
 

  

Abstract — Uneven sediment transport is a major cause of 

coastal erosion. Using groin structures is one method to help 

slow the outflow of sediment from the shoreline. Studying 

coastal behavior and forecasting future shoreline changes are 

crucial for managing and assessing the viability of remediation 

strategies. This research presents simulations of shoreline 

evolution with a single groin structure using two different 

methods, such as mathematical modeling and an alternative 

machine learning. A mathematical model is a representation of 

a real-world shoreline evolution phenomenon using partial 

differential equations. A machine learning algorithm is 

designed to learn patterns and relationships directly from real 

data. In this research, an alternative machine learning 

algorithm is designed to learn patterns and relationships 

directly from mathematical simulation data and let the 

machine make a decision in a situation that it has never 

learned before. For mathematical modeling, we introduced a 

one-dimensional model to predict the shoreline evolution. The 

initial and the boundary conditions with related parameter 

settings are introduced. The Saulyev finite difference method is 

used to obtain the approximated solution. An alternative 

machine learning algorithm for unexpected shoreline evolution 

prediction is also proposed. For alternative machine learning 

simulations, we identified six suitable features for the training 

dataset and developed an alternative K-nearest neighbor 

algorithm. It provides a way of predicting the evolution of the 

shoreline with a single groin structure. Additionally, an exact 

solution in an ideal scenario is used to test the precision of the 

simulation as well. The results show that the Saulyev technique 

outperforms an alternative K-nearest neighbor algorithm due 

to the lower root mean square error value. Both results of them 

are closed together. According to the research, mathematical 

modeling outperforms the KNN regression technique in terms 

of computational effectiveness during time periods of 0.5, 1, 5, 

10, 15, and 20 years. Based on the modeling configuration and 

parameter simplicity, the KNN algorithm is still a good option 

for non-expert users. 
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I. INTRODUCTION 

ROSION is a natural phenomenon that has been   

intensifying continuously, with over 24% of global 

coastlines currently facing this issue at a rate of more than 

0.5 m/yr, while only 28% are showing signs of recovery [1]. 

The causes of this erosion include climate change, rising sea 

levels, the increasing intensity of waves and currents, and 

the improper use of land and resources by humans [2], [3], 

[4], [5]. If this problem is not addressed promptly and 

appropriately, it could have significant impacts on 

ecosystems, quality of life, and the economy. Generally, 

there are two main approaches to addressing this problem: 

non-structural and structural approaches. Non-structural 

approaches include activities such as planting mangrove 

forests, beach nourishment, and implementing setback 

regulations. Structural approaches, on the other hand, 

involve constructing physical barriers such as breakwaters, 

groins, and seawalls. A groin is a medium-sized engineered 

structure that is placed perpendicular to the coastline and 

comes in various shapes, such as Y-shaped, I-shaped, and T-

shaped. It is designed to capture sand moving along with the 

current, thereby slowing the movement of sediment and 

promoting its accumulation. Additionally, groins help 

dissipate wave energy and reduce the impact of currents [6].  

Mathematical modeling and data analysis using machine 

learning are fundamental tools essential for the development 

of effective strategies, management, and planning e.g., air 

pollution, salinity in rivers and heat transfer within multi-

layered walls (see [7], [8], [9], [10], [11], [12], [13], [14], 

[15], [16]). This paper [17] presents contemporary logical 

design criteria for groin constructions. They are divided into 

three main categories: structural design, functional design, 

and coastal processes. The evaluation of the effectiveness, 

costs, and benefits of coastal defense was presented by 

integrating three models: the shoreline evolution model (to 

predict land area changes over time), the preliminary coastal 

structure design model (to estimate construction material 

volumes), and the cost-benefit evaluation model (to assess 

cost and benefit criteria). Additionally, the proposed 

methodology was applied to evaluate the performance of 

different grain scenarios through a case study, emphasizing 

the importance of physical and economic analysis. The 

results indicate that defining coastal defense interventions is 

complex, as the best physical solutions can be very costly, 

while the best economic scenarios may result in significant 

land loss. This approach demonstrates that integrated 

analysis of shoreline evolution, coastal intervention design, 
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and subsequent costs and benefits improves the performance 

of coastal defense interventions [18]. In [19], they 

introduced a shoreline change model with an ensemble 

Kalman filter to forecast wave-induced coastal erosion and 

uncertainty at different time scales. They applied ensemble 

wave time series generated by a computationally effective 

statistical downscaling technique to assess shoreline change 

projections that were simulated with and without ensemble 

wave driving conditions. When compared to the impractical 

scenario of model predictions based on a single, 

deterministic realization of the wave forcing, the results 

show a significant (site-dependent) increase in model 

uncertainty. The well-developed ensemble modeling 

technique is used on a beach in Tairua, New Zealand, that is 

regularly observed. In [20], eight time-series forecasting 

methods are evaluated for predicting future shorelines based 

on historical satellite data. By analyzing over 37,000 global 

transects, the researchers found that traditional methods, 

along with certain probabilistic Machine Learning (ML) 

models, outperformed Ordinary Least Squares (OLS) 

regression at most sites. Over a seven-year forecasting 

period, these approaches yielded more accurate predictions 

for 54% of the sites, with an average reduction in Mean 

Squared Error (MSE) of 29%. While ML models did not 

significantly exceed traditional methods in accuracy, they 

were more efficient in computation time. The study also 

offers recommendations for enhancing ML models to enable 

them to surpass both OLS and traditional methods. These 

forecasting tools are essential for coastal engineers, 

managers, and researchers to predict future shoreline 

changes on a global scale and derive valuable insights.  

In paper [21], recurrent Artificial Neural Networks (ANNs), 

specifically NARNET and NARXNET, were introduced to 

model shoreline changes along the Narrabeen Coast in 

Australia from 1980 to 2014. The findings indicate that 

these models reliably predict shoreline changes based on 

historical data. Comparisons with other methods, including 

Radial Basis Function (RBF), General Regression Neural 

Network (GRNN), and Time Delay Neural Network 

(TDNN), reveal that NARNET produced the most accurate 

results, achieving a Mean Absolute Percentage Error 

(MAPE) of 17.18%, while NARXNET exhibited the highest 

correlation coefficient (CC) of 0.26. Overall, NARNET and 

NARXNET are preferred methods as they require less 

supplementary data beyond the shoreline position itself.  

In [22], [23], [24], [25] and [26], they developed a one-

line theory and presented analytical solutions for shoreline 

evolution, which are highly valuable for understanding the 

characteristics of long-term coastal changes. However, these 

analytical solutions have limitations, as they cannot predict 

scenarios with complex conditions. In practice, numerical 

methods for modeling shoreline evolution are more suitable. 

In [27], [28] and [29], they introduced an approximation of 

the solution of a one-dimensional coastal evolution model 

with a groin structure using two explicit finite difference 

methods, namely the Forward Time Centered Space (FTCS) 

method and the Saulyev method. In [30] and [31], they 

developed a non-dimensional model based on the one-

dimensional model for predicting shoreline changes 

associated with both single and twin groin structures, which 

can reduce computational time and cost. They also described 

the concept of model transformation, including setting 

conditions and tuning various physical parameters to 

improve the model performance. The results show that 

shoreline evolution accelerated annually when the 

engineering structure was installed on the nearby shorelines. 

Better simulations are produced by the Saulyev finite 

difference technique since it is not constrained by the 

stability criteria.  

This paper presents a novel approach compared to the 

above literature. This research aims to predict changes in the 

coastline due to a single-groin structure by employing two 

distinct methods and assessing the performance of each 

through root mean square error (RMSE). The structure of 

this paper is as follows: Section II introduces the 

mathematical modeling. In Section III, we explore the 

development of an alternative machine learning algorithm 

and the creation of the training dataset. Section IV describes 

the performance measurement of the simulation. Section V 

explains the simulation of coastal evolution, integrating both 

a mathematical model and an alternative machine learning 

algorithm. Section VI offers a presentation and discussion of 

the simulation results. Finally, Section VII provides the 

research conclusions. 

II. MATHEMATICAL MODELING 

A. Shoreline Evolution Model 

Coastal dynamics were developed as a mathematical 

model under the sand volume conservation law and two 

general assumptions: 1) The coastline moves parallel to 

itself without changing its sh[ape during erosion, although it 

is constantly moving. Any position on the profile can be 

determined using the baseline. Therefore, a contour line is 

used for the convenience of identifying the coastline; and 2) 

the sand transfer on the profile is between two elevations, 

i.e., the depth of closure and the berm height. This 

measurement uses the mean sea level (MSL) as a reference.  

A one-dimensional mathematical model for shoreline 

evolution is defined by (1): 
 

 2

2

y y
D

t x

 
=

 
 , (1) 

 

for all ( ),x t    such that    0, 0,L  =  , 360 Yt = , 

02

B C

Q
D

D D
=

+
, where the variables and parameters of (1) 

are defined in Table I and Figs. 1-2. The coefficient D  is 

the value describing the time scale of the shoreline change 

after wave action. Therefore, a high amplitude of long-shore 

sand transport rate 
0Q  will enable rapid shoreline responses. 

On the other hand, a large depth of closure 
CD  will slow the 

response of the shoreline. 

Assume the initial shoreline contour has the same 

breaking wave angle at every site and is in equilibrium when 

it is parallel to the x-axis. Therefore, the expression of the 

initial condition is 
 

 ( ),0 0y x =   at 0t =  , (2) 
 

for all  0,x L . The incident angle of the breaking wave 

crests affects the change in coastline at the groin. Therefore, 
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the expression of left-boundary condition and right-

boundary condition are defined by 
 

 ( ) ( )0,y t f t=   at 0x =  , (3) 
 

and 
 

 ( ) ( ),y L t g t=   at x L=  , (4) 
 

for all  0,t  , where ( )f t  and ( )g t  are given 

interpolation functions. 
 

 
 

 
Fig. 1.  Initial shoreline with a straight groin structure. 

 

 

Fig. 2.  Cross section of coastal changes and morphology. 

 

B. Unconditionally Stable Saulyev Finite Difference 

Method 

The Saulyev finite difference (Saulyev) method is an 

explicit unconditionally stable finite difference method, so it 

is convenient and does not have strict limitations on the size 

of the time increment compared with other methods [32]. To 

solve (1) using the Saulyev method, the first step is to create 

a meshing grid over the domain  , which is done by 

dividing the space-interval  0, L  into M  sub-intervals and 

the time-interval  0,  into N  sub-intervals, in which the 

values /x L M =  and /t N =  are the x-axis increment 

and the t-axis increment, respectively. Any point on this 

meshing grid is accessed using coordinates 

( ) ( ), ,m nx t m x n t=    for each 0,1, ,m M=  and 

0,1, ,n N= . Therefore, the approximation of shoreline 

evolution y  at any point on the grid is defined by the 

notation ( ), n

m n my x t y= .  

We have the following finite difference approximation 

[33], [34]: 
 

 n

my y  , (5) 
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Next, substitute (5)-(11) into (1), and we obtain the 

following. 
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The equation (12) can be written in the explicit Saulyev 

finite difference form as follows. 
 

 ( ) ( )
11 1

1 11 1n n n n

m m m my y y y   
−+ +

+ −
 = + + − +   , (13) 

 

where 1,2, , 1m M= − , 0,1, , 1n N= −  and 

( )
2

D t

x



=


. 

The Saulyev finite difference method can be written as 

pseudocode 1. 

C. Exact Solution for Shoreline Evolution Model 

The exact solution for the shoreline evolution model is 

defined by [35]: 
 

( ) ( ) ( ) ( )
21

0, tan Bxy x t B e x B erfc x B  
− − = −

 
, (14) 

 

where 
1

4
B

Dt
= , and ( )

2

0

2
1

x B

terfc x B e dt


−= −   is the 

complementary error function of x B . 

TABLE I 
VARIABLES AND PARAMETERS 

Symbol Description (Unit) 

y  Shoreline position (m) 

x  Long-shore distance (m) 

t  Time (day) 

0Q  Amplitude of the long-shore sand transport rate (m3/day) 

BD  Berm height (m) 

CD  Depth of closure (m) 

0  Angle between breaking wave crests and the x-axis (deg) 

L  Shoreline distance (m) 

Yt  Number of years (yr) 
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III. ALTERNATIVE MACHINE LEARNING ALGORITHM 

A. K-Nearest Neighbors Algorithm for Shoreline Evolution 

Prediction 

The K-nearest neighbors (KNN) algorithm is a supervised 

machine learning method that applies to clustering and 

regression [36], [37]. There are five advantages of this 

method: 1) Simple and uncomplicated – KNN is a simple 

and easy-to-understand algorithm because it uses only three 

required parameters, i.e., number of K-nearest neighbors, 

distance function and average of nearest neighbors; 2) Wide 

selection of distance functions – KNN provides flexibility in 

choosing distance functions such as Manhattan distance, 

Euclidean distance, Minkowski distance and Weighted 

distance; 3) No assumption related to data – KNN is a non-

parametric algorithm unlike mathematical modeling that 

requires assumptions about large amounts of data; 4) No 

training model generation – KNN is a lazy algorithm with 

no model reconstruction. Instead, it uses a method of 

labeling newly entered data based on learning from past 

training data; and 5) Fast response to input data changes – 

Data classification and data regression are instantly changed 

when new training data is added or removed.  
Let the training dataset be in the format: 
 

 ( ) , 1, 2, ,j jX y j p = =  , (15) 

 

where each  1 2 3, , , ,j j j j j q

qX x x x x=   is the training data 

with q  attributes, jy   is the output (label) of each 

training data and p  is the number of training data. The new 

data will be given as X . Let qX   be new data with q  

attributes and not yet labeled. The process of K-nearest 

neighbor regression (KNN regression) algorithm consists of 

three steps: distance measurement, nearest neighbors sorting 

and prediction. 

- Step 1: Find the Euclidean distance between the training 

data jX  and the new data X  by using the equation below: 
 

 

( ) ( )
2

1

,
q

j j

i i

i

d X X x x
=

= − . (16) 

 

- Step 2: Determine the set of K-nearest neighbors of X  in 

the form: 
 

 ( ) , 1, 2, ,K r r

XR X y r K= = , (17) 

 

which is obtained by arranging the new order of ( ),j jX y  in 

the training dataset   according to their ascending 

Euclidean distance and K  is the number of nearest neighbor 

vectors. 
 

- Step 3: Estimate the output y  for X  by using the 

arithmetic mean of the output values r K

Xy R  according to 

the equation below: 
 

 

1

1 K
r

r

y y
K =

=  . (18) 

 

The K-nearest neighbor regression (KNN regression) 

algorithm can be written as pseudocode 2. 

 
Pseudocode 1: Saulyev FDM 

Input: 1) number of sub-intervals M , N ; 2) number of years 
Yt ; 

 3) shoreline distance L ; 4) coefficient D ;  5) initial condition 
0

my ; 

and 6) boundary conditions 
0

ny ,
n

My  

Output: approximated shoreline 
n

my  

1 : Begin 

2 : Compute  , x , t  and create a meshing grid over  

the domain   
3 : for 0n   to N  do 

4 :      if 0n   then 

5 :         Compute 
n

my  using the IC in (2) 

6 :      else 

7 :         for 0m   to M  do 

8 :              if 0m   then 

9 :                Compute 
n

my  using the left-BC in (3) 

10 :              else if m M  then 

11 :                Compute 
n

my  using the Saulyev equation in (13) 

12 :              else 

13 :                Compute 
n

my  using the right-BC in (4) 

14 :              end 

15 :         end 

16 :      end 

17 : end 

18 : return 
n

my  

 

 

Pseudocode 2: KNN regression 

Input: 1) training dataset  ; 2) new data X ; and 3) number of 

nearest neighbors K  

Output: approximated shoreline y  

1 : Begin 

2 : for 1j   to p  do 

3 :      Compute the distance ( ),jd X X  between the training  

     data 
jX and the new data X  by using the Euclidean  

     formula in (16) 

4 : end 

5 : Rearrange the new order of ( ),j jX y    according to their 

ascending distance 

6 : for 1j   to p  do 

7 :      if j K  then 

8 :           Add ( ),j jX y  to the set 
K

XR  

9 :      end 

10 : end 

11 : Estimate the average y  from the value 
r K

Xy R  using the 

arithmetic mean in (18) 

12 : return y  

 
 
 

 

B. An Alternative Algorithm for Unexpected Shoreline 

Evolution Prediction 

Sometimes the rankings given to individual training 

datasets are redundant, and neglecting this issue can result in 

poor performance. Therefore, in this section, we introduce 

an alternative prediction algorithm bias averaging in step 3 

of the previous section, which is detailed below. Let 
rk  be 

the number of nearest neighbor vectors that share r-rank, r  

be the number r-rank and 
1 2 rK k k k= + + + . If some 

ranks have more than one nearest neighbor vector (share 

ranks), then a general bias average is 
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 
= + + + 

 
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where r K .  

In special cases, if every rank has only one nearest 

neighbor vector (
1 2 1rk k k= = = = ), then a general bias 

average is (18), where r K= . 
 
 

 

C. Generated Shoreline Evolution Dataset 

The dataset for shoreline evolution consists of six 

attributes as listed in Table II, where note that A1 = xj
1,  

A2 = xj
2, A3 = xj

3, A4 = xj
4, A5 = xj

5, and A6 = xj
6. Let each 

attribute A1-A6 have the following values: amplitude of the 

long-shore sand transport rate A1 is 6375, 7500, and 8625 

m3/day; berm height A2 is 1, 2, and 3 m; depth of closure 

A3 is 24, 28, and 33 m; angle of the breaking wave crest 

along the shoreline A4 is 0.02, 0.03, and 0.04 deg; step size 

of distance is 250 m; step size of time is 60 days; and 

number of years is 20 years. In Table III, the 166,617-

training dataset was generated by three steps: 1) using a 

linear permutation method with the values of the attributes 

defined above (not permuting the positions of attributes A1-

A6); 2) using the Saulyev method in (13) with the case of 

linear permutations obtained; and 3) reshaping the solutions 

and assigning them as labels. Note that the testing dataset or 

new dataset has the same attributes as the training dataset. 
 

IV. SIMULATION PERFORMANCES 

The root mean square error (RMSE) is one of the popular 

tools to measure the difference between the exact solution 

and the approximated solution. The model with the lowest 

RMSE value is the best performer. The formula of RMSE is 
 

 
( )

2

1

1 w

i i

i

RMSE y y
w =

= −  , (20) 

 

where 
iy  is the exact solution, 

iy  is the approximated 

solution, and w  is the number of solutions. 
 

V. SIMULATIONS OF SHORELINE EVOLUTION 

In this paper, we used two methods to investigate long-

term shoreline evolution: mathematical modeling and 

alternative machine learning algorithm, which are detailed 

below.  

In testing with mathematical modeling, we determine the 

physical parameters as illustrated in Table IV and employ 

the Saulyev method.   

In testing with alternative machine learning, we load the 

training dataset as illustrated in Table III and generate the 

testing dataset using the physical parameters as illustrated in 

Table V. We employ the KNN regression method with both 

datasets. The actual and approximated values of local 

shoreline growth over 0.5, 1, 5, 10, 15, and 20 years are 

illustrated in Tables VI-XI and Figs. 3-6.  

The root means square error values of each method is 

illustrated in Table XII. The root means square error values 

of the KNN regression method when changing the K-nearest 

neighbor number is illustrated in Table XIII. 

 
 

 
 

 
 

 
 

VI. RESULT AND DISCUSSION 

Under the assumptions described in the previous section, 

we used two methods, namely mathematical modeling, and 

alternative machine learning, to test the long-term coastline 

evolution, which obtained the following results: 

The computational efficiency of the KNN regression 

algorithm is shown in Table VI and Fig. 4 when the number 

of K-nearest neighbors is varied using the RMSE value. It 

can be shown that K = 3 provides better computing 

efficiency in comparison to other cases. As a result, K = 3 

will be selected for this research.  

TABLE V 
PARAMETER SETTING FOR AN ALTERNATIVE MACHINE LEARNING 

Description (Unit) Symbol Value 

Number of nearest neighbors K  3 

Shoreline distance (m) L  4000 

Amplitude of the long-shore sand transport 

rate (m3/day) 
A1 7900 

Berm height (m) A2 1.8 
Depth of closure (m) A3 26 

Angle between breaking wave crests and 

the x-axis (deg.) 
A4 0.025 

Step size of shoreline distance (m) x  500 

Step size of time (day) t  90 

 

 
 

 

TABLE IV 

PARAMETER SETTING FOR MATHEMATICAL MODELING 

Description (Unit) Symbol Value 

Shoreline distance (m) L  4000 

Amplitude of the long-shore sand transport 

rate (m3/day) 0Q  7900 

Berm height (m) BD  1.8 

Depth of closure (m) CD  26 

Angle between breaking wave crests and the x-
axis (deg) 0  0.025 

Step size of shoreline distance (m) x  500 

Step size of time (day) t  90 

 
 

 

 

TABLE III 
COASTAL EVOLUTION TRAINING DATASET 

No. 
Attributes Label 

A1 A2 A3 A4 A5 A6 y 

1 6375 1 24 0.02 0 0 0.00000 

2 6375 1 24 0.02 0 60 3.94824 

… … … … … … … … 
55538 6375 3 33 0.04 4000 7140 2.71103 

55539 6375 3 33 0.04 4000 7200 2.77335 

55540 7500 1 24 0.02 0 0 0.00000 
55541 7500 1 24 0.02 0 60 4.28247 

… … … … … … … … 

111077 7500 3 33 0.04 4000 7140 4.12845 
111078 7500 3 33 0.04 4000 7200 4.21405 

111079 8625 1 24 0.02 0 0 0.00000 

111080 8625 1 24 0.02 0 60 4.59244 
… … … … … … … … 

166616 8625 3 33 0.04 4000 7140 5.73966 

166617 8625 3 33 0.04 4000 7200 5.84898 

 

 
 

 

TABLE II 
ATTRIBUTES OF DATASET 

Symbol Attribute (Unit) 

A1 0Q  
Amplitude of the long-shore sand transport 

rate (m3/day) 

A2 BD  Berm height (m) 

A3 CD  Depth of closure (m) 

A4 0  
Angle between breaking wave crests and the 

x-axis (deg) 

A5 x  Long-shore distance (m) 

A6 t  Time (day) 
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Table VII and Fig. 5 illustrate the comparison of the local 

shoreline's actual and approximate values over a haft-year 

period, where the highest value is 9.02460 m, the lowest 

value is 0.0000 m, the Saulyev's RMSE value is 0.28497, 

and the KNN regression's RMSE value is 0.31751. 

Table VIII and Fig. 6 illustrate the comparison of the 

local shoreline's actual and approximate values over a 1-year 

period, where the highest value is 12.76271 m, the lowest 

value is 0.0000 m, the Saulyev's RMSE value is 0.32256, 

and the KNN regression's RMSE value is 0.39723. 

Table IX and Fig. 7 illustrate a comparison of the local 

shoreline's actual and approximate values over a 5-year 

period, where the highest value is 28.53829 m, the lowest 

value is 0.05510 m, the Saulyev's RMSE value is 0.43020, 

and the KNN regression's RMSE value is 0.85744. 

Table X and Fig. 8 illustrate the comparison of the local 

shoreline's actual and approximate values over a 10-year 

period, where the highest value is 40.35924 m, the lowest 

value is 0.91247 m, the Saulyev's RMSE value is 0.42264, 

and the KNN regression's RMSE value is 1.34167. 

Table XI and Fig. 9 illustrate the comparison of the local 

shoreline's actual and approximate values over a 15-year 

period, where the highest value is 49.42977 m, the lowest 

value is 2.78261 m, the Saulyev's RMSE value is 0.34930, 

and the KNN regression's RMSE value is 1.81389. 

Table XII and Fig. 10 illustrate the comparison of the 

local shoreline's actual and approximate values over a 20-

year period, where the highest value is 57.07658 m, the 

lowest value is 5.26681 m, the Saulyev's RMSE value is 

0.27204, and the KNN regression's RMSE value is 2.28108. 

When analyzing each year, as illustrated in Tables VII-

XII and Figs. 5–10, we observe that the shoreline evolution 

is generally increasing. 

Table XIII illustrates the computational efficiency of each 

method based on the RMSE value. These results indicate 

that the Saulyev method has higher computational efficiency 

than the KNN regression algorithm over periods of 0.5, 1, 5, 

10, 15, and 20 years. However, the KNN regression 

algorithm remains a suitable choice for practical 

applications due to its simplicity, as it relies on only three 

parameters: the number of K, the distance function, and the 

averaging of the nearest neighbors. 
 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

TABLE XII 

EVOLUTION OF THE LOCAL SHORELINE OVER 20 YEARS 

(K = 3 AND A6 = 7200 DAYS) 

Distance  

(m) 

Method 

Exact Saulyev KNN 

0 57.07658 57.07658 52.61298 

500 45.44352 45.58825 41.95014 

1000 35.52331 35.79495 32.88025 
1500 27.23961 27.60218 25.30790 

2000 20.47271 20.87630 19.10146 

2500 15.06953 15.45611 14.10456 
3000 10.85577 11.16555 10.14848 

3500 7.64832 7.82600 7.06390 

4000 5.26681 5.26681 4.69078 

 

 

 

 

TABLE XI 

EVOLUTION OF THE LOCAL SHORELINE OVER 15 YEARS 
(K = 3 AND A6 = 5400 DAYS) 

Distance  

(m) 

Method 

Exact Saulyev KNN 

0 49.42977 49.42977 45.56417 

500 37.93037 38.11912 35.07818 
1000 28.39723 28.75082 26.41508 

1500 20.71455 21.18428 19.43447 

2000 14.70437 15.22368 13.94540 
2500 10.14586 10.63931 9.72709 

3000 6.79742 7.18961 6.54981 

3500 4.41767 4.64089 4.19334 
4000 2.78261 2.78261 2.46098 

 

 

 

 

TABLE X 

EVOLUTION OF THE LOCAL SHORELINE OVER 10 YEARS 

(K = 3 AND A6 = 3600 DAYS) 

Distance  

(m) 

Method 

Exact Saulyev KNN 

0 40.35924 40.35924 37.20299 

500 29.08324 29.32719 26.99058 

1000 20.18738 20.63899 18.97138 
1500 13.46526 14.05205 12.90691 

2000 8.61186 9.24227 8.48671 

2500 5.27069 5.85169 5.37275 
3000 3.08146 3.53082 3.23762 

3500 1.71822 1.96912 1.79151 

4000 0.91247 0.91247 0.79739 

 

 
 

 

TABLE IX 

EVOLUTION OF THE LOCAL SHORELINE OVER 5 YEARS 

(K = 3 AND A6 = 1800 DAYS) 

Distance  

(m) 

Method 

Exact Saulyev KNN 

0 28.53829 28.53829 26.30649 

500 17.76165 18.10173 16.67494 
1000 10.23635 10.82549 9.97430 

1500 5.42788 6.10825 5.63213 

2000 2.63341 3.25720 3.00575 
2500 1.16342 1.64307 1.51721 

3000 0.46615 0.77788 0.71898 

3500 0.16882 0.32254 0.29831 
4000 0.05510 0.05510 0.04699 

 

 

 

 

TABLE VIII 
EVOLUTION OF THE LOCAL SHORELINE OVER 1 YEAR 

(K = 3 AND A6 = 360 DAYS) 

Distance 

(m) 

Method 

Exact Saulyev KNN 

0 12.76271 12.76271 11.76462 
500 3.97171 4.61991 4.28042 

1000 0.81042 1.45040 1.31768 

1500 0.10263 0.41199 0.35677 
2000 0.00777 0.10878 0.08754 

2500 0.00034 0.02717 0.01990 

3000 0.00001 0.00650 0.00426 
3500 0.00000 0.00148 0.00086 

4000 0.00000 0.00000 0.00000 

 

 

 

 

TABLE VII 
EVOLUTION OF THE LOCAL SHORELINE OVER 0.5 YEARS  

(K = 3 AND A6 = 180 DAYS) 

Distance 

(m) 

Method 

Exact Saulyev KNN 

0 9.02460 9.02460 8.31884 

500 1.53582 2.27980 2.07989 
1000 0.10721 0.51410 0.43401 

1500 0.00271 0.10887 0.08135 

2000 0.00002 0.02215 0.01422 
2500 0.00000 0.00438 0.00237 

3000 0.00000 0.00085 0.00038 

3500 0.00000 0.00016 0.00006 
4000 0.00000 0.00000 0.00000 

 

 

 

TABLE VI 
ROOT MEAN SQUARE ERROR (RMSE) OF THE KNN REGRESSION METHOD 

WHEN CHANGING THE K-NEAREST NEIGHBOR NUMBER 

K 
Time (years) 

0.5 1 5 10 15 20 

1 0.60375 0.84184 2.15726 3.42521 4.55798 5.61270 

3 0.31751 0.39723 0.85744 1.34167 1.81389 2.28108 

5 0.45389 0.62692 1.41965 2.08250 2.61032 3.07218 

7 0.49451 0.68973 1.59822 2.37041 2.99363 3.54111 

9 0.43018 0.58946 1.31002 1.90549 2.37619 2.78746 
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VII. CONCLUSION 

Study of shoreline evolution prediction of a single-groin 

structure by using two completely different methods: 

mathematical modeling and alternative machine learning. 

For the mathematical modeling, we present the one-

dimensional mathematical equation for shoreline evolution 

derived from the conservation law of sand volume. The 

techniques for defining boundary conditions and physical 

parameters affecting the shoreline with a single-groin 

structure, which is installed on the left side of the coastline, 

are presented. Then, we use the unconditionally stable 

Saulyev finite difference technique to predict the long-term 

shoreline evolution. The analytical solution to this 

mathematical model is also given. For alternative machine 

learning, we present the appropriate attributes to construct 

the training and testing datasets for long-term shoreline 

evolution. The definition and process of the K-nearest 

neighbor machine learning algorithm are presented. Then, 

we use the K-nearest neighbor machine learning algorithm 

to also predict the long-term shoreline evolution as well. 

The results of the study found that the evolution of the local 

coastline with a groin structure tends to increase 

continuously every year. Next, both introduced methods can 

be used to predict the evolution of local coastlines. Finally, 

the Saulyev technique has better computational efficiency 

than the K-nearest neighbor machine learning algorithm. 

Both results are closed together. However, in terms of ease 

of use, the K-nearest neighbor machine learning algorithm is 

more convenient due to the fact that the specialist who can 

implement the problem in the mathematical models is not 

required.  

According to this research, the mathematical modeling 

outperforms the KNN regression algorithm with respect to 

computing efficiency for time periods of 0.5, 1, 5, 10, 15, 

and 20 years. Based on the modeling configuration and 

parameter simplicity, the KNN algorithm is still a good 

option for non-expert users. In addition, the results highlight 

the capabilities and limitations of applying mathematical 

models and machine learning techniques for shoreline 

evaluation forecasting. 
 

 

 

Fig. 4.  The RMSE of the alternative K-nearest neighbor regression 

algorithm when the number of K is changed. 
 

 
Fig. 5.  Evolution of the local shoreline over 0.5 year (K = 3 and  

A6 = 180 days). 

 

Fig. 6.  Evolution of the local shoreline over 1 year (K = 3 and  

A6 = 360 days). 

TABLE XIII 
ROOT MEAN SQUARE ERROR OF EACH METHOD 

Time  

(years) 

Method 

Saulyev KNN 

0.5 0.28497 0.31751 

1 0.32256 0.39723 

5 0.43020 0.85744 
10 0.42264 1.34167 

15 0.34930 1.81389 

20 0.27204 2.28108 
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Fig. 7.  Evolution of the local shoreline over 5 years (K = 3 and  

A6 = 1800 days). 
 

 

Fig. 8.  Evolution of the local shoreline over 10 years (K = 3 and  
A6 = 3600 days). 

 

Fig. 9.  Evolution of the local shoreline over 15 years (K = 3 and  
A6 = 5400 days) 

 

Fig. 10.  Evolution of the local shoreline over 20 years (K = 3 and  

A6 = 7200 days). 
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