
 

   Abstract—With the widespread application of information 
technology in power systems, microgrids have gradually 
evolved into Cyber Physical Power Systems that integrate 
power networks and physical systems. However, it increases the 
risk of false data injection attacks (FDIA) in the microgrids 
because their distributed cooperative control relies on real-time 
communication and system state information. To address this 
trouble, an Improved Grey Wolf Optimized Cubature Kalman 
Filter (IGWO-CKF) algorithm is proposed in this paper for the 
FDIA detection in microgrids. Specifically, a microgrid model 
that contains multiple levels false data attacks is firstly 
established. Then, by introducing Improved Grey Wolf 
Optimizer into Cubature Kalman Filter, a new IGWO-CKF is 
proposed to enhance the accuracy of attack detection in 
microgrids and overcome the poor performance defect of 
traditional Cubature Kalman Filter (CKF) in handling highly 
nonlinear systems. Finally, simulations are conducted on the 
WECC 9-bus system and the New England 39-bus system, 
which demonstrate the effectiveness and practicality the 
proposed method. 
 

Index Terms—Microgrids; CPPSs; FDIA; IGWO-CKF 

I. INTRODUCTION 
ith the widespread application of information control 
technology in the power systems, microgrids have 

gradually evolved into Cyber Physical Power Systems 
(CPPSs) [1]. The communication environment of CPPSs 
makes its information network more vulnerable to network 
attacks, and pose a serious threat to the security and stability 
of the system [2]. False Data Injection Attacks (FDIA) which 
disrupt the integrity of power system data by tampering with 
measurement data, seriously affects the accuracy of system 
 

Manuscript received November 17, 2024; revised May 6, 2025.  
This work was supported by the China Southern Power Grid Project under 

grant 031400KC23120011. 
Wei Luo is a senior engineer in the Meizhou Power Supply Bureau of 

Guangdong Power Grid, Guangdong Power Grid Corporation, Meizhou 
514021, China (email: lwgd86@126.com). 

Minglei Xie is a senior engineer in the Southern Power Grid Scientific 
Research Institute Company of Limited Liability, Guangzhou 510080, China 
(email: xieminglei@126.com). 

Jinfeng Wang is a senior engineer with the rank of a professor in the 
Guangdong Electric Power Research Institute, Guangzhou 518118, China 
(email: jfwang@163.com). 

Yuanzhe Zhu is a senior engineer in the Southern Power Grid Energy 
Development Research Institute Company of Limited Liability, Guangzhou 
511458 (email: szzhouyong1975@126.com). 

Wanlin Du is an engineer in the Guangdong Electric Power Research 
Institute, Guangzhou 518118, China (e-mail: dwlgd@126.com). 

Weizhong Chen is a senior engineer in the Meizhou Power Supply Bureau 
of Guangdong Power Grid, Guangdong Power Grid Corporation, Meizhou 
514021, China (e-mail: chenweizhong@126.com). 

Qinlong Hu is an engineer in the Hangzhou Lengyue Technology 
Company of Limited Liability, Hangzhou 310020, China (e-mail:  
huqinlong@126.com). 

state estimation, and potentially leads to incorrect 
decision-making by control centers [3,4], and even causes 
large-scale blackouts. Therefore, how to effectively detect 
FDIA has become an urgent issue of smart grid. 

The existing methods for FDIA detection are mainly 
classified into three categories: statistical analysis-based, 
machine learning-based, and state estimation-based methods 
[5]. The statistical analysis-based methods detect deviations 
between measurement data and actual states by residual 
analysis. In [6], the Measurement Error Residual Similarity 
(MERS) is proposed to effectively improve FDIA detection 
accuracy and reduce false positive rates. In [7], a Generalized 
Likelihood Ratio Test (GLRT) is proposed to statistically 
analyze measurement data and identify anomalies caused by 
FDIA. Principal Component Analysis (PCA) and Canonical 
Correlation Analysis (CCA) methods are investigated in [8], 
which shows that CCA performs better than PCA for FDIA 
detection. Second, machine learning-based methods utilize 
deep learning architectures to detect FDIA. In [9], a deep 
learning model is designed by combining traditional methods 
for real-time detection of both structured and unstructured 
attacks. In [10], the application of machine learning in FDIA 
detection is discussed to address class imbalance issues in 
datasets by using feature selection and oversampling. 
Support Vector Machine (SVM) and Artificial Neural 
Network (ANN) are employed to classify attacks based on 
normal and attack data features. In addition, other machine 
learning technique such as Convolkutional Neural Networks 
(CNN) is also applied to enhance detection efficiency [11,12]. 

In contrast, due to state estimation-based methods 
analyzing grid state variables (e.g., voltage magnitude and 
phase angle) through physical models and effectively 
identifying abnormal states in the system, they have unique 
advantages of stronger sensitivity to dynamic changes in the 
system, which can more accurately distinguish between 
normal fluctuations and attack behavior. In [13], a method 
based on dynamic-static parallel state estimation is proposed 
to identify FDIA in real-time. When the system is affected by 
FDIA, the reduced correlation in parallel time series 
effectively reveals potential FDIA. By combining the 
Unscented Kalman Filter (UKF) with the Weighted Least 
Squares (WLS) algorithm in real-time, [14] detects the 
differences between estimated values to identify FDIA. [15] 
establishes a DC MG model with FDIAs and analyzes the 
system under attack. By reviewing the FDIA detection 
limitations of traditional residual methods and Kalman 
filter-based detectors in noisy and complex networks, an 
attack magnitude planning strategy is introduced in [16] to 
exploit noise tolerance and bypass residual detection. In [17], 
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a novel outlier detection and state correction strategy is 
proposed by comparing deviations between EKF and 
weighted least squares (WLS) against an offline threshold. In 
[18], the robustness of the Cubature Kalman Filter (CKF) 
algorithm is enhanced by utilizing a fading factor and 
integrated an interacting multiple model to achieve 
hypersonic target tracking. Similarly, the robustness of the 
CKF algorithm is improved by different attempts in [19-21]. 

The Kalman Filter (KF) is a common tool for dynamic 
state estimation, however the classical KF is only applicable 
to linear systems. As the extension, the Cubature Kalman 
Filter (CKF) can handle nonlinear systems. However, the 
CKF suffers from the linearization errors when it is employed 
to deal with highly nonlinear situations, especially during 
severe dynamic events like short-circuit faults. It may result 
in insufficient estimation accuracy. As a result, to 
compensate for this drawback, this paper proposes an 
improved Cubature Kalman Filter based on an enhanced 
Grey Wolf Optimization. The standard Grey Wolf 
Optimization (GWO) algorithm is prone to local optima and 
slow convergence. To mitigate these issues, this study 
incorporates the quasi-oppositional population initialization 
strategy, nonlinear parameter adjustment, boundary handling 
strategy, and dynamic weight adjustment to form an 
Improved Grey Wolf Optimization (IGWO) algorithm. The 
IGWO-CKF utilizes GWO to adaptively tune the process 
noise covariance and measurement noise covariance in 
real-time, thereby it optimizes the Kalman gain to tackle 
complex False Data Injection Attacks (FDIA) in power 
systems. Simulation results demonstrate that the proposed 
method effectively detects FDIA attacks. 

II. POWER SYSTEM DYNAMIC MODEL 
The power system model reflects the dynamic response of 

generators under various operating conditions, which 
provides a foundation for FDIA detection and analysis. 
Based on a classical generator model, we introduce the 
dynamic model (1), which is used for state estimation of 
power systems, and provides a reliable framework to 
accurately describe the dynamic behavior of power systems.  
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where iδ , iω , miP , GiP  represent the rotor angle, angular speed, 
mechanical power and output power of generator i, 
respectively. 0ω is the synchronous (rated) speed of this 
generator. D denotes the damping coefficient, and H 
represents the inertia constant of this generator. The output 
power of this generator is as: 
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where Y  denotes the admittance matrix of a simplified 
network consisting only of internal generator buses, E  is the 
internal voltage of the generator, and θ is the angle of Y The 
calculation for Y  follows equation (3): 

 1
22 21 11 12Y Y Y Y Y−= − × ×  (3) 

where 
11

Y  is the admittance matrix between loads, 
12 21

TY Y=  is 
the admittance matrix between loads and generators, and 

22
Y  

is the admittance matrix between rotors. The discrete form of 
equation (1) is shown as: 
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where ,i δω and ,i ωω  are the process noise associated with 
state variables δ  and ω , respectively, and tΔ  is the 
simulation time step. Therefore, the parameters to be 
predicted are the rotor angle δ and the rotor angular velocity 
ω . 

A nonlinear measurement function is used for dynamic 
state estimation in power systems, referred to as the 
measurement model. In the dynamic state estimation of 
power systems, the active and reactive power obtained from 
generators are typically used as inputs. The expression for the 
active power output of a generator is given in equation (2), 
while the expression for the reactive power output of the 
generator is represented as: 
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The voltage magnitude and phase angle measurements are 
given in equation (6). 
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where expY  represents the extended system matrix. 
exp

V  
denotes the extended voltage vector, including the internal 
rotor voltage E and the bus voltage V. GI is the injected 
current. From equation (6), the relationship between V and E 
can be derived as follows:   

 1
11 22V ( ) E EVY Y Rθ δ δ−∠ = − ∠ = ∠  (7) 

where VR  is the voltage reconstruction matrix. As a result, 
the dynamic state estimation model and the measurement 
model is formulated as: 

 [ ]T TX δ ω=  (8) 
 [ ]

i i

T T T T
G GZ P Q V θ=  (9) 

III. FDIA MODEL 
A. FDIA Introduction 
FDIAs can be implemented at multiple levels, which 

includes measurement unit attacks (A1), communication 
network attacks (A2), and control device attacks (A3). By 
manipulating data at these levels, attackers can affect the 
state estimation of the power system, and cause the system to 
make incorrect decisions based on erroneous data. In turn, it 
impacts the stability and security of the power systems. The 
structure of FDIA targeting microgrids is illustrated in the 
Fig.1. Data collected by sensors is transmitted through the 
communication network to the remote terminal unit (RTU) at 
the information layer. The communication layer is a critical 
attack point for FDIAs. Attackers can hijack, alter, or forge 
communication data, passing false measurements to the 
upper layers and disrupting the normal operation of the 
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Fig. 1. The FDIA structure in the smart grid 

 
power system. The RTU can also transmit data obtained from 
the sensing and execution layers to the Supervisory Control 
and Data Acquisition (SCADA) system. At this level, 
attackers can directly tamper with the data, inject false 
measurements (A1), or interfere with system operation by 
altering network communications (A2). The SCADA system 
transmits the data from the lower levels to the decision 
control system, where grid operators and automation systems 
make decisions. Once attackers successfully inject false data, 
the decision system may make erroneous optimization 
decisions (A3) based on these falsified data, and lead to 
control operation failures that affect grid performance. 

To address bad data caused by FDIA, this paper employs 
the Kalman Filter for prediction, comparing predicted values 
with actual values to detect FDIA. In power systems, 
modeling false data injection attacks (FDIA) typically 
involves tampering with system measurements to alter state 
estimation results. This paper targets FDIA on sensor data in 
generator measurement units. To verify the effectiveness of 
the proposed algorithm under various attack modes, we select 
measurement values from three generators in the WECC 
9-bus system and ten generators in the New England 39-bus 
system as attack targets. To comprehensively test the 
algorithm's detection capabilities, this study utilizes three 
typical FDIA models—pulse attacks, ramp attacks, and 
random attacks—to simulate different types of malicious 
interference scenarios. 

B. Pulse Attack 
A pulse attack is an instantaneous attack where the attacker 

injects a pulse into the measurement data at a specific 

moment, attempting to disrupt the system's state estimation 
over a short period. Its mathematical model is as follows: 
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In the above equation, ( )
i

X t represents the original 
measurement value of the system, and ia  denotes the pulse 
attack signal, T

i 3i2i1 ia ,a ,=[ a a ] The pulse attack can be 
expressed by the following formula: 1ia  is the FDIA applied 
to the rotor angle iδ  in the measurement of the i  generator, 

2ia is the FDIA applied to the rotor speed iω  of the i  
generator, 3ia is the FDIA applied to the voltage measurement 
of the i generator, and iτ  represents the duration of the 
attack. 

C. Ramp Attack 
A ramp attack is a gradual attack where the attacker 

increases or decreases the measurement value incrementally 
from a specific moment, ultimately impacting the state 
estimation of the system. Its mathematical model is as 
follows: 
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λ τ
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 (11) 

where 
i

λ  is the ramp coefficient. 
D. Random Attack 
A random attack is the attacker injects disturbances into 

the measurements based on a random distribution. The 
objective of a random attack is to increase system noise and 
compromise the accuracy of state estimation. The random 
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attack can be expressed as follows, where m and n are the 
upper and lower bounds of the random attack: 
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The randomness of random attacks makes it difficult for 
the system to distinguish between normal noise and attack 
signals using conventional detection methods. 

IV.  IMPROVED GREY WOLF OPTIMIZED CUBATURE 
KALMAN FILTER 

A. Standard Cubature Kalman Filter 
For a nonlinear discrete-time tracking system with additive 

noise, the state-space equations are represented as: 

 1 1( )
( )

k k k

k k k

x f x w
z h x v

− −= +
= +

 (13) 

where kx represents the state vector at time k, and kz  
represents the measurement vector at time k. 1kw −  denotes 
the process Gaussian white noise with variance 1kQ − , and 

kv denotes the measurement Gaussian white noise with 
variance kR . ( )f ⋅ and ( )h ⋅  correspond to the state transition 
function and measurement function, respectively. 

The core task of nonlinear filtering is to obtain the 
minimum variance estimate of the system state using noisy 
measurements. The key challenge lies in solving the 
following integral: 

 ( ) ( ) exp( )TI f f x x x dx= −  (14) 

The core of CKF is to select cubature points using the 
third-order spherical-radial cubature rule. Specifically, let 
x ry= and y be the unit directional vectors in a dimensional 
space. Equation (15) can be decomposed into a dimensional 
spherical integral and a one-dimensional radial integral in the 
spherical-radial coordinate system: 
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where { }1n T
nU R= ∈ =y y y∣ ,Let ( )d yσ  denote the 

spherical micro-element nU . In equation (16), 
( ) 1fw y = represents the spherical integral weight, and 
( ) 21 ef

n rw rr − −= denotes the radial integral weight. Here, iy  
and ,y iw  correspond to the quadrature points and weights for 
spherical integration, while jr  and ,r jw  represent the 
quadrature points and weights for radial integration. 
Equation (16) can be expressed as: 
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Applying Equation (19) to Gaussian-weighted integration 
yields: 

 , ,
1 1

1( ) ( ;0, ) ( 2 )
y rN N

y i r j j in
i j

g x N x I dx w w g r y
π = =

=   (19) 

In summary, the third-order spherical-phase radial 
cubature criterion is formulated as: 
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where n  denotes the state dimension. 
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Based on the aforementioned third-order spherical-phase 
radial cubature criterion, the computational workflow of the 
CKF for ˆ~ ( , )k k kx N x P proceeds as follows: 

1. Filter Initialization 
The initial state vector 0x̂ and error covariance matrix 0P  

are defined as: 

 0 0
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ˆ [ ]
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x E x
P E x x x x

=

= − −
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2. Time Update 
Compute cubature points: Replace Cholesky with SVD 

decomposition to enhance the stability and robustness of the 
filtering. 
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Propagate cubature points: 
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Calculate the one-step state prediction 1|ˆk kx + : 
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3. Measurement Update 
Compute cubature points: 
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Propagate cubature points: 
 1, 1| ,( )k i k k iz h x+ +=  (29) 
Calculate the one-step measurement prediction: 
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Compute the error covariance matrix 1|
zz

k kP +  and 

cross-covariance matrix 1|
xz

k kP + : 
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Calculate the gain matrix 1kK + : 
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Estimate the state at time step k+1 : 
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B.  IGWO-CKF Algorithm 
The GWO algorithm simulates the social hierarchy and 

hunting behavior of grey wolf packs to search for optimal 
solutions. In the algorithm, each wolf’s position corresponds 
to a feasible solution, and the fitness value determines the 
pyramid-like social hierarchy within the population (Figure 
2). The top three wolves with the highest fitness values are 
designated as α, β, and δ, responsible for tracking and 
guiding the pack toward prey. The remaining wolves are 
classified as ω, tasked with encircling and attacking the prey. 

The search behavior of grey wolves is modeled as: 

 
Fig. 2. Social hierarchy of grey wolves 
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where t denotes the current iteration number, 
and ( )pX t represents the current prey position. The 
disturbance factors A and C are calculated as: 

 12A a r a⋅= −  (36) 
 2C=2 r⋅  (37) 
 ( )max2 1 /a t t= −  (38) 

where 1r  and 2r are random vectors within [0,1], and maxt  is 
the maximum number of iterations. 
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where  Xα , X β  and Xδ denote the positions of the α, β, 
and δ wolves, respectively, and Dα , Dβ  and Dδ  represent 
the distances between these elite wolves and the ω wolves. 

During the search for the optimal solution (prey position), 
the α, β, and δ wolves gradually converge toward the prey. 
For ω wolves, proximity to the three elite wolves implies 
closer proximity to the prey. The final movement direction 
and distance of each wolf are calculated using Equation (39).  

C. Improved Grey Wolf Optimizer (IGWO) 
Process noise during the time update and measurement 

noise, as critical filtering input parameters in the CKF, 
significantly influence target tracking accuracy. 
Measurement noise originates from sensing devices and can 
be determined based on device specifications, whereas 
process noise, generated dynamically during target motion, 
exhibits time-varying characteristics. To enhance the filtering 

precision of the CKF algorithm, the Grey Wolf Optimizer 
(GWO) can be employed to dynamically adjust the process 
noise covariance. 

The GWO algorithm has been widely applied to path 
planning, economic dispatch, optimal control, and other 
fields due to its structural simplicity, minimal input 
parameters, and ease of implementation. Many scholars have 
also proposed improvements to the GWO algorithm. Current 
advancements primarily focus on three aspects: Initial 
population generation, Search mechanism refinement, and 
Algorithm parameter optimization. Building on prior 
research, this study introduces corresponding improvements 
to all three components to enhance search speed and achieve 
global optimality. 
1. Good Point Set Initialization Strategy 

In the GWO algorithm, the initial positions of the grey 
wolf population individuals are defined as: 

 i lb ub lbX =GW +rand(GW -GW )  (40) 
where lbGW  and ubGW  denote the lower and upper 

bounds of the grey wolf positions, respectively. 
For a two-dimensional grey wolf population, 300 

individuals are generated within the interval [0,10]. This 
limits the GWO algorithm’s ability to fully exploit the search 
space and increases susceptibility to local optima. To address 
this, the Good Point Set theory is introduced to initialize the 
grey wolf population. The revised initialization strategy is 
formulated as: 

 i lb ub lbX =GW +{Pn(k)}(GW -GW )  (41) 
2. Boundary Handling Strategy 

In conventional GWO, out-of-bounds individuals are 
typically clamped to the boundary limits. However, excessive 
boundary violations lead to positional homogenization 
among wolves, degrading population diversity and trapping 
the search in local optima. To preserve diversity, a secondary 
update rule is applied to reposition boundary-violating 
individuals: 

 ,
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 (42) 

where ω is a uniformly distributed random number in [0,1], 
and σ is the boundary-handling parameter (set to 0.5 in this 
study). 
3. Nonlinear Convergence Factor Strategy 

In the standard GWO, the convergence factor a linearly 
decreases from 2 to 0 over iterations, which often leads to 
premature convergence. To balance exploration and 
exploitation, a nonlinear decay strategy based on an 
exponential function is proposed: 
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−  
 = − −  (43) 

4. Dynamic Weight Adjustment Strategy 
The original GWO updates wolf positions using the 

arithmetic mean of step sizes toward the α, β, and δ wolves, 
neglecting their hierarchical dominance in guiding the search. 
To align with the social hierarchy and accelerate convergence, 
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a weighted average approach is adopted, where weights are 
assigned based on the fitness values of the elite wolves: 
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where if(X )(i=1,2,3) denote the fitness values of the α,β, δ 
wolves, respectively, and the weights are calculated as iω . 

D. Improved Grey Wolf Optimized Cubature Kalman Filter 
(IGWO-CKF) 
The IGWO-CKF optimizes the process noise covariance 

matrix Q in the CKF using the IGWO algorithm to achieve 
adaptive parameter tuning. Since Q is a diagonal matrix, the 
grey wolf positions in the IGWO algorithm are set as the 
diagonal elements of Q. The iterative optimization process is 
as follows: 

Step 1: Initialize the population size (N), maximum 
iteration count maxt , convergence factor ( )a  and 
perturbation factors A  and C . 

Step 2: Generate the initial population positions using the 
good point set theory to ensure uniform distribution of grey 
wolf individuals in the search space. The initial population 
positions are denoted as { }1 2, , , NX X X⋅ ⋅ ⋅ . 

Step 3: Select the actual variance of the filter innovation as 
the fitness function (equation (45)), calculate the fitness 
values of all grey wolves, and identify the top three elite 
wolves, whose positions are denoted as Xα , X β  and Xδ . 

Step 4: Update the nonlinear convergence factor according 
to equation (43), and compute the perturbation factors A and 
C. 

Step 5: Update the positions kX  of grey wolf individuals 
using equations (39) and (44). Handle out-of-bounds 
individuals and recalculate their fitness values ( )kf X . 

Step 6: Update the positions and fitness values of α,β and 
δ wolves. 

Step 7: Terminate the iteration if the stopping criteria are 
met; otherwise, return to Step 4. The optimized diagonal 
elements of Q, derived from the optimal solution 

1 2 3 4 5( ) [ , , , , ]X t q q q q qα = ,are used as inputs for the next 
iteration. 

During the IGWO-based optimization of filter noise, a 
well-designed fitness function guides the overall movement 
direction of the grey wolf population and serves as an 
effective termination criterion. The filter innovation, defined 
as the difference between the actual and predicted 
measurements, is closely related to Q. Therefore, the fitness 
function is set as the actual variance of the innovation. A 
smaller fitness value corresponds to higher target tracking 
accuracy. 

 1 1 1 1ˆ ˆmin(( )( ) ')k k k kl z z z z+ + + += − −  (45) 

In the equations: l represents the actual variance of the 
innovation, 1kz +  and 1ˆkz + denote the measured and predicted 
values at the corresponding time steps, respectively. 

V.   SIMULATION RESULTS AND ANALYSIS 

A. Parameter Settings 
Simulations were conducted using the WECC 3-machine 

9-bus system and the New England 10-machine 39-bus 
system in the MATLAB environment to analyze the 
proposed IGWO-CKF prediction algorithm for detecting 
FDIA in power cyber-physical systems. The specific 
parameters are shown in the table below: 

TABLE I 
WECC 3-machine 9-bus system 

Generator H(p. u) D(p. u) X(p. u) 

1 23.64 0.0225 0.0608 

2 6.4 0.00663 0.1198 

3 3.01 0.00265 0.1813 
 

TABLE П 
New England 10-machine 39-bus system 

Generator H(p. u) D(p. u) X(p. u) 

1 500 0.006 0 

2 30.3 0.0697 0 

3 35.8 0.0531 0 

The WECC 3-machine 9-bus system consists of 3 
generators and 3 load points, with total loads of 315 MW and 
115 MVar, respectively. The system data, configuration, and 
inertia constants are listed in Table 1. This system has been 
widely used in multiple power system stability studies. 
  The New England 10-machine 39-bus system includes 10 
generators and 21 load points, with a total load of 6254.2 
MW and 1387.1 MVar. In this study, three generators were 
selected as the research subjects. The system data, 
configuration, and inertia constants are detailed in Table 2. 

B. Performance Analysis of CKF and IGWO-CKF 
Prediction Algorithms 

To validate the proposed algorithm's effectiveness in 
detecting false data injection attacks, we first tested the 
performance of CKF and IGWO-CKF in estimating power 
system states under no FDIA conditions. The measurement 
targets were the rotor angles and speeds of the generators, 
and the actual values were compared with the CKF and 
IGWO-CKF predictions. The simulation results are shown in 
Figs. 2-5. The study selected three generators from each of 
the two power systems mentioned above. As observed, both 
CKF and IGWO-CKF can accurately estimate the system 
states when no FDIA is presented, which suggests that the 
proposed algorithm can be further applied for FDIA 
detection.
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Fig. 3. Estimation of rotor angles and speeds of generator 1 for the WECC 3-machine 9-bus system without FDIA. 

 

 
Fig. 4. Estimation of rotor angles and speeds of generator 2 for the WECC 3-machine 9-bus system without FDIA

C.  Performance Analysis of CKF and IGWO-CKF 
Prediction Algorithms 

To validate the proposed algorithm's effectiveness in 
detecting false data injection attacks, we first tested the 
performance of CKF and IGWO-CKF in estimating power 
system states under no FDIA conditions. The measurement 
targets were the rotor angles and speeds of the generators, 

and the actual values were compared with the CKF and 
IGWO-CKF predictions. The simulation results are shown in 
Figs. 2-5. The study selected three generators from each of 
the two power systems mentioned above. As observed, both 
CKF and IGWO-CKF can accurately estimate the system 
states when no FDIA is present, suggesting that the proposed 
algorithm can be further applied for FDIA detection. 
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Fig. 5. Estimation of rotor angles and speeds of generator 3 for the New England without FDIA. 

 
Fig. 6. Estimation of rotor angles and speeds of generator 4 for the New England without FDIA. 

D.  FDIA Detection and Analysis 
When the rotor angles and speeds of the generators are 

subjected to FDIA, the traditional CKF and the improved 
IGWO-CKF were used for state estimation, and the 
simulation results are shown in the figures below. 

As shown in Figs. 6 to 9, during the time interval of 6.2 to 
6.3 seconds, when the system is subjected to a pulse attack 
(equation (11)) with an attack magnitude of 0.2, the CKF 
fails to detect the pulse attack and does not respond. In 
contrast, the proposed IGWO-CKF estimates values that are 

very close to the actual ones, reacting swiftly and meeting 
design requirements. At the 4-second mark, the system 
experiences a ramp attack (equation (12)) with a magnitude 
of 0.2, lasting for 4 seconds.  

As shown in Figs. 10 to 13, the traditional CKF also fails to 
detect the ramp attack and does not respond, with results even 
tending to diverge. On the other hand, the estimates from the 
proposed IGWO-CKF remain close to the actual values, 
further validating the algorithm of effectiveness. 
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Figs. 14 to 17 illustrate that when a random attack 
(equation (13)) with a magnitude of 0.1 is applied between 5 
and 8 seconds, the traditional CKF again fails to detect the 
attack, shows no response, and its results diverge. In contrast, 

the IGWO-CKF estimates remain consistent with the actual 
values, confirming the algorithm's effectiveness in detecting 
FDIA. 

 

 
Fig. 7. Actual and estimated state values for Generators 1 under pulse attacks. 

 
Fig. 8. Magnified view. 
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Fig. 9. Actual and estimated state values for Generators 2 under pulse attacks. 

 
 

 
Fig. 10. Magnified view. 
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Fig. 11. Actual and estimated state values for Generators 3 under ramp attacks. 

 
 

 
Fig. 12. Magnified view. 
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Fig.13. Actual and estimated state values for Generators 4 under ramp attacks. 

 
 

 
Fig. 14. Magnified view. 
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Fig. 15. Actual and estimated state values for Generator 5 under FDIA. 

 
 

 
Fig. 16. Magnified view. 
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Fig. 17. Actual and estimated state values for Generator 6 under FDIA. 

 
 

 
Fig. 18. Magnified view. 
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VI. CONCLUSIONS 
This paper has proposed an IGWO-CKF algorithm to 

effectively address false data injection attacks (FDIA) in 
microgrids. By introducing Grey Wolf Optimization into 
Cubature Kalman Filter, the limitations of the traditional 
CKF in handling highly nonlinear dynamic changes are 
revealed. Simulation results show that, compared with CKF, 
the IGWO-CKF can more accurately identify and respond to 
attacks, thereby it enhances the security and reliability of 
microgrid systems.The findings provide a theoretical 
foundation for microgrid security protection and lay the 
groundwork for further research and practical applications. 
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