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Abstract—We study the pricing of compound Ratchet-type
equity-indexed annuities (EIAs) under three different
interest-rate assumptions: constant, stochastic based on the
Vasicek model, and stochastic based on the Cox-Ingersoll-Ross
(CIR) model. We assume that the asset price follows a
geometric Brownian motion, and estimate the involved
parameters using historical data from the Indonesian bond
market and stock index. The results show that the constant
interest-rate assumption leads to higher EIA prices compared
to those obtained using the stochastic models, reflecting the
simplified nature of ignoring interest rate variability. The
stochastic Vasicek and CIR models lead to nearly identical
prices, suggesting that the additional complexity of the
CIR model has limited impact under the market conditions
represented by the utilised data. Furthermore, a sensitivity
analysis in the stochastic cases reveals that the interest rate’s
long-term mean is the parameter upon which the EIA price
depends most sensitively.

Index Terms—equity-indexed annuity, Ratchet, geometric
Brownian motion, Vasicek model, Cox-Ingersoll-Ross model

I. INTRODUCTION

THE pricing of financial instruments has been the
subject of extensive research for decades, with

numerous mathematical models and numerical methods
being developed to handle the complexities of real-world
market dynamics and asset behaviours. The pricing of bonds,
for instance, has been studied by Wang et al. [39] using the
so-called binomial tree method, and by Zhang et al. [43]
using the Cox-Ingersoll-Ross (CIR) stochastic model with
the incorporation of a certain threshold setting to enhance
accuracy. In the realm of derivatives, Otani and Imai [32]
have examined systematic factors in the pricing of credit
derivatives, while Ma and He [27] have employed a fast
Monte Carlo method for pricing covariance swaps under
correlated stochastic volatility models. Studies on the pricing
of options have also been abundant, with Du et al. [11]
focusing on the acceleration of the Monte Carlo method for
pricing multi-asset options, Liu et al. [26] discussing the
potentiality of control variate methods for pricing options,
and Wijayanti et al. [38] employing the finite element
method as a numerical method for pricing options. More
recently, Siswanah et al. [34] have conducted a comparative
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study of two numerical methods, the Newton-Raphson
and Monte Carlo methods, for the pricing of American
options. Besides in the above investment-based financial
instruments, pricing problems also arise in other financial
products, particularly those which integrate market-driven
returns with protective guarantees. Choi [8], for instance,
has studied the pricing of an equity-linked life insurance,
using the so-called indifference pricing theory. While
equity-linked life insurances focus on providing death
benefits influenced by equity performance, a related class
of financial products, equity-indexed annuities (EIAs), is
designed to offer retirement income with returns linked to
an equity index while ensuring a minimum payout.

EIAs have drawn interest from financial markets since
their establishment in the mid-1990s. An EIA is a long-term
agreement with an insurance company that provides a
variable rate of return determined by the behaviour of a
stock market index, with a guaranteed minimum return.
Customers may be drawn to EIA products for several
reasons, such as the guaranteed minimum interest rate, which
mitigates risks of loss, and the ability to grow with the stock
market as returns are determined by the performance of the
stock index. There are numerous types of EIA contracts,
such as point-to-point, Ratchet, and look-back [12]. In a
point-to-point-type EIA, the return on assets is determined
by the change in the index between two time points. On the
other hand, in a Ratchet-type EIA, the return on assets is
determined annually, by comparing the year-beginning and
year-ending index values. Finally, in a look-back-type EIA,
the return on assets is determined using the highest index
value at the time of the EIA contract. In the present study,
we shall consider Ratchet-type EIAs.

Due to variable market conditions, pricing EIAs is not
straightforward. Researchers such as Lin and Tan [25], Lee
[24], Jaimungal [15], Kijima and Wong [23], Boyle and
Tian [6] have confirmed the suitability of modelling the
equity index using a geometric Brownian motion model,
which relies on the assumption that the logarithmic value
of the return on assets is normally distributed. Traditional
approaches for evaluating such complex financial products
often assume constant interest rates, which simplifies
mathematical modelling but disregards the inherent risk and
uncertainty associated with long-term interest rate variations
[13]. Since most EIAs have a maturity duration of one to ten
years, a constant interest-rate assumption may not lead to a
realistic modelling. EIA pricing with stochastic interest rates
has been studied by Lin and Tan [25], Kijima and Wong [23],
and Qian et al. [33], using models such as the Vasicek and
Cox-Ingersoll-Ross (CIR) models. These models and their
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variants have appeared in studies with various focuses, such
as the pricing of bonds [43], the refinancing of mortgages
[44], sensitivity analysis [36], and parameter estimation [40],
[41], [42]. In the present paper, we employ both models for
the pricing of compound Ratchet-type EIA products in the
context of the Indonesian financial market.

Our pricing is built upon several assumptions. First,
we assume that the market is complete and risk-neutral.
In addition, we assume that the underlying asset price
evolves over time following a geometric Brownian motion.
Furthermore, we assume that there are no transaction costs,
and that the policy does not lapse or expire before it
matures. We determine the interest rate using historical data
from 10-year Indonesian government bond yields, based
on the assumption that Indonesian government bonds are
risk-neutral. Specifically, the utilised dataset is the daily
dataset for 10 years, from March 13th, 2014 to March 13th,
2024, taken from the Investing.com website [22]. We also
employ some data provided by the Jakarta Stock Exchange
Composite, namely the daily index dataset for the same
10-year period, also taken from the Investing.com website
[21], as all stocks listed on the Indonesia Stock Exchange
are included in the Jakarta Stock Exchange Composite
stock market index. Both datasets are used to estimate the
parameters of the Vasicek, CIR, and geometric Brownian
motion models.

The rest of the paper is organised as follows. In the
upcoming section II, we introduce the models employed
in our study, including the constant, Vasicek, and CIR
models for interest rates as well as a geometric Brownian
motion model for asset prices. Subsequently, in section III,
we explain the pricing method for compound Ratchet-type
EIAs under the three different interest-rate assumptions.
In section IV, we derive estimates for the values of the
parameters involved in our model. Using the aforementioned
Indonesian data, we carry out numerical simulations to
illustrate the application of the models and to compare
the EIA prices across different assumptions, the results
of which are described in section V. In section VI, we
conduct a sensitivity analysis in the stochastic interest-rate
cases, determining the parameters upon which the EIA price
depends most sensitively. In the final section VII, we state
our conclusions and suggest future research directions.

II. THE MODELS

Interest rate and asset price are two important factors
in the valuation of an EIA. In the present research, we
assume that the asset price is a stochastic variable following
a geometric Brownian motion, and consider not only the
case of a constant interest rate but also that of a stochastic
interest rate. Indeed, a constant interest-rate assumption may
be reasonable only for short-term assets such as treasury
bills, commercial papers, and certificates of deposit, whose
maturities are typically less than a year. Typically, EIAs
have maturities ranging from one to ten years, and it could
be undesirable to assume no motion in interest rates over
such a long period. Accordingly, in this paper we consider
three different interest-rate assumptions: constant, stochastic
following the Vasicek model, and stochastic following the
CIR model. In Table I we summarise the parameters used in
the Vasicek, CIR, and geometric Brownian motion models.

TABLE I
SUMMARY OF PARAMETERS.

Parameters Description Unit

κ
the interest rate’s mean-reversion rate:
the speed at which the interest rate
reverts to its long-term mean

time−1

θ
the interest rate’s long-term mean: the
long-term average level to which the
interest rate reverts

% · time−1

σ
the interest rate’s volatility: the standard
deviation of the interest rate changes % ·

√
time

µ
the asset price’s drift rate: the expected
rate of return of the asset time−1

ψ the asset price’s volatility: the standard
deviation of the asset’s returns

% ·
√

time

To let the models reflect the economic situation in Indonesia,
in our numerical simulations (section V) we shall utilise the
historical data from Indonesian government bond yields and
the Jakarta Stock Exchange Composite index to estimate the
values of these parameters. In this section, we first discuss
the models themselves.

A. The constant interest rate model

Under the constant interest-rate assumption, the price at
time t of a bond maturing at time T is given by

P (t, T ) = e−r(T−t); (1)

see [5, equation (1.7)]. This formula represents the present
value of a unit of cash to be received at a future time T ,
discounted to the present time t using a constant interest
rate r. The exponential discount factor captures the effects
of time and the constant rate on the bond’s price, i.e., future
cash flows are diminished relative to their present value.

B. The Vasicek model

Let us now turn our attention to stochastic interest rate
models. Let r(t) be the short interest rate at time t ∈ [0, T ],
where T is the maturity of the EIA. We say that the short
rate r(t) follows the Vasicek model if its time-evolution is
governed by the stochastic differential equation

dr(t) = −κ (r(t)− θ) dt+ σ dWr(t), (2)

where κ, θ, and σ are positive parameters, and {Wr(t)} is
the standard Brownian motion correlated with {Ws(t)} with
correlation coefficient ρ, i.e.,

corr (Wr(t),Ws(t)) = ρ.

It can be shown [5, equation (3.6)] that a closed-form
solution of the Vasicek model (2) is given by

r(t) = r(0) e−κt + θ − θ e−κt + σe−κt
t∫

0

eκu dW (u). (3)

A notable drawback of the Vasicek model is that it may
generate negative values of the short rate r(t), while in
reality, the probability of a negative short rate is very low.
However, the model’s simplicity leads to its continued wide
use. For a detailed discussion on the Vasicek model, the
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reader is referred to [16]. In the present study, we employ the
formula derived in [9] for the price at time t of a zero-coupon
bond with maturity T :

P (t, T ) = E
(

e−
∫ T
t
r(u) du

∣∣∣Frt ) ,
under the assumption that r(t) follows the Vasicek model,
namely,

P (t, T ) = A(t, T ) e−r(t)B(t,T ), (4)

where

A(t, T ) = exp

(
(B(t, T )− (T − t))

(
θ − σ2

2κ2

)
− σ2

4κ
(B(t, T ))

2

)
and

B(t, T ) =
1− e−κ(T−t)

κ
.

C. The CIR model

The CIR model, being an improvement of the Vasicek
model, is given by the stochastic differential equation

dr(t) = −κ (r(t)− θ) dt+ σ
√
r(t) dWr(t), (5)

where, as before, r(t) denotes the short rate at time t ∈ [0, T ],
with T being the EIA’s maturity. The parameters κ, θ, and σ
are positive, and {Wr(t)} is the standard Brownian motion
correlated with {Ws(t)} with correlation coefficient ρ, i.e.,

corr (Wr(t),Ws(t)) = ρ.

Applying the method used to derive the closed-form solution
(3) of the Vasicek model (2), one obtains the following
closed-form solution of the CIR model (5):

r(t) = r(0) e−κt + θ − θe−κt + σe−κt
t∫

0

eκu
√
r(u) dW (u).

The presence of
√
r(t) in the CIR model (5) prevents

negative values of the short rate r(t), thereby improving the
Vasicek model [31]. In the present study, we employ the
formula derived in [9] for the price at time t of a zero-coupon
bond with maturity T :

P (t, T ) = E
(

e−
∫ T
t
r(u) du

∣∣∣Frt ) ,
under the assumption that r(t) follows the CIR model,
namely,

P (t, T ) = A(t, T )e−r(t)B(t,T ), (6)

where

A(t, T ) =

(
2γe(γ+κ)(T−t)/2

C(T, t)

)2κθ/σ2

,

B(t, T ) = 2
eγ(T−t) − 1

C(t, T )
,

C(t, T ) = 2γ + (κ+ γ)
(

eγ(T−t) − 1
)
,

with γ =
√
κ2 + 2σ2.

D. Geometric Brownian motion

In this paper, we assume that the asset price, i.e., the equity
index level at time t, denoted by St, follows a geometric
Brownian motion, i.e., that its time-evolution is governed by
the stochastic differential equation

dSt = µSt dt+ ψSt dW (t),

where µ and ψ are positive parameters [28]. Letting Pt =
St/St−1, one obtains, after discretisation, that lnPt is
normally distributed with parameters

(
µ− ψ2/2

)
∆t and

ψ2∆t [28].

III. PRICING THE EIA

Equity-indexed annuities (EIAs) are designed with features
that address investment risks and uncertainties. One key
characteristic is the guaranteed minimum interest rate, which
ensures that the investment value does not fall below the
initial amount, providing protection against losses when
asset values decline. Conversely, the guaranteed maximum
interest rate limits returns during periods of significant
stock index growth, thereby managing the potential liability
for the insurance provider. Additionally, EIAs incorporate
a participation rate, which specifies the proportion of
index-linked returns allocated to the investor. Higher
participation rates allow for a greater share of returns,
depending on the terms of the contract.

In a Ratchet-type EIA [23], [2], the interest rate is
calculated annually and compounded in subsequent periods
for the duration of the contract. This enables the investor’s
funds, along with accrued interest, to grow progressively
over time. Ratchet-type EIAs are further classified into two
categories: simple and compound. In a simple Ratchet, profits
are calculated independently for each period based on a fixed
total payment amount. By contrast, a compound Ratchet
carries forward the profits from previous periods, adding
them to the principal for compounding in the subsequent
period. In this study, we shall price a compound Ratchet-type
EIA.

Suppose that an investor makes an initial investment of 1.
Letting T be the contract’s maturity and St be the asset price
in year t ∈ {0, 1, 2, . . . , T}, the investment’s rate of return
in year t is given by

Pt =
St
St−1

.

Thus, compared to the previous year’s price, the present asset
price increases if Pt > 1, decreases if Pt < 1, and remains
unchanged if Pt = 1. Next, if the investor invests funds with
participation rate α, then their profit is initially calculated as
α (Pt − 1). However, to protect against drastic increases in
asset prices that could result in significant company losses,
suppose that the company imposes a maximum interest
rate c. Taking this into account, the investor’s profit is
limited to min {α (Pt − 1) , c}. On the other hand, when
asset prices decrease, the investor’s profit may fall below
an acceptable threshold. To mitigate this, suppose that the
company guarantees a minimum interest rate f . Taking this
into account, the profit received by the investor is given by
max {min {α (Pt − 1) , c} , f}. Consequently, the effective

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2373-2380

 
______________________________________________________________________________________ 



annual return of the EIA contract at the end of year t is
given by

P̃t = 1 + max {min {α (Pt − 1) , c} , f}

=


1 + α (Pt − 1) , if fα 6 Pt < cα;

1 + c, if fα 6 cα 6 Pt;

1 + f, if Pt < fα < cα,

where fα = 1 + f/α and cα = 1 + c/α. The expected value
of P̃t can be computed as follows:

E
(
P̃t
)

=

∞∫
0

p̃tfPt (pt) dpt

=

fα∫
0

(1 + f) fPt (pt) dpt

+

cα∫
fα

(1 + α (pt − 1)) fPt (pt) dpt

+

∞∫
cα

(1 + c) fPt (pt) dpt

= I1 + I2 + I3 + I4,

where

I1 =

fα∫
0

(1 + f) fPt (pt) dpt (7)

= (1 + f) Pr (Pt 6 fα)

= (1 + f) Φ

(
ln (1 + f/α)−

(
µ− ψ2/2

)
ψ

)
,

I2 =

cα∫
fα

(1− α)fPt (pt) dpt

= (1− α)

 cα∫
0

fPt (pt) dpt −
fα∫
0

fPt (pt) dpt


= (1− α) (Pr (Pt 6 cα)− Pr(Pt 6 fα))

= (1− α)

(
Φ

(
ln (1 + c/α)−

(
µ− ψ2/2

)
ψ

)

−Φ

(
ln (1 + f/α)−

(
µ− ψ2/2

)
ψ

))
,

I3 =

cα∫
fα

αPtfPt (pt) dpt

= α

ln cα∫
ln fα

1√
2πψ2

exp

(
−
(
s−
(
µ−ψ2/2

))2
2ψ2

)
exp (s) ds

= α eµ
ln cα∫

ln fα

1√
2πψ2

exp

(
− 1

2ψ2

(
s−
(
µ+

ψ2

2

))2
)

ds (8)

= α eµ
(

Φ

(
ln (1 + c/α)−

(
µ+ ψ2/2

)
ψ

)

−Φ

(
ln (1 + f/α)−

(
µ+ ψ2/2

)
ψ

))
,

I4 = (1 + c)

1−
cα∫
−∞

fPt (pt) dpt


= (1 + c) (1− Pr (Pt 6 cα))

= (1 + c)

(
1− Φ

(
ln (1 + c/α)−

(
µ− ψ2/2

)
ψ

))
.

The symbol Φ denotes the cumulative distribution function of
the standard normal distribution. Notice that we have used
the fact that the integrand in (8) is the probability density
function of the normal distribution with parameters µ+ψ2/2
and ψ2.

Therefore, the expected value of P̃t is given by

E
(
P̃t

)
= (1 + f) Φ (d1) + (1− α) [Φ (d2)− Φ (d1)]

+ αeµ[Φ(d3)−Φ(d4)]+(1+c)(1−Φ (d2)) , (9)

where

d1 =
ln (1 + f/α)−

(
µ− ψ2/2

)
ψ

,

d2 =
ln (1 + c/α)−

(
µ− ψ2/2

)
ψ

,

d3 =
ln (1 + c/α)−

(
µ+ ψ2/2

)
ψ

,

d4 =
ln (1 + f/α)−

(
µ+ ψ2/2

)
ψ

.

If, at the time of purchasing the EIA, the investor invests
an amount of R, then the compound Ratchet-type EIA
investment value at the contract’s maturity is given by

Pcr = R
T∏
t=1

P̃t;

see [18]. Therefore, the compound Ratchet-type EIA price
at time 0 with maturity T is given by

V (T ) = E (P (0, T ) · Pcr)

= P (0, T ) ·R · E

(
T∏
t=1

P̃t

)
= P (0, T ) ·R ·

(
E
(
P̃t

))T
, (10)

where P (0, T ) denotes the price at time 0 of a zero-coupon
bond with maturity T . In the cases of the interest rate
being constant, stochastic following the Vasicek model, and
stochastic following the CIR model, we shall apply the
formulae (1), (4), and (6), respectively, to compute P (0, T )
in the EIA price formula (10).

IV. PARAMETER ESTIMATION

As previously mentioned, in our numerical simulations
(section V) we shall estimate the values of the parameters
in Table I using the data representing the Indonesian market
situation. In this section, we first derive formulae to be used
to estimate these parameters.
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A. Vasicek Model

To estimate the parameters involved in the Vasicek model
(as also in the CIR model; see next subsection), we first apply
Itô’s Lemma [17] to determine the conditional expectation
and variance of r(t). These are given by

E [r(T ) | r(t)]

= E

r(t)e−κ(T−t)+θ−θe−κ(T−t)+σe−κT
T∫
t

eκudW (u)

∣∣∣∣∣r(t)


= r(t)e−κ(T−t) + θ
(

1− e−κ(T−t)
)

+ σe−κTE

 T∫
t

eκu dW (u)

∣∣∣∣∣ r(t)


= r(t)e−κ(T−t) + θ
(

1− e−κ(T−t)
)

and

Var [r(T ) | r(t)]

= Var

r(t)e−κ(T−t)+θ−θe−κ(T−t)+σe−κT
T∫
t

eκudW (u)

∣∣∣∣∣r(t)


= E

(σe−κT
)2 T∫

t

eκu dW (u)

2 ∣∣∣∣∣ r(t)


=
σ2

2κ

(
1− e−2κ(T−t)

)
.

Therefore,

E [rj+1 | rj ] = rje−κ∆t + θ
(
1− e−κ∆t

)
,

Var [rj+1 | rj ] =
σ2

2κ

(
1− e−2κ∆t

)
.

Given that the interest rate r(t) in the Vasicek model is
normally distributed [5, Table 3.1], the parameters κ, θ, and
σ can be estimated using the log-likelihood function of the
normal distribution (see [14, equation (6.1.1)]):

L(E [rj+1 | rj ] ,Var [rj+1 | rj ])

= −n
2

ln (Var [rj+1 | rj ])

− 1

2Var [rj+1 | rj ]

n∑
j=1

(rj+1 − E [rj+1 | rj ])2

− n

2
ln 2π.

Therefore,

L(κ, θ, σ)

= −n
2

ln (2π)− n

2
ln

(
σ3

2κ

(
1− e−2κ∆t

))

−

n∑
j=1

(
rj+1 −

(
rje−κ∆t + θ

(
1− e−κ∆t

)))2
(σ2/κ) (1− e−2κ∆t)

.

Estimates for κ, θ, and σ, which satisfy

∂L
∂κ

=
∂L
∂θ

=
∂L
∂σ2

= 0,

are given by

κ̂ = − 1

∆t
ln


n

n∑
j=1

rj+1rj −
n∑
j=1

rj+1

n∑
j=1

rj

n
n∑
j=1

r2
j −

(
n∑
j=1

rj

)2

 ,

θ̂ =
1

n (1− e−κ̂∆t)

n∑
j=1

(
rj+1 − rje−κ̂∆t

)
,

σ̂ =

√√√√√2κ̂
n∑
j=1

(
rj+1 − rje−κ̂∆t − θ̂ (1− e−κ̂∆t)

)2

n (1− e−2κ̂∆t)
.

B. CIR Model

Applying Itô’s Lemma, the conditional expectation and
variance of r(t) in the case of the CIR model are given by

E [r(T ) | r(t)]

= E

[
r(t)e−κ(T−t) + θ − θe−κ(T−t)

+ σe−κT
T∫
t

eκu
√
r(u) dW (u)

∣∣∣∣∣ r(t)
]

= r(t)e−κ(T−t) + θ
(

1− e−κ(T−t)
)

+ σe−κTE

 T∫
t

eκu
√
r(u) dW (u)

∣∣∣∣∣ r(t)


= r(t)e−κ(T−t) + θ
(

1− e−κ(T−t)
)
,

and

Var [r(T ) | r(t)]

= Var
[
r(t)e−κ(T−t) + θ − θe−κ(T−t)

+ σe−κT
T∫
t

eκu
√
r(u) dW (u)

∣∣∣∣∣ r(t)
]

= Var

σe−κT
T∫
t

eκu
√
r(u) dW (u)

∣∣∣∣∣ r(t)


= σ2

[
r(t)

κ

(
e−κ(T−t)−e−2κ(T−t)

)
+
θ

2κ

(
1−e−κ(T−t)

)2
]
.

Therefore,

E [rj | rj−1] = rj−1e−κ∆t + θ
(
1− e−κ∆t

)
,

Var[rj | rj−1] = σ2
[rj−1

κ

(
e−κ∆t − e−2κ∆t

)
+

θ

2κ

(
1− e−κ∆t

)2]
.

In the case of the CIR model, since the interest rate r(t) is
not normally distributed [5, Table 3.1], to estimate κ, θ, and
σ we could not use the normal distribution’s log-likelihood
function. Instead, we apply the least-squares estimation
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method [1]. Notice that in the CIR model,

rj = rj−1e−κ∆t+θ
(
1− e−κ∆t

)
+

j∫
j−1

σe−κ∆t
√
r(u) dW (u)

= E (rj | rj−1) +

j∫
j−1

σe−κ∆t
√
r(u) dW (u).

Letting

εj =

j∫
j−1

σe−κ∆t
√
r(u) dW (u),

we obtain
n∑
j=1

ε2
j =

n∑
j=1

(rj − E (rj | rj−1))
2
.

Estimates for κ, θ, and σ, which satisfy

∂

∂κ

 n∑
j=1

ε2
t

 =
∂

∂θ

 n∑
j=1

ε2
t

 =
∂

∂σ2

 n∑
j=1

ε2
t

 = 0,

are given by

κ̂ = − 1

∆t
ln


n

n∑
j=1

rjrj−1 −
n∑
j=1

rj
n∑
j=1

rj−1

n
n∑
j=1

(rj−1)2 −

(
n∑
j=1

rj−1

)2

 ,

θ̂ =

n∑
j=1

rj − e−κ̂∆t
n∑
j=1

rj−1

n (1− e−κ̂∆t)
,

σ̂ =

√√√√√√√√
(1/n)

n∑
j=1

(
rj − rj−1e−κ̂∆t − θ̂ (1− e−κ̂∆t)

)2

(1/κ̂n)(e−κ̂∆t−e−2κ̂∆t)
n∑
j=1

rj−1+
(
θ̂/2κ̂

)
(1−e−κ̂∆t)

2
.

C. EIA

Suppose that the EIA follows a geometric Brownian
motion, as given by equation (7). Since lnPt is normally
distributed with parameters

(
µ− ψ2/2

)
∆t and ψ2∆t, we

have

E(lnPt) =

(
µ− ψ2

2

)
∆t and Var(lnPt) = ψ2∆t.

Therefore, the parameters µ and ψ can be estimated by

ψ̂ =

√
Var(lnPt)

∆t
and µ̂ =

E(lnPt)

∆t
+
ψ̂2

2
. (11)

V. NUMERICAL SIMULATION

In this section, we present the results of our numerical
simulations, to demonstrate the application of the models
discussed earlier to the pricing of a compound Ratchet-type
EIA. The pricing is carried out under the three different
interest-rate assumptions: constant, stochastic following the
Vasicek model, and stochastic following the CIR model.

Suppose that an investor wishes to purchase a 10-year
compound Ratchet-type EIA contract with an initial

TABLE II
THE ESTIMATED VALUES OF PARAMETERS.

κ̂ θ̂ σ̂ ψ̂ µ̂

Vasicek 0.9261 0.0711 0.0107 EIA 0.1478 0.0529
CIR 0.9253 0.0711 0.0396

TABLE III
EIA PRICE UNDER THREE DIFFERENT INTEREST-RATE ASSUMPTIONS.

Interest-rate assumption EIA price

Constant 107.2870

Vasicek 103.7411

CIR 103.7356

investment of R = 100, which features a minimum and
maximum interest rates of f = 6% and c = 11%,
respectively. Suppose that the investment is made with a
participation rate of α = 90%. Applying the formulae (11)
to the 10-year daily dataset of the Jakarta Stock Exchange
Composite index from March 13th, 2014 to March 13th,
2024, we obtain the estimates ψ̂ ≈ 0.1478 and µ̂ ≈ 0.0529.

On the other hand, the parameters in the Vasicek and CIR
models are estimated using the 10-year daily dataset of the
Indonesian bond yields from March 13th, 2014 to March
13th, 2024. Applying the formulae derived in subsections
IV-A and IV-B, one obtains the parameter values presented
in Table II. For the constant interest rate case, we shall use
as the interest rate the average of the long-term means θ in
the cases of Vasicek and CIR models.

Using the parameter values presented in Table II along
with equations (4), (9), and (10), we can now calculate the
price of the EIA under three different assumptions on the
interest rate: constant, stochastic based on the Vasicek model,
and stochastic based on the CIR model. The results are shown
in Table III.

Table III shows that the highest EIA price is obtained
under the constant interest-rate assumption. This is
unsurprising since the assumption of no interest rate
fluctuations eliminates the possibility of rate decreases that
could reduce the annuity value, thereby leading to a higher
EIA price. On the other hand, while the CIR model accounts
for interest rate volatility, its price is nearly identical to that
of the simpler Vasicek model. This indicates that, under
the market conditions represented by the utilised data, the
additional volatility captured by the CIR model has little
impact on the valuation compared to the mean-reverting
nature of the Vasicek model.

VI. SENSITIVITY ANALYSIS

Our next aim is to analyse the sensitivity of the EIA
prices obtained in section V with respect to each parameter
involved in the models. We shall conduct this sensitivity
analysis only in the two stochastic interest rate cases. To
quantify the sensitivity of the EIA price V (T ) with respect
to a parameter p upon which the price depends differentiably,
we shall utilise the so-called sensitivity index of V (T ) with
respect to p [7]:

ΥV (T )
p =

∂V (T )

∂p
· p

V (T )
≈ ∆V (T )/V (T )

∆p/p
,

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2373-2380

 
______________________________________________________________________________________ 



TABLE IV
THE SENSITIVITY INDICES OF THE EIA PRICE V (T ) WITH RESPECT TO
κ, θ, σ, µ, AND ψ IN THE TWO STOCHASTIC INTEREST RATE CASES.

Sensitivity index
Interest rate
assumption

Vasicek CIR

Υ
V (T )
κ 0.0090 0.0091

Υ
V (T )
θ −0.6341 −0.6335

Υ
V (T )
σ 0.0011 0.0003

Υ
V (T )
µ 0.0000 0.0000

Υ
V (T )
ψ 0.0000 0.0000

which provides an estimate for the ratio of a relative change
in the EIA price V (T ) with respect to a relative change in
the parameter α. If Υ

V (T )
p > 0, then an increase of 1% of

p leads to an increase of Υ
V (T )
p % of V (T ). If Υ

V (T )
p < 0,

then an increase of 1% of p leads to a decrease of Υ
V (T )
p %

of V (T ).
In both of the stochastic interest rate cases, i.e., Vasicek

and CIR, the formula (10) enables us to compute analytically
∂V (T )/∂p, and hence the index Υ

V (T )
p , for each p ∈

{κ, θ, σ, µ, ψ}. Evaluating these indices at the parameter
values used in our numerical simulation (section V), one
obtains the values presented in Table IV.

Table II shows that in both of the stochastic interest
rate cases, the calculated EIA price V (T ) depends most
sensitively upon the interest rate’s long-term mean θ, with a
1% increase in θ leading to 0.6341% and 0.6335% decreases
in V (T ) in the Vasicek and CIR cases, respectively. By
contrast, the EIA price V (T ) is fairly insensitive upon the
interest rate’s mean-reversion rate κ and the interest rate’s
volatility σ, and is entirely insensitive to the asset price’s drift
rate µ and the asset price’s volatility ψ. This suggests that
adjustments to these parameters have no discernible impact
on the price, potentially due to the Ratchet design’s structure,
which mitigates downside risk by guaranteeing minimum
returns.

VII. CONCLUSIONS AND FUTURE RESEARCH

We have studied the pricing of compound Ratchet-type
equity-indexed annuities (EIAs) under three different
interest-rate assumptions: constant, stochastic using the
Vasicek model, and stochastic using the Cox-Ingersoll-Ross
(CIR) model, with the price of the associated asset assumed
to follow a geometric Brownian motion, the parameters
being estimated using the historical data from Indonesian
government bond yields and the Jakarta Stock Exchange
Composite index. The results revealed that the constant
interest-rate assumption yields the highest EIA price, as it
eliminates the risk of interest rate declines, ensuring more
predictable cash flows. The EIA prices calculated under
the two stochastic interest-rate assumptions are not only
lower but also nearly identical, showing that the additional
complexity introduced in the CIR model has minimal
influence under the market conditions represented by the
utilised data. Under these assumptions, we have further
shown through a sensitivity analysis that the calculated
EIA price depends most sensitively upon the interest rate’s

long-term mean, with a 1% increase in the long-term mean
leading to around 0.6% increase in the EIA price. Changes in
other parameters, by contrast, lead to very little to no change
in the calculated EIA price.

This research is extendible in a number of ways, primarily
by choosing more flexible models for both stochastic interest
rates and asset price movements, thereby enhancing the
accuracy and applicability of the EIA pricing. For interest
rates, alternatives such as the Hull-White model [20], the
Dothan [10], and the Black-Derman-Toy model [3] offer
greater adaptability to complex market conditions. Regarding
asset prices, moving beyond the geometric Brownian motion
assumption, future studies could consider regime-switching
models [4] to account for abrupt volatility changes or Lévy
processes [19] for modelling discontinuous price movements.

ACKNOWLEDGMENT

The authors would like to thank Dharma Lesmono and
Andreas Parama Wijaya for their useful inputs.

REFERENCES

[1] K. W. Ahn and K.-S. Chan, “Approximate conditional least squares
estimation of a nonlinear state-space model via an unscented Kalman
filter,” Computational Statistics and Data Analysis, vol. 69, pp243-254,
2014.

[2] L. Ballotta, “Efficient pricing of Ratchet equity-indexed annuities in a
variance-gamma economy,” North American Actuarial Journal, vol. 14,
no. 3, pp1272-1296, 2014.

[3] F. Black, E. Derman, and W. Toy, “A one-factor model of interest
rates and its application to treasury bond options,” Financial Analysts
Journal, vol. 46, no. 1, pp33-39, 1990.

[4] N. P. Bollen, “Valuing options in regime-switching models,” The
Journal of Derivatives, vol. 6, no. 1, pp38-49, 1998.

[5] D. Brigo and F. Mercurio, Interest Rate Models – Theory and Practice:
With Smile, Inflation and Credit, 2nd ed., Springer, New Jersey, 2006.

[6] P. Boyle and W. Tian, “The design of equity-indexed annuities,”
Insurance: Mathematics and Economics, vol. 43, no. 3, pp303-315,
2008.

[7] N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining important
parameters in the spread of malaria through the sensitivity analysis
of a mathematical model,” Bulletin of Mathematical Biology, vol. 70,
no. 1, pp1272-1296, 2014.

[8] J. Choi, “The valuation of an equity-linked life insurance using
the theory of indifference pricing,” IAENG International Journal of
Applied Mathematics, vol. 46, no. 4, pp480-487, 2016.

[9] J. C. Cox, J. E. Ingersoll, and S. A. Ross, “A theory of the term
structure of interest rates,” Econometrica, vol. 53, no. 2, pp385-407,
1985.

[10] L. Dothan, “On the term structure of interest rates,” Journal of
Financial Economics, vol. 6, no. 1, pp59-69, 1978.

[11] K. Du, G. Liu, and G. Gu, “Accelerating Monte Carlo method for
pricing multi-asset options under stochastic volatility models,” IAENG
International Journal of Applied Mathematics, vol. 44, no. 2, pp62-70,
2014.

[12] M. R. Hardy, Investment Guarantees: Modeling and Risk Management
For Equity-Linked Life Insurance, Wiley, New Jersey, 2003.

[13] M. R. Hardy, “Ratchet equity indexed annuities,” 14th Annual
International AFIR Colloquium, 2004.

[14] R. V. Hogg, J. W. McKean, and A. T. Craig, Introduction to
Mathematical Statistics, 8th ed., Pearson, New Jersey, 2018.

[15] S. Jaimugal, “Pricing and hedging equity indexed annuities with
variance gamma deviates,” https://www.utstat.toronto.edu/sjaimung/
papers/eiaVG.pdf.

[16] J. James and N. Webber, Interest Rate Modelling, Wiley, New Jersey,
2000.

[17] J. Hull, Options, Futures, and Other Derivatives, 11th ed., Pearson,
New Jersey, 2021.

[18] M.-H. Hsieh and Y.-F. Chiu, “Monte Carlo methods for valuation
of Ratchet equity indexed annuities,” Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2007, pp998-1003.

[19] S. C. Huang and M. W. Hung, “Pricing foreign equity options under
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