
widely-used supervised learning algorithm known for its
simplicity and versatility in solving both classification and
regression tasks. The core idea of KINN is based on the
assumption that similar data points are likely to have the
same class or value. Essentially, it predicts the outcome of a
new data point by examining the outcomes of its closest
neighbors, making it particularly useful when there is a
notion of locality in the data.

To apply KNN, the process begins with a labeled dataset,
where each data point consists of feature values and a

corresponding class label or continuous value. The first step
18 to choose the value of K, which determines how many
neighboring data points will be considered when making
predictions. This parameter is crucial as it affects the
sensitivity of the model; a smaller X might make the model
too sensitive to noise, while a larger K could oversmooth the
predictions, leading to a loss of detail in the results.

After selecting K, the algorithm computes the distance
between the new data point and every other point in the
training set. The most commonly used distance metrics
mclude Euclidean, Manhattan, and Minkowski distances,
which differ in how they calculate the "closeness" between
points. Once the distances are computed, the algorithm
identifies the K closest neighbors, which are the training data
points with the smallest distances to the new point.

For classification tasks, the algorithm uses a majority
voting system, where the class label that appears most
frequently among the K neighbors is assigned to the new data
point. In regression tasks, the prediction is typically made by
averaging the values of the K closest neighbors, or using a
weighted average where closer neighbors have more
influence on the final prediction.

One of the key strengths of KNN 1is its ease of
understanding and implementation, making it a popular
choice for simple machine learning tasks. However, KINN
can become computationally expensive, particularly when
dealing with large datasets. This is because the algorithm
must compute distances to all points in the dataset for every
new prediction. To address this issue, techniques like
dimensionality reduction, data indexing methods such as
KD-Trees, or approximations like Ball Trees are often used
to speed up the distance calculations and improve efficiency.

Despite its potential drawbacks, particularly in terms of
computational cost, KNI remains one of the most intuitive
and widely used algorithms in machine learning, particularly
when the data is not too large or complex. Its ability to adapt
to new data without needing to retrain a model makes it
particularly valuable in many real-world applications.

D. Fitness Function

In this experiment, the primary goal 1s to focus on
minimizing classification errors, rather than merely
maximizing accuracy. While reducing the number of features
1s 1mportant for improving computational efficiency and
reducing the risk of over-fitting, the main objective is to
ensure that the selected features contribute meaningfully to
the model's predictive power. It is understood that a smaller
feature set could potentially increase classification errors if
critical features are removed, either due to their relevance or
importance. Therefore, the feature selection process aims to
strike a balance between dimensionality reduction and
maintaining or improving classification performance, with a
strong emphasis on reducing classification errors.

This approach stresses the need to not only assess features
based on their individual relevance but also to consider their
collective impact on the overall classification error. By
evaluating the contribution of each feature, the objective is to
improve the model's robustness and ability to generalize to
new, unseen data. This is especially crucial in high-
dimensional datasets where irrelevant, redundant, or noisy
features can severely degrade performance. Consequently,
the feature selection process seeks to retain only the most
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informative features, boosting the model's capacity to
generalize and minimizing over-fitting risks.

When working with high-dimensional data, the challenge
lies in distinguishing between features that genuinely aid
classification and those that introduce noise. By optimizing
for classification error instead of solely reducing feature
count, the approach ensures that the model becomes both
computationally efficient and highly accurate. This process
not only enhances the model” s overall predictive power but
also enables it to handle the complexity of large datasets
more effectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we detail the experimental setup and
thoroughly analyze the results of our proposed feature
selection algorithm. To evaluate its performance, we
conducted two sets of control experiments. The first set
compares several binary variants of the enhanced Pelican
Optimization Algorithm (POA) using cancer gene expression
datasets to identify the most effective version. After
determining the best variant, it is then compared to six
established optimization algorithms to assess its relative
performance.

Sub-section A provides an extensive description of the
cancer gene expression datasets, including essential attributes
such as the sample size, number of features, and class
distribution. The specific configuration of the experiments,
including the algorithm parameters, are outlined in Sub-
section B. Sub-section C describes the performance metrics
used to evaluate the effectiveness of our model, ensuring a
comprehensive and rigorous assessment. In Sub-section D,

Divide the test set and training set

Initialize population

v

KNN calculates fitness value

A 4

the results are analyzed in depth, comparing them to baseline
feature selection methods. This comparison allows us to
highlight the strengths and weaknesses of each approach,
providing a clearer understanding of the advantages of the
proposed algorithm over traditional methods. By evaluating
the performance relative to other established algorithms, we
can assess the practical applicability of the proposed method
in gene expression data analysis. Additionally, the refined
feature selection framework based on the enhanced POA
algorithm is illustrated in Fig. 2. This figure offers a clear,
visual representation of the methodology, demonstrating how
the approach is implemented in practice and how the various
components interact to achieve efficient feature selection.

A. Cancer Gene Expression Datasets

To assess the performance and effectiveness of the
proposed feature selection (FS) algorithm applied to cancer
gene expression data, we conducted an in-depth analysis
using twelve diverse, high-dimensional datasets [23]. These
datasets were carefully chosen to represent a wide range of
scenarios, ensuring a thorough evaluation of the algorithm” s
capabilities. Table II offers a detailed summary of each
dataset, highlighting key characteristics such as sample size,
feature count, and class distribution. The sample sizes in
these datasets range from 37 to 248, while the number of
features varies between 1203 and 4553. In addition, the
datasets contain between 12 distinct classes, further
emphasizing the complexity and variety of the data being
analyzed. This diversity in dataset attributes allows for a
robust and comprehensive evaluation of the proposed FS
algorithm, ensuring that it is tested under a range of
conditions typical in cancer gene expression data.
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Fig. 2 Flowchart of enhanced POA for feature selection.
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B. FExperimental Parameter Setlings

To evaluate the performance of the proposed method,
statistical metrics are calculated based on 30 independent
experimental runs. The average of these results is used to
represent the final performance of the algorithm. In this
experimental setup, the population size 1s consistently set at
30, with a maximum iteration count of 100 to control
computational resources and convergence time.

The search space 1s defined by the total number of features,
ensuring that the algorithm explores a high-dimensional
space in line with the dataset's complexity. Table IIT provides
a comprehensive summary of the key parameters used in the
experiment, detailing their specific values and explaining
how these choices contribute to the overall configuration of
the experiment. This table serves as a valuable reference for
understanding the experimental framework and allows for
replication or further adjustments in similar studies.

C. Feature Selection Performance Evaluaiion Criteria

Metrics are essential tools for evaluating and
understanding the performance of feature selection (FS)
algorithms. They help quantify how well the selected features
contribute to the model ability to classify or predict. These
metrics are calculated to provide a holistic view of the feature
selection process. Specifically, the average classification
accuracy, which is calculated using Eq. (14), indicates how
accurately the selected features classify the data. The mean
number of selected features, as calculated in Eq. (15), reveals
how many features are chosen by the algorithm, reflecting its

ability to simplify the model without sacrificing performance.

The average fitness value shown in Hq. (16) evaluates the
quality of the feature subset based on the classification
accuracy and feature count, providing an overall measure of
algorithm efficiency. Lastly, the standard deviation shown in
Eq. (17) is used to assess the stability of the feature selection
process, helping identify how consistently the algorithm
selects high-quality feature subsets across different runs.
Together, these metrics offer a comprehensive assessment of
both the performance and reliability of the FS algorithm,
allowing for a more nuanced understanding of its strengths
and weaknesses.

Mean_accuracy = %221 Accuracy; a7
Mean_feature = %221 feature; (18)
Mean_fitness = ;—021.3:01 fitness; (19)

where, Accuracy is the classification accuracy.

Std _fitness = J%E (fitness; — Mean_fitness )? (20)

D. Comparison and Discussion of Simulation Results

To comprehensively evaluate the performance of the
proposed improved algorithm, the experimental process was
structured in three distinct phases, each aimed at refining and
optimizing the algorithm for feature selection tasks.

In the first step, the focus was on evaluating the
effectiveness of the individual strategies integrated into the
algorithm specifically, the African vulture satiety rate
strategy and the mathematical distribution strategy. These
strategies were tested independently to determine which one

contributed most significantly to enhancing the algorithm” s
overall performance. After running simulations and
analyzing the results, the strategy demonstrating the best
performance was selected for further incorporation into the
algorithm. This step allowed for a focused approach to
refining the optimization framework before combining
strategies.

The second step imvolved transforming the best-
performing algorithm from the first phase into its binary
version to address the feature selection problem. At this stage,
the RehefF guidance strategy, which helps to prioritize
relevant features based on their significance, was
incorporated to further enhance the algorithm's efficiency.
Additionally, a set of eight transfer functions, four S-shaped
and four V-shaped, was introduced to facilitate the binary
conversion process. These transfer functions allowed for a
more precise mapping of continuous values to binary
decisions, ensuring that the final selected features were both
relevant and optimal. From this process, the improved
version of the algorithm, named RGBPOA (ReliefF-guided
Binary Pelican Optimization Algorithm), was chosen as the
most effective for feature selection tasks.

In the final phase of the evaluation, RGBPOA was
benchmarked against six other widely recognized algorithms
from existing literature to assess its relative performance. To
maintain fairness and ensure an unbiased comparison, all
algorithms were implemented in their binary forms,
providing a consistent framework for evaluating their
effectiveness in feature selection tasks.

TABLE II. DETATLED INFORMATION ON 12 CANCER GENE EXPRESSION

DATASETS
Number Datasets Subject Genes Classes
D(1) Armstrong-v2 62 2093 3
D(2) Bhattacharjee 203 1543 5
D(3) Dyrskjor 40 1203 3
D) Garber 66 4553 4
D(5) Laiho 37 2202 2
D(6) Lapointe-v2 110 2496 4
D(7) Nutt-v2 50 1377 4
D(8) Ramaswamy 150 1363 14
D(9) Risinger 42 1771 4
Do) Su 174 1571 10
D(11) Tomlins-v1 92 1288 4
D(12) Yeoh-v2 248 2526 6
TaBLE lIl. ALGORITHM PARAMETERS
Algorithm Parameters Values
50
ASO
0.2
SSA Y ]
DE CR 0.9
GWO a [2.0]
al 2
EO a2 1
GP 0.5
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These metrics were chosen to provide a comprehensive
view of each algorithm strengths, highlighting both their
performance and resource usage. The purpose of this detailed
comparison was to thoroughly assess the advantages and
limitations of RGBPOA, validating its superior performance
across various benchmark datasets. By examining these key
metrics, we were able to ensure that RGBPOA's effectiveness
was consistently demonstrated, offering clear evidence of its
advantages over the other tested algorithms.

By conducting this multi-step experimental process, the
study aimed not only to refine the RGBPOA algorithm but
also to ensure that it provided significant improvements over
existing optimization algorithms for feature selection. The
results obtained from this approach provide compelling
evidence of the effectiveness of RGBPOA, positioning it as a
powerful tool for high-dimensional data analysis.

1) ReliefF Guided Novel Binary POA to Solve Feature
Selection Problem

RGBPOA was introduced by incorporating a ReliefF-
guided strategy to significantly improve its performance in
feature selection tasks. To determine the most effective
binary version of POA for feature selection, eight different
variants of RGBPOA were developed, each leveraging both
S-type and V-type transfer functions. These variants were
rigorously tested and compared across multiple datasets to
evaluate their performance.

The outcomes of these simulations, which are detailed in
Tables TV-VII, offer a detailed analysis of the algorithm's
effectiveness, with the top-performing results clearly
highlighted in bold for easy identification. These tables
provide insight into how each variant performed under
various conditions, showcasing the strengths and potential
areas of improvement for each configuration. To complement
this, Fig. 3 displays the convergence curves of the different
optimization algorithms, allowing for a visual comparison of
their performance trends over time. This graphical
representation makes it easier to track the progress and
stability of each algorithm throughout the optimization
process, providing valuable insights into their behavior and
efficiency.

Table IV summarizes the mean and standard deviation of
the fitness values achieved by each vanant. Among these,
RGBPOAS?2 achieved the highest average fitness across
three different datasets, closely followed by RGBPOAS4,
RGBPOAV1, RGBPOAV2, and RGBPOAV3, which
performed well in two datasets. RGBPOAV], noted for its
lower standard deviation in fitness values, excelled in four
datasets, with RGBPOAS4 and RGBPOAV?2 trailing closely,
performing best in two datasets each. Analyzing both the
average fitness values and their standard deviations,
RGBPOAV?2 emerged as the most consistent performer.
Although it wasn't the top performer in every individual
dataset, RGBPOAV2 demonstrated the best overall stability
and yielded the most reliable comprehensive results.

In Table V, the average classification accuracy for each
algorithm is presented, showing that RGBPOAV2
outperformed all other algorithms in three datasets, earning
the highest overall ranking. Additionally, RGBPOAS2 and
RGBPOAV?2 achieved the highest classification accuracy in
three datasets each. Table VII reveals that RGBPOAS2 had a

clear advantage in terms of execution time, making it a
suitable choice for scenarios where computational efficiency
is a priority.

To visually compare the performance of the various binary
POA variants, line stacked plots of the average classification
accuracy rankings was plotted. This graph offers a clearer
and more intuitive representation of the differences between
the algorithms. Fig. 4 presents the average fitness value
rankings for each algorithm after 30 independent runs. The
higher the ranking of the variant, the smaller the area of the
graph represented. From the simulation results, it 1s clear that
while RGBPOAS?2 performed best on many datasets, its
results were more erratic in certain cases. In contrast,
RGBPOAV2 demonstrated robust convergence across the
majority of datasets, ranking in the top 4 of 10 datasets and in
the top 3 of 7 datasets. This consistent performance suggests
that RGBPOAV2 enhances both the exploration and
exploitation capabilities of the algorithm, while retaining the
key strengths of the original POA.

In conclusion, RGBPOAV2 emerged as the most effective
binary version of the algorithm, offering a well-rounded
balance between classification accuracy, feature reduction,
and computational efficiency. As a result, RGBPOA with the
V2 transfer function will be utilized for the control
experiments in the subsequent sections of this paper. This
choice ensures that the experiments are based on the most
reliable and performant version of the algorithm, providing a
solid foundation for further analysis and comparison.

2y RGBPOA and Other Binary Intelligent Optimization
Algorithms for Cancer Gene Expression Data Feature
Selection Problem

To thoroughly assess the effectiveness and benefits of the
proposed RGBPOA for feature selection, an extensive
comparison was conducted against several established
benchmark algorithms, including BPOA, BASO, BSSA,
BDE, BGWO, BHHO and BEO. This comparison spanned
twelve different cancer gene expression datasets, ensuring
that the results were both comprehensive and applicable
across a variety of real-world scenarios.

Tables VIII through XI provide a detailed summary of the
performance of the eight algorithms across these metrics. The
fitness value, which combines both the classification
accuracy and the number of features selected, was used as a
key indicator of the overall quality of the feature subset
chosen by each algorithm. This approach allows for a more
balanced assessment, as it takes into account not only the
effectiveness of the classification but also the efficiency of
the feature selection process. By emploving these metrics, the
analysis offers a holistic view of how each algorithm
performs in feature selection tasks, providing valuable
insights into their relative strengths and weaknesses.

Table VIII reveals that RGBPOA consistently achieves the
lowest average fitness value across all datasets, indicating its
superior performance relative to the other algorithms. This
result underscores RGBPOA’s ability to effectively identify
high-quality feature subsets that contribute to improved
classification accuracy. Moreover, RGBPOA demonstrates
remarkable stability, as evidenced by its significantly lower
standard deviation in fitness values across most datasets. This
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stability highlights the algorithm’ s reliability in consistently
selecting optimal features, regardless of dataset variations.

In contrast, the basic POA (without the enhancements
incorporated into RGBPOA) exhibits the weakest
performance overall, reinforcing the positive impact of the
proposed improvements. The enhanced strategy in RGBPOA
leads to a more refined feature selection process, helping it
outperform POA and other benchmark algorithms in both
fitness and stability. These results demonstrate that the
integration of ReliefF guidance and binary optimization
techniques in RGBPOA provides substantial benefits over
traditional methods.

In Table IX, the average classification accuracy further
solidifies the superiority of RGBPOA. It outperforms all
other swarm intelligence optimization algorithms across each
dataset, presenting compelling evidence of its effectiveness
in accurately classifying cancer gene expression data.
Additionally, in Table X, RGBPOA selects the fewest
features across all datasets, showcasing its exceptional ability
to reduce dimension without compromising classification
performance. This makes RGBPOA an attractive option for
feature selection in high-dimensional data, where reducing
the number of features can significantly reduce computation
time and increase model interpretability.

Table XI provides an overview of the average
computational time required by RGBPOA in comparison to
the other algorithms. While the incorporation of advanced
strategies such as the African condor satiety rate,
mathematical distribution strategy, and ReliefF guidance
strategy contributes to the enhanced performance of
RGBPOA, it also results in a longer execution time compared
to the other algorithms. This trade-off between performance
and computational cost is typical in optimization algorithms
that employ more complex strategies, but the results show
that the increased execution time is justified by the superior
feature selection outcomes.

Fig. 5-6 further illustrate the performance differences
between RGBPOA and the other algorithms. Fig. 5 presents
the average fitness convergence curves, with the number of
iterations on the horizontal axis and the average fitness values
derived from thirty independent runs on the vertical axis.
These results clearly demonstrate that RGBPOA consistently
achieves significantly lower average fitness values across all
datasets, which highlights its superior convergence rate and
its ability to avoid local optima more effectively than the
other algorithms.
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Fig. 6 shows the in-line stacked plot of the average
classification accuracy ranking, where the smaller shaded
area in the corresponding graph for each algorithm represents
its higher ranking. Among them, RGBPOA is the smallest in
area, indicating that it performs very well on all datasets.
Collectively, the results from these experiments provide
compelling evidence that RGBPOA outperforms other
algorithms in several critical aspects, including average
fitness, classification accuracy, and the number of selected
features. These outcomes strongly support the effectiveness
of RGBPOA in tackling the inherent challenges of feature
selection, particularly in complex, high-dimensional datasets
such as those encountered in cancer gene expression analysis.
The findings demonstrate that RGBPOA not only surpasses
traditional swarm intelligence-based algorithms but also
exhibits exceptional performance when balancing accuracy
with computational efficiency. This unique combination
makes it particularly well-suited for feature selection tasks,
where both the quality of the feature subset and the
processing time are crucial. Given its ability to manage these
competing demands effectively, RGBPOA emerges as a
highly promising solution for real-world data analysis
challenges, offering both high classification performance and
practical applicability across diverse and intricate datasets.

3) Wilcoxon Test Results Analysis

Table XII assesses the effectiveness of the proposed
method through a rigorous p-value analysis, utilizing the
Wilcoxon rank sum test to compare the performance of
RGBPOA with that of seven alternative binary intelligent
optimization algorithms. This statistical test is specifically
designed to determine whether the differences in results
between RGBPOA and the other algorithms are statistically
significant.

The results presented in Table XII show that the p-values
for all comparisons between RGBPOA and the alternative
algorithms fall well below the 0.05 threshold. This indicates
that the performance differences observed are not due to
random variation but are statistically significant. This robust
statistical evidence further validates the efficacy of RGBPOA,
demonstrating that it outperforms the other binary
optimization algorithms in a consistent and meaningful way
across the datasets tested. This statistical confirmation
strengthens the case for adopting RGBPOA in real-world
feature selection tasks, providing confidence in its ability to
deliver superior results in complex data analysis problems.
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Fig. 3 Convergence curves of binary POA variants on twelve datasets.
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Fig. 6 In-line stacked plots of RGBPOA and other algorithms on cancer gene expression datasets.

(h) RGBPOA

TABLE IV. AVERAGE FITNESS AND STANDARD DEVIATION OF ACCURACY FOR DIFFERENT RGBPOA

Dataset Measure Sl S2 S3 S4 \%! \ V3 \Z)
D) AVG 0.0324 0.0454 0.0337 0.0407 0.0305 0.0225 0.0282 0.0284
STD 0.0195 0.0012 0.0169 0.0105 0.0202 0.0204 0.0190 0.0207
DQ) AVG 0.0997 0.1095 0.0936 0.0934 0.1034 0.0951 0.0976 0.0836
STD 0.0314 0.0246 0.0276 0.0329 0.0226 0.0269 0.0259 0.0281
DG) AVG 0.1781 0.1796 0.1776 0.1826 0.1764 0.1763 0.1761 0.1862
STD 0.0298 0.0349 0.0298 0.0311 0.0245 0.0298 0.0298 0.0359
@) AVG 0.0458 0.0314 0.0551 0.0615 0.0473 0.0605 0.0569 0.0435
STD 0.0332 0.0332 0.0293 0.0323 0.0242 0.0242 0.0271 0.0332
DG) AVG 0.0412 0.0516 0.0464 0.0316 0.0394 0.0335 0.0478 0.0417
STD 0.0293 0.0305 0.0274 0.0297 0.0293 0.0299 0.0259 0.0285
D(6) AVG 0.0345 0.0262 0.0339 0.0302 0.0186 0.0149 0.0218 0.0322
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STD 0.0355 0.0333 0.0356 0.0346 0.0291 0.0259 0.0314 0.0355
DN AVG 0.1566 0.2227 0.1581 0.1955 0.1510 0.1587 0.1646 01721
STD 0.0473 0.0472 0.0392 0.0524 0.0546 0.0602 0.0454 0.0559
AVG 0.2001 0.2071 0.2036 0.1869 0.1859 0.1858 0.1609 0.1771
DE®) STD 0.0484 0.0499 0.0415 0.0432 0.0574 0.0508 0.0529 0.0592
AVG 0.1011 0.0297 0.1005 0.0755 0.0787 0.0703 0.0701 0.0905
D@ STD 0.0671 0.0388 0.0670 0.0484 0.0650 0.0633 0.0633 0.0565
AVG 0.0211 0.0570 0.0329 0.0104 0.0316 0.0340 0.0338 0.0187
Do STD 0.0233 0.0195 0.0340 0.0152 0.0299 0.0373 0.0296 0.0233
B AVG 0.0757 0.0439 0.0716 0.0750 0.0692 0.0692 0.0701 0.0640
STD 0.0053 0.0116 0.0097 0.0053 0.0105 0.0129 0.0097 0.0142
DY) AVG 0.0211 0.0375 0.0229 0.0232 0.0147 0.0220 0.0323 0.0190
STD 0.0232 0.0291 0.0242 0.0242 0.0196 0.0240 0.0253 0.0235
(+/=/—) 0/0/12 3/0/9 0/0/12 2/0/10 2/0/10 2/0/10 2/0/10 1/0/11
Friedman rank 5.08 5.75 542 5.00 346 329 425 375
Rank 6 8 7 5 2 1 4 3
TABLE V. AVERAGE ACCURACY OF DIFFERENT RGRPOA
Dataset 51 52 53 54 Vi V2 AE] Vi
D(1) 0.9729 0.9583 0.9708 0.9646 0.9729 0.9813 0.9750 0.9750
D(2) 0.9056 0.8944 09111 0.9111 0.9000 0.9083 0.9056 0.9194
D(3) 0.8263 0.8237 0.8263 0.8211 0.8263 0.8263 0.8263 0.8158
D(4) 0.9600 0.9733 0.9500 0.9433 0.9567 0.9433 0.9467 0.9600
D(s) 0.9647 0.9529 0.9588 0.9735 09647 0.9706 0.9559 0.9618
Di6) 0.9714 0.9786 0.9714 0.9750 0.9857 09893 0.9821 0.9714
D(7) 0.8480 0.7800 0.8460 0.8080 0.8520 0.8440 0.8380 0.8300
D(8) 0.8042 0.7958 0.8000 0.8167 0.8167 0.8167 0.8417 0.8250
D(9) 0.9042 0.9750 0.9042 0.9292 0.9250 0.9333 0.9333 0.9125
D(10) 0.9850 0.9475 0.9725 0.9950 0.9725 0.9700 0.9700 0.9850
D(11) 0.9298 0.9607 0.9333 0.9298 0.9345 0.9345 0.9333 0.9393
D(12) 0.9850 0.9675 0.9825 0.9825 0.9900 0.9825 0.9725 0.9850
(+/=1-) 1/1/11 3/0/9 141/12 2/0/10 3/1/9 3/1/9 2/1/410 1/0/11
Friedman rank 4.50 3.25 383 4.13 5.22 5.42 446 5.08
Rank 5 8 7 6 2 1 4 3
TABLE VI. AVERAGE NUMBER OF SELECTED FEATURES OF DIFFERENT RGBPOA
Dataset S1 52 53 54 Vi V2 AE] V4
D(1) 857.30 855.40 856.30 857.30 8412.80 834.50 84216 845.10
D(2) 638.60 629.95 634.95 632.55 624.60 623.30 626.95 625.70
D(3) 73045 724.55 732.35 689.15 702.50 688.30 693.75 698.20
D(4) 2091.30 1830.25 2067.25 1879.75 1864.65 181070 181545 1879.95
D(5) 1384.55 1115.55 1253.10 1208.80 921.80 862.15 989.10 965.40
D(6) 1298.05 1658.65 1992.85 1892.90 120745 1069.65 1380.25 1308.00
D(7) 889.60 850.95 876.05 868.35 731.65 658.00 739.15 731.25
D(8) 85220 721.60 75080 746.05 686.00 638.10 728.30 674.35
D(% 1138.50 999.35 917.25 975.00 827.25 673.45 784.35 768.75
D(10} 1009.30 890.20 959.55 930.95 858.20 809.25 835.90 892.60
D{11) 1200.35 1015.05 1153.70 1112.90 997.80 944.10 1063.80 1053.85
D{12) 1410.00 1338.55 1338.85 133945 1328.15 1286.65 1307.70 1307.40
{(+/=/—) 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 12/0/0 0/0/12 0/0/12
Friedman rank 7.96 5.00 6.83 621 229 1.00 379 2.92
Rank 8 5 7 6 2 1 4 2
TABLE VII. AVERAGE COMPUTATION TIME OF DIFFERENT RGBPOA
Dataset 51 52 53 54 Vi V2 V3 Vi
D(1) 9.3360 6.4536 9.2664 9.2055 88320 87701 8.7999 8.7757
D(2) 8.0727 4.7954 8.1889 7.6811 8.0292 73175 7.6970 7.2185
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D(3) 10.4284 57941 10.2642 10.2659 98217 9.7039 97258 9.6903
D{4) 11.5245 8.7780 11.5999 11.5038 11.1228 11.3896 11.2997 11.2984
D(5) 74714 56307 7.6506 74198 7.5308 7.7885 7.5840 7.8262
Di6) 9.2563 6.2034 9.1994 8.9720 8.7603 86911 8.7965 8.4847
D(7) 6.2933 2.7169 6.3029 6.2604 6.1795 6.1327 6.1263 6.0714
D(8) 8.5160 4.1882 8.4747 8.2783 8.0627 8.0683 7.5965 7.7193
D(9) 8.8181 5.6467 8.7829 8.7282 8.6828 8.6382 8.6272 8.6466
D(10) 97457 74441 94361 9.1050 87541 93101 8.3788 9.0877
D(11) 8.1700 6.1337 7.6391 7.9965 74714 7.3743 7.2387 6.6327
D(12) 11.6339 8.3127 11.6107 11.6092 11.4977 11.5345 11.5139 11.5588
(+/=/=) 0/0/12 12/0/0 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12
Friedman rank 7.50 1.00 7.08 6.00 4.08 367 3.67 3.00
Rank 8 1 7 6 5 3 4 2
TABLE VIII. AVERAGE FITNESS AND STANDARD DEVIATION OF ACCURACY OF RGBPOA AND OTHFR ALGORITHMS
Dataset Measure BPOA BASO BSSA BDE BGWO BHHO BEO RGBPOA
AVG 0.0759 0.0628 0.0590 0.0574 0.0573 0.0616 0.0759 0.0156
D STD 0.0291 0.0365 0.0358 0.0292 0.0345 0.0323 0.0339 00248
AVG 0.0545 0.0511 0.0521 0.0609 0.0530 0.0550 0.0560 0.0433
DE) STD 0.0098 0.0082 0.0076 0.0095 0.0055 0.0006 0.0008 0.0127
AVG 0.1211 0.1052 0.1392 0.1871 0.0962 0.0875 0.1296 00463
D@ STD 0.0226 0.0186 0.0206 0.0206 0.0228 0.0011 0.0217 0.0206
AVG 0.2334 0.2042 0.2255 0.2087 0.2034 0.2180 0.2284 0.1636
D STD 0.0452 0.0743 0.0635 0.0673 0.0536 0.0631 0.0365 0.0197
DGS) AVG 0.1466 0.1099 0.1486 0.1188 0.1280 0.1465 0.1465 00534
STD 0.0311 0.0416 0.0367 0.0446 0.0495 0.0405 0.0215 0.0185
D) AVG 0.1370 0.0992 0.1122 0.1106 0.1044 0.0922 0.0953 0.0662
STD 0.0116 0.0267 0.0219 0.0278 0.0186 0.0121 0.0605 0.0368
AVG 0.2960 0.2885 0.2858 0.2660 0.2585 0.2581 0.2924 0.1639
Do) STD 0.0325 0.0409 0.0529 0.0639 0.0581 0.0278 0.0224 0.0653
AVG 0.2419 0.2233 0.2260 0.1757 0.2399 0.1634 0.1913 0.1230
D@ STD 0.0287 0.0235 0.0438 0.0243 0.0327 0.0179 0.0152 0.0239
DE) AVG 0.4917 0.3114 0.3949 0.2448 0.2859 0.4336 0.4670 0.1465
STD 0.0320 0.1311 0.0920 0.1189 0.0734 0.0643 0.0567 00435
AVG 0.1299 0.1343 0.1197 0.1024 0.1355 0.0879 0.0888 0.0651
Dil0) STD 0.0280 0.0265 0.0216 0.0207 0.0186 0.0122 0.0120 0.0206
D1 AVG 0.2525 0.2108 0.2151 0.1805 0.1737 0.1924 0.2195 01217
STD 0.0203 0.0187 0.0174 0.0241 0.0242 0.0010 0.0009 0.0277
D(12) AVG 0.2817 0.2635 0.2631 0.2103 0.2869 0.2031 0.2044 0.1640
STD 0.0249 0.0291 0.0272 0.0171 0.0291 0.0092 0.0093 0.0263
(+/=/=) 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 12/0/0
Friedman rank 7.13 4.50 5.58 433 4.25 3.63 558 1.00
Rank 8 5 6 4 3 2 6 1
TABLE IX. AVERAGE ACCURACY OF RGBPOA AND OTHER ALGORITHMS
Dataset BPOA BASO BSSA BDE BGWO BHHO BEO RGBPOA
D(1) 0.9286 0.9429 0.9476 0.9476 0.9476 0.9429 0.9286 0.9905
D(2) 0.9513 0.9525 0.9525 0.9450 0.9513 0.9500 0.9500 09625
D(3) 0.8833 0.9000 0.8667 0.8167 0.9083 09167 0.8750 09583
D) 0.7692 0.8000 0.7795 0.7949 0.8000 0.7846 0.7744 0.8410
D(5) 0.8571 0.8952 0.8571 0.8857 0.8762 0.8571 0.8571 09524
D(6) 0.8667 0.9061 0.8939 0.8939 0.9000 09121 0.9091 09394
D(7) 0.7074 0.7148 0.7185 0.7370 0.7444 0.7444 07111 0.8407
D(®) 0.7614 0.7807 0.7789 0.8298 0.7632 0.8404 0.8140 0.8807
D(%) 0.5083 0.6917 0.6083 0.7583 0.7167 0.5667 0.5333 0.8583
D(10) 0.8745 0.8706 0.8863 0.9039 0.8686 0.9176 0.9176 0.9392
D(11) 0.7500 0.7933 0.7900 0.8233 0.8300 0.8100 0.7833 0.8833
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D(12) 0.7211 0.7401 0.7415 0.7959 0.7156 0.8014 0.8014 0.8395
(+=/-) 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 12/0/0
Friedman rank 1.96 454 371 4.63 4.63 5.08 346 8.00
Rank 8 4 6 3 3 2 7 1
TABLE X. AVERAGE NUMBER OF SELECTED FEATURES OF RGBPOA AND OTHER ALGORITHMS
Dataset BFOA BASO BSSA BDE BGWO BHHO BEO RGBPCOA
D{) 1358.75 136940 1096.15 1097.60 1088.40 1093.45 1109.00 833.00
D(2) 1005.80 948.70 78330 991.30 837.70 847.95 960.45 624.25
D) 865.33 742.60 741.60 67047 644.00 602.20 606.87 68458
D) 3250.73 281740 2628.13 2558.20 2470.87 227947 276513 1814.47
D(5) 1577.87 1358.80 1368.33 1237.07 1192.07 111547 1122.53 834.53
D(6) 1788.53 1549.13 1250.53 1397.80 1351 .47 1296.93 1331.73 104320
D7 92227 798.87 819.73 72847 702.40 797.80 828.87 65407
D(8) 973.13 844.80 974.93 986.80 740.80 733.07 982.00 66647
D{9) 1097.33 878.80 953.26 991.13 960.47 812.60 882.27 699.67
D(10} 1128.87 963.60 1110.07 882.73 976.20 876.07 970.93 762.73
D{11) 141647 124347 1659.33 1290.80 1262.93 1433.93 1413.67 951.13
D(12) 1713.53 1564.07 1806.87 2084.67 1666.47 1624.00 1960.40 1277.67
(+/=/—) 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 12/0/0
Friedman rank 7.25 5.00 533 533 367 2.92 5.17 1.33
Rank 8 4 4] 4] 3 2 5 1
TABLE XI. AVERAGE COMPUTATION TIME OF RGBPOA AND OTHER ALGORITHMS
Dataset BPOA BASO BSSA BDE BGWO BHHO BEO RGBPOA
D(1) 54488 4.0501 43285 33644 2.9374 5.2249 4.0303 8.0461
D(2) 74822 6.3064 53132 54464 3.7878 82877 5.79418 7.6655
D(3) 4.6044 31156 3.2914 2.4653 2.5208 414822 3.0898 6.0975
D{4) 6.5941 6.4571 6.8683 47196 3.8743 7.6433 6.8468 11.5258
D(5) 47398 3.8398 4.0650 2.5967 2.7055 47117 3.7347 7.5008
Di6) 6.0750 5.3562 5.0789 4.6058 3.3861 7.2524 5.6512 84739
D(7) 418461 34012 3.5437 27673 27009 4.9224 34258 6.2600
D(8) 6.1294 4.6113 4.2489 46813 3.1336 72176 52271 7.0233
D(9) 47076 3.5611 3.7596 2.5811 2.6498 4.6649 34878 7.0223
D(10) 6.5109 5.0872 4.5484 4.8100 32780 7.5079 54144 7.5869
D(11) 5.5977 4.6863 4.6220 414016 3.1562 6.2510 5.2629 7.9423
D(12) 11.4014 8.3708 7.8391 77062 5.1472 12.4697 9.2274 11.4190
(+/=/=) 0/0/12 0/0/12 0/0/12 3/0/9 9/0/3 0/0/12 0/0/12 12/0/0
Friedman rank 617 3.83 3.83 2.08 1.25 6.92 4.17 7.5
Rank 6 3 3 2 1 7 5 8

TABLE XII. P-VALUE OF THE WILCOXON TEST CLASSIFICATION ACCURACY OF RGBPOA VERSUS SEVEN BINARY SWARM INTELLIGENT OPTIMIZA TION

ALGORITHMS
Dataset BPOA BASO BSSA BDE BGWO BHHO BEO
D() 4.56E-02 5.41E-03 8.79E-05 2.56E-07 2.91E-06 1.61E-07 3.08E-05
D(2) 2.03E-09 7.28E-04 8.99E-11 3.02E-11 3.02E-11 0.0451 2.60E-10
D(3) 5.61E-05 2.50E-03 3 37E-04 1.75E-05 6.76E-05 9.79E-05 6.76E-05
D) 2.31E-06 4.26E-05 3.01E-11 3.01E-11 3.01E-11 6.76E-05 3.01E-11
D(5) 1.56E-10 3.44E-10 1.10E-05 6.02E-11 2.01E-06 2.25E-08 7.13E-04
D(&) 1.57E-03 1.24E-02 1.60E-02 9.94E-07 4.84E-02 1.66E-04 5.91E-04
D(7) 1.42E-08 9.01E-03 2.73E-02 1.60E-10 1.76E-08 3.19E-06 5.08E-11
D(8) 4.56E-10 3.15E-05 2.99E-11 2.97E-11 3.00E-11 3.00E-11 2.98E-11
D% 4.98E-04 6.79E-03 7.69E-04 9.50E-08 4.98E-04 3.92E-02 9.49E-06
Do) 546E-11 2.36E-10 1.20E-10 3.32E-11 4.94E-11 6.65E-11 3.00E-11
D(11) 3.19E-09 4.40E-03 3.01E-11 1.20E-10 1.87E-07 3.01E-11 6.05E-11
D(12) 231E-08 2.70E-03 2 49E-06 1.56E-08 6.35E-05 1.37E-03 7.73E-06
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V. CONCLUSION AND FUTURE WORKS

This paper presents a novel approach to the feature
selection (FS) problem through the introduction of the
ReliefF-guided binary Pelican Optimization Algorithm
(RGBPOA). To address the challenges associated with
high-dimensional cancer gene expression data, the
ReliefF-guided strategy was seamlessly integrated into the
existing Pelican Optimization Algorithm (POA). This
combination, along with techniques for feature addition and
removal, was specifically designed to enhance classification
accuracy. When applied to 12 diverse cancer gene expression
datasets through two controlled experiments, RGBPOA
demonstrated its capability to effectively reduce the number
of features selected while improving classification
performance and achieving lower fitness values in
comparison to other methods. These promising results
highlight the strength of RGBPOA, showcasing its superior
performance over traditional swarm intelligence optimization
algorithms that have been widely used in recent studies.

Moreover, this work opens up exciting future research
directions in the realms of combinatorial optimization,
heuristic algorithms, and feature selection. A potential
avenue for further exploration is the development of new
transfer functions for binary conversion, which could offer
enhanced flexibility and precision in the feature selection
process. Another promising area lies in the application of
multi-objective swarm intelligence algorithms, which could
further optimize both the efficiency and effectiveness of
feature selection in complex, high-dimensional datasets.
Additionally, combining advanced filtering techniques with
packing algorithms could provide even more efficient
solutions for identifying relevant feature subsets. By
pursuing these directions, the field of feature selection will
benefit from more robust and versatile algorithms, ultimately
boosting the performance of machine learning models in
environments characterized by high dimensionality and
noise.
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