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Abstract—An accurate and rapid leukemia diagnosis is
essential due to the aggressive nature of the disease. Traditional
methods relying on blood and bone marrow examination are
time-consuming, error-prone, and heavily reliant on specialist
experience. This study addresses these limitations by proposing
a fast, high-resolution computer-aided method for classifying
leukemia cells. The method utilizes pre-processing, data
augmentation, and K-means clustering for image segmentation.
Extracted features from a DenseNet-201 model are then fed into
the random forest, extreme gradient boosting (XGBoost), and
support vector machine (SVM) classifiers to categorize cells as
Normal or acute lymphoblastic leukemia (ALL). We evaluated
our method on two publicly available datasets: ALL-IDB2
(containing 260 images with an even distribution of Normal and
ALL cells) and C-NMC-2019 (comprising 10,661 microscopic
blood images: 7,272 ALL images from 47 patients and 3,389
Normal images from 26 healthy individuals). On C-NMC-2019,
the DenseNet-201 and SVM combination achieved exceptional
results, with 99.13% accuracy, 99.24% specificity, 99.01%
sensitivity, 99.00% precision, 99.10% F1-score, and 99.96%
AUC (area under the receiver operating characteristic (ROC)
curve). Even more remarkably, on ALL-IDB2, the model
achieved 100% across all metrics. Although this might indicate
overfitting, the true test of the model lies in its generalizability.
The outstanding performance across two datasets highlights
the effectiveness and generalizability of the proposed method,
surpassing the performance of existing well-established and
state-of-the-art methods and suggesting its potential application
in various medical diagnosis domains.

Index Terms—Acute lymphoblastic leukemia,
Computer-aided medical diagnosis, Deep learning,
DenseNet-201, K-means clustering, Support vector machine
(SVM)
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CANCER, a disease characterized by uncontrolled cell
growth, remains a significant global health burden.

According to the World Health Organization (WHO), it was
the second leading cause of death worldwide in 2018, with
approximately 9.6 million deaths and 18.1 million new cases
[1]. Statistics from the American Cancer Society (ACS)
further emphasize the importance of early detection. In 2023
alone, they reported a substantial disparity between new
cases and deaths among males (35,670 vs. 13,900) and
females (23,940 vs. 9,810) [2]. These figures highlight the
critical role of early diagnosis and treatment in combating
cancer.

Among various types of cancer, leukemia—a blood
cancer that affects the bone marrow and blood—stands
out for its aggressiveness and widespread impact. It
disrupts the production of healthy blood cells and weakens
the immune system, making individuals more susceptible
to infections. Leukemia arises from the uncontrolled
proliferation of malignant white blood cells (WBCs) in
the bone marrow, which hinders the production of red
blood cells and platelets. These malignant cells can infiltrate
organs such as the kidneys, liver, spleen, and brain,
potentially leading to secondary cancers [3]. The World
Health Organization (WHO) classifies leukemia into four
main types: chronic myelogenous leukemia (CML), chronic
lymphocytic leukemia (CLL), acute myeloid leukemia
(AML), and acute lymphoblastic leukemia (ALL) [1].

Acute lymphoblastic leukemia (ALL), particularly
concerning due to its rapid progression, necessitates prompt
diagnosis and treatment for both children and adults.
Traditional diagnosis relies on manual cell count and
categorization by skilled personnel. However, this approach
suffers from limitations such as time-consuming analysis
and potential inconsistencies in accuracy due to subjective
interpretation by the pathologist [4].

The demand for a fast, reliable, and cost-effective
diagnostic method has driven the development of automated
microscopy for blood sample analysis. This technology
offers significant advantages in terms of speed and accuracy,
complementing pathologists’ assessments [5]. In recent
decades, there has been a surge in computer-aided diagnostic
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(CAD) systems designed to differentiate normal and ALL
cells, effectively addressing the limitations of manual
diagnosis. Notably, the accessibility, speed, and affordability
of computer-aided microscopy have revolutionized the field,
reducing the need for specialized laboratory equipment in
research settings [6].

Biomedical image processing has emerged as a powerful
tool, leveraging computer algorithms for disease diagnosis
[6]. For instance, in [7], skin cancer was classified into
seven categories using machine learning (ML) techniques,
while in [8], malaria was classified using deep learning
(DL). Studies exploring ML and DL techniques have
demonstrated promising results in classification, offering
advantages in speed, simplicity, and accuracy [9], [10].
However, some existing methods face challenges such
as computational inefficiency, suboptimal classification
accuracy, and overfitting [9], [10]. In this work, we aim
to address these limitations by proposing a novel hybrid
technique for ALL diagnosis. Our key contributions are as
follows:

1) Efficient ALL diagnosis with high accuracy: We
propose a method that utilizes deep features to
achieve highly accurate ALL detection on two publicly
available blood cell classification datasets (ALL-IDB2
and C-NMC-2019).

2) Reduced computational complexity: By employing
K-means clustering to isolate only the regions of
interest (ROIs) in blood cell images, we significantly
reduce processing time and computational burden
compared to analyzing the entire image.

3) Enhanced performance: We leverage the
Densenet-201 model for feature extraction
and a support vector machine (SVM) for
classification, surpassing the performance of existing
well-established and state-of-the-art methods.

The remainder of the paper is structured as follows.
Section II reviews relevant research on leukemia diagnosis
and existing CAD methods. Section III details the proposed
technique, encompassing image acquisition, preprocessing,
segmentation, augmentation, feature extraction, and
classification. Section IV presents and analyzes the
experimental findings. Finally, Section V summarizes the
key takeaways and potential future directions.

II. RELATED WORK

The increasing availability of medical image datasets has
driven the application of machine learning (ML) and deep
learning (DL) techniques in disease diagnosis, including
leukemia detection [11], [12]. However, a major challenge

remains the limited size and public accessibility of leukemia
image datasets.

Several researchers have focused on developing automated
methods for leukemia detection. Early approaches primarily
relied on traditional machine learning techniques, such
as k-means clustering. For example, Bouzid et al. [13]
proposed a method that uses k-means clustering for the
segmentation and classification of blood cells to detect
leukemia. Their approach was tested on a relevant dataset
and achieved an accuracy of 98%. Moshavash et al. [14]
employed white blood cell (WBC) segmentation and SVM
classification on the ALL-IDB1 and ALL-IDB2 datasets,
reaching an accuracy of 89.81%. Umamaheswari and
Geetha [15] presented a method that used thresholding and
mathematical operations for WBC nucleus segmentation,
followed by KNN classification on the ALL-IDB2 dataset,
achieving an accuracy of 96.25%. Recent advancements
have led to the successful application of deep learning
(DL) techniques, particularly convolutional neural networks
(CNNs), in leukemia classification. Elrefaie et al. [16]
utilized K-means clustering and feature extraction with
empirical mode decomposition (EMD) analysis, followed
by a neural network classifier on the ALL-IDB2 dataset,
achieving an accuracy of 98.7%. Balasubramanian et al. [17]
further demonstrated the effectiveness of deep learning by
using a modified U-Net for segmentation and a radial basis
function (RBF) kernel SVM (RBF-SVM) for classification,
achieving 99.42% accuracy on the ALL-IDB2 dataset.
Saxena et al. [18] investigated the impact of different
segmentation methods on lung tumor classification using a
deep learning network, with K-means clustering yielding the
best results.

Several studies have further explored deep learning
for leukocyte classification using the C-NMC-2019
dataset. De Oliveira et al. [19] achieved an F1-score
of 92.60% by utilizing modified VGG16, VGG19,
and Xception architectures with data augmentation
techniques such as mirroring, rotation, blurring, shearing,
and salt-and-pepper noise to balance the training and
validation sets. Chayan Mondal et al. [20] applied data
augmentation and preprocessing on C-NMC-2019, training
an ensemble classifier using five pre-trained networks
(Xception, VGG-16, DenseNet-121, MobileNet, and
InceptionResNet-V2), achieving an F1-score of 89.7%,
an accuracy of 88.3%, and an area under the receiver
operating characteristic (AUC) of 95% on the initial test set.
These studies highlight the effectiveness of deep learning
techniques in blood cell classification.

Several other studies have addressed class imbalance and
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feature extraction in blood cell classification using public
datasets. Mohammed et al. [21] tackled the imbalanced
C-NMC-2019 dataset by integrating convolutional
neural networks (CNNs) with a gated recurrent unit
(GRU)-bidirectional long short-term memory (BiLSTM)
architecture to capture long-range dependencies and enhance
feature learning. Their approach, incorporating softmax
and multi-class SVM classifiers, achieved an accuracy of
96.29% and an F1-score of 96.23%. Similarly, Ahmed
et al. [22] proposed an image enhancement method for
microscopic blood images (ALL-IDB2 and C-NMC-2019)
using filters and active contours. They extracted white blood
cell regions and processed them with CNN models, reducing
feature redundancy via principal component analysis (PCA).
Deep feature maps from CNNs (DenseNet121, ResNet50,
and MobileNet) were then combined to create hybrid
deep feature maps for classification using random forest
(RF) and extreme gradient boosting (XGBoost) classifiers.
Their approach achieved remarkable results, attaining
98.8% accuracy on C-NMC-2019 and 100% accuracy on
ALL-IDB2.

These studies demonstrate significant advancements in
addressing data imbalance and feature extraction for
blood cell classification, motivating our exploration of a
high-resolution method for this task.

Other studies have explored pre-trained models and
feature extraction techniques for leukemia cell classification.
Renuka et al. [23] achieved an accuracy of 96.15%
by utilizing features from the AlexNet model with an
SVM classifier on an unspecified dataset. Rehman et
al. [24] modified the AlexNet architecture and combined
it with various classifiers (Naı̈ve Bayes, KNN, SVM)
using local binary pattern (LBP) features, achieving an
accuracy of 97.78%. On the ALL-IDB1 dataset, TTP et
al. [25] developed a CNN for both feature extraction
and classification, reaching 96.43% accuracy. Prellberg and
Kramer [26] employed a pre-trained ResNeXt50 model
on the C-NMC-2019 dataset, achieving an F1-score of
88.91%. Ananthu et al. [27] compared various pre-trained
models (Xception, InceptionV3, DenseNet201, ResNet50,
MobileNet) on the ALL-IDB2 dataset, with the highest
accuracy reaching 97.88%. These studies demonstrate the
effectiveness of pre-trained models and different feature
extraction methods for blood cell classification, motivating
our investigation of a DenseNet-201 model combined with
various classifiers for this task.

Recent studies highlight a growing preference for deep
learning (DL) techniques in automatic feature extraction
for leukemia cell classification (e.g., [25], [26], [27]).

However, some methods continue to rely on manually crafted
features (e.g., [14], [15]). Additionally, hybrid approaches
that integrate manual and deep features have been explored
(e.g., [23], [24]). While these techniques have shown
effectiveness, they can be constrained by robustness issues,
computational complexity, and susceptibility to overfitting,
potentially limiting their real-time applicability.

Our proposed method addresses these limitations by
introducing a novel hybrid approach that leverages the
strengths of both machine learning (ML) and DL. This
approach aims to achieve efficient and accurate ALL
diagnosis on two publicly available blood cell classification
datasets (ALL-IDB2 and C-NMC-2019). By demonstrating
superior performance compared to existing methods, our
model holds significant promise for real-world applications.

III. MATERIALS AND METHOD

A. Dataset description

1) ALL-IDB2 dataset: This study utilizes the publicly
available ALL-IDB2 dataset [28], which consists of 260
images evenly distributed between Normal and ALL cells
(130 images each). The images were captured using a Canon
PowerShot G5 camera coupled with an optical laboratory
microscope, resulting in a resolution of 257×257×3 pixels.
The images are stored in “.tif” format with a 24-bit color
depth. Figure 1 presents sample images of both Normal and
ALL cells from the dataset.

(a) (b) (c) (d)

Fig. 1: Sample images from the ALL-IDB2 dataset: (a)
Normal cell, and (b), (c), and (d) ALL cell

2) C-NMC-2019 dataset: The C-NMC-2019 dataset,
publicly available from The Cancer Imaging Archive
(TCIA) [29], was used for this study. Originally released
for the International Symposium on Biomedical Imaging
(ISBI) competition on leukemia detection, it contains
10,661 microscopic blood images (450x450 pixels, 24-bit
RGB resolution). Notably, these images depict single,
pre-segmented cells from both ALL patients (7,272 images
from 47 individuals) and normal individuals (3,389 images
from 26 healthy individuals). This pre-segmentation ensures
the analyzed cells are malignant or benign lymphocytes,
confirmed by experienced oncologists (as shown in Fig. 2).
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(a) (b) (c) (d)

Fig. 2: Sample images from the C-NMC-2019 dataset: (a)
Normal cell and (b), (c), and (d) ALL cell

B. Framework of proposed method

Proposed Framework Our proposed method for ALL
diagnosis follows a five-step process: preprocessing,
segmentation, data augmentation, feature extraction, and
classification (as illustrated in Fig. 3).

C. Preprocessing

Preprocessing is a crucial initial step in image processing
tasks. It aims to enhance the quality of visual information
within each image and remove artefacts to reveal hidden
details. This, in turn, improves the model’s final results and
accuracy. In this study, the preprocessing stage comprises
three key steps:

1) RGB to LAB conversion: Blood smear images from
the ALL-IDB2 dataset undergo an initial conversion from
the RGB color space to the LAB color space to facilitate
segmentation. Segmentation in the RGB domain can be
challenging due to variations in image quality and brightness.
For instance, aging stains can significantly alter the colors
and intensities of both blood cells and the background within
the RGB spectrum.

The LAB color space offers distinct advantages for
segmentation, as it separates luminance information
(represented by the ‘L’ channel) from chrominance
information (represented by the ‘A’ and ‘B’ channels).
This separation simplifies segmentation by allowing focus
on the ‘A’ and ‘B’ channels, which retain the essential
color information needed to accurately isolate cells (Fig.
4). Notably, this conversion step is not applied to the
C-NMC-2019 dataset, as it already contains pre-segmented
cells.

2) Decoding and resizing: Each image in both datasets
undergoes decoding and resizing. In convolutional neural
networks (CNNs), each model architecture has a specific
input image size optimized for network efficiency and
reduced computational burden. Therefore, input images must
be adjusted to match the target network’s requirements.

Our proposed method employs the DenseNet-201
architecture for feature extraction. Compared to other
architectures, DenseNet-201 has a lower learning capacity;
however, this results in reduced computational costs,

enabling the use of high-resolution input images with
dimensions of 224×224×3. Consequently, all images in
both datasets are resized to 224×224 pixels to ensure
compatibility with the DenseNet-201 network.

3) Data normalization: Normalization aims to
standardize the data by scaling all features to a similar
range. This step enhances model performance and training
stability. In essence, data normalization ensures all data
points fall within a predefined range. Here, a simple
normalization technique is employed: all pixel values are
divided by 255, effectively rescaling them to the range of
[0,1].

D. Segmentation

Image segmentation plays a critical role in image analysis
tasks like cell identification. Its primary objective is to
partition an image and isolate specific ROIs containing the
objects of interest (in our case, blood cells). These ROIs are
then used for feature extraction, a crucial step in improving
classification accuracy. During this stage, we evaluated
various segmentation techniques commonly employed in
deep learning and cell image analysis. K-means clustering
emerged as the most efficient method for our proposed model
compared to the alternatives. It is important to note that the
C-NMC-2019 dataset is already pre-segmented, containing
single-cell images. Therefore, the segmentation process was
solely applied to the ALL-IDB2 dataset to isolate individual
cells from each image, as shown in Fig. 5. This step ensures
consistency in image format across both datasets for our
analysis.

K-means clustering technique: K-means clustering is an
unsupervised learning algorithm that groups data objects
based on their inherent similarities. It excels at identifying
clusters within unlabeled data. The core principle involves
defining a pre-determined number of clusters (denoted by
‘K’) and assigning each data point to the closest cluster
centroid (central point). We applied K-means clustering to
the LAB color space representation of the images (converted
from RGB) for segmentation. Specifically, we focused on the
‘A’ channel, which carries essential color information for
cell isolation. The algorithm aims to minimize an objective
function, represented by

J =
N

∑
n=1

K

∑
k=1

∥xn − tk∥2, (1)

where J represents the distance between a pixel (x) and its
assigned cluster center (tk), N denotes the number of data
points, and K is the number of clusters. In our case, we
found that K = 3 yielded the optimal segmentation results
compared to K = 7.
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Fig. 3: The framework of the proposed method

(a) (b) (c) (d)

Fig. 4: Samples of (a) an LAB image, (b) its ‘L’ channel,
(c) its ‘A’ channel, and (d) its ‘B’ channel

Following K-means clustering, a binary threshold with
values of 141 and 255 is applied to refine the segmentation
and create well-defined cell regions (as shown in Fig. 5).
Finally, the segmented cells are converted back to RGB
format for the subsequent processing stage.

(a) (b) (c) (d)

Fig. 5: Segmentation process: (a) Original RGB cell,
(b) Converted LAB image, (c) ‘A’ channel used for
segmentation, (d) Segmented cell

E. Augmentation

Data augmentation is a commonly used technique to
artificially expand the size and diversity of a dataset. This
is especially beneficial for DL models, which require vast
amounts of data for optimal training and generalization.
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Given the limitations of our relatively small datasets, data
augmentation plays a crucial role in enhancing model
performance. We employed various augmentation techniques
on both datasets to introduce controlled variations that mimic
real-world scenarios. These variations help the model learn
robust features and improve its ability to identify cells across
a broader range of appearances. The specific techniques used
include:

• Rotation augmentation (0° and 45°): Exposes the
model to cells in different orientations, enhancing
generalizability.

• Flipping augmentation (horizontal and vertical):
Introduces additional complexity by simulating
real-world scenarios where cells may appear flipped.

• Resizing augmentation (scaling factor 0.2): Ensures the
model can effectively handle objects of varying sizes.

• Brightness augmentation (factors of 0.2 and 1.0):
Improves the model’s robustness and adaptability to
different lighting conditions.

Data augmentation addressed two key challenges in both
datasets (as illustrated in Table I):

1) Limited dataset size in ALL-IDB2: This dataset initially
contained only 260 images (130 ALL and 130
Normal). Augmentation expanded the dataset to 1,500
images (750 ALL and 750 Normal), as shown in Fig.
6.

2) Class imbalance in C-NMC-2019: This dataset
exhibited a class imbalance, with significantly more
ALL (7,272) than Normal (3,389) cells. Augmentation
was applied to create a balanced dataset of 8,000
images per class (ALL and Normal), as shown in Fig.
7.

TABLE I: Number of samples before and after augmentation
for both datasets

Before Aug. After Aug.

Dataset ALL Normal ALL Normal

ALL-IDB2 130 130 750 750
C-NMC-2019 7,272 3,389 8,000 8,000

These augmentations effectively addressed the limitations
of our datasets, improving the generalizability and robustness
of the proposed model.

F. Feature extraction

Transfer learning is a widely adopted technique in
ML and DL techniques, particularly for computer vision
and natural language processing tasks. It leverages the
knowledge gained by a pre-trained model on a large dataset

(a)

(b)

Fig. 6: Examples of augmented images from the ALL-IDB2
dataset: (a) ALL cells, (b) Normal cells

(b)

(a)

Fig. 7: Examples of augmented images from the
C-NMC-2019 dataset: (a) ALL cells, (b) Normal cells

and applies it to a new, related task. In our approach,
we utilize transfer learning for feature extraction. Instead
of training a DL model from scratch, we extract relevant
features from the intermediate layers of a pre-trained model.
These intermediate layers capture high-level abstractions
and representations that serve as valuable input for the
classification stage.

DenseNets: DenseNet is a deep CNN architecture known
for its dense connectivity between layers. This dense
connectivity pattern promotes feature reuse and improves
gradient flow within the network. The architecture consists
of several dense blocks, which are interconnected layers
that facilitate feature propagation throughout the network
(Fig. 8). DenseNets also incorporate transition layers
between these dense blocks to adjust feature map sizes.
Several DenseNet variants exist, including DenseNet-169,
DenseNet-121, DenseNet-201, and DenseNet-264. These
variants differ in their number of layers and are often
pre-trained on the ImageNet image dataset. They all share a
common growth rate of 32, where each convolutional layer
within a dense block involves a sequence including a ReLU
activation function and a convolutional layer [30].

In our proposed method, we evaluated various DenseNet
architectures for feature extraction and found DenseNet-201
to yield the most promising results. This selection is
partly attributed to DenseNet-201’s lower number of
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trainable parameters compared to other architectures [30].
With approximately 20 million parameters, it is less
computationally expensive than models like VGG-19 (which
has 144 million parameters). Furthermore, DenseNet-201
demonstrated superior performance on the ALL-IDB2
dataset compared to other tested networks.

Prior to feeding the data into the DenseNet-201
architecture for feature extraction, we resize all images to a
uniform size of 224x224 pixels. This ensures compatibility
with the network’s input requirements and facilitates the
extraction of critical features for subsequent classification.

G. Classification

Following feature extraction using DenseNet-201, the
extracted features are fed into a classification block to
categorize the cells as either Normal or ALL. We employ
an SVM classifier for this task.

GridSearch, a hyperparameter optimization technique,
is used to identify the optimal SVM hyperparameter
configuration that maximizes the classification accuracy
compared to other approaches. We also explored the
application of alternative ML classifiers, including RF and
XGBoost. However, our evaluations revealed that the SVM
achieved the most effective classification performance on
both the ALL-IDB2 and C-NMC-2019 datasets.

IV. RESULTS AND DISCUSSION

This section evaluates the performance of the proposed
method, presents the achieved results, and conducts a
comparative analysis of feature extraction using various
neural networks (NNs). Additionally, we assessed multiple
classifiers to determine the most effective one for this task.

A. Experimental setup

We implemented the proposed method using Python and
the Keras library, a high-level API for the TensorFlow
machine learning framework. Each dataset was split into
training (80%) and testing (20%) sets for model training

and evaluation. The experiments were conducted on a PC
with an Intel(R) Core(TM) i7-7500U CPU, 16GB of RAM,
and a 64-bit Windows operating system.

B. Evaluation metrics

To comprehensively assess the proposed method’s
performance in cell classification, we employ a set of
performance metrics beyond just accuracy. These metrics
include accuracy, precision, sensitivity (recall), specificity,
F1-score, AUC, and receiver operating characteristic (ROC)
curve, Relying solely on accuracy can be misleading, so
using a combination of metrics provides a more robust
evaluation of the model’s effectiveness [31], [32]. Here, we
present the chosen metrics and their mathematical formulas
for clarity as shown in the following equations: [33]:

• Accuracy: The proportion of correctly predicted cases.
It is calculated by dividing the number of true positives
(TP) and true negatives (TN) by the total number of
cases.

Accuracy =
T P+T N

T P+T N +FP+FN
(2)

• Specificity: The percentage of negative samples
correctly identified. A high specificity indicates the
model’s ability to correctly classify negative examples,
while a low specificity suggests issues with correctly
identifying negative cases.

Speci f icity =
T N

T N +FP
(3)

• Sensitivity (Recall): The proportion of positive samples
correctly identified. It reflects the model’s ability to
identify true positives and avoid false negatives.

Sensitivity =
T P

T P+FN
(4)

• Precision: The ratio of correctly predicted positive cases
to the total predicted positive cases.

Precision =
T P

T P+FP
(5)
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• F1-Score: A harmonic mean that combines precision
and recall into a single metric, providing a balanced
view of model performance.

F1−score = 2∗ precision∗ recall
precision+ recall

(6)

• ROC Curve: A visual representation of a classification
model’s performance across various classification
thresholds. It utilizes the True Positive Rate (TPR)
and False Positive Rate (FPR) to assess the model’s
effectiveness. A model with a higher TPR and
lower FPR at each threshold demonstrates superior
performance.

• AUC: The area under the ROC curve quantifies the
model’s ability to distinguish between positive and
negative classes. A higher AUC value indicates better
model performance.

These metrics rely on the concept of a confusion
matrix, which is a table summarizing the model’s prediction
outcomes (Fig. 9). The confusion matrix includes:

• True Positive (TP): A case where the model correctly
predicts the positive class.

• True Negative (TN): A case where the model correctly
predicts the negative class.

• False Positive (FP): A case where the model incorrectly
predicts the positive class (also known as a Type I
error).

• False Negative (FN): A case where the model
incorrectly predicts the negative class (also known as
a Type II error).

Fig. 9: Illustration of a confusion matrix

By evaluating these metrics, we gain a comprehensive
understanding of the proposed method’s strengths and
weaknesses in classifying blood cells across the ALL-IDB2
and C-NMC-2019 datasets.

C. Hyperparameter tuning

Machine learning (ML) models rely on parameters that
are learned from data during the training process. However,
certain parameters, known as hyperparameters, cannot be
directly learned from the data. These hyperparameters

require manual selection and are typically determined
through experience, trial-and-error, or dedicated tuning
techniques. Selecting optimal hyperparameters plays a
crucial role in improving the model’s efficiency and overall
performance.

In this study, GridSearchCV, a hyperparameter tuning tool,
was employed to optimize the performance of the support
vector machine (SVM) model. GridSearchCV systematically
evaluates a predefined grid of hyperparameter values and
identifies the combination that yields the best results based
on the selected scoring metrics. This approach automates
the hyperparameter selection process, ensuring the most
effective configuration for the SVM model.

Specifically, we used GridSearchCV to tune the following
key hyperparameters of the SVM model:

• C: This parameter controls the trade-off between
training error and model complexity. A higher C

value penalizes training errors more heavily, potentially
leading to overfitting.

• Gamma: This parameter determines the influence of
training points on the decision boundary. A lower
gamma value implies that data points have a broader
influence, while a higher gamma value restricts their
influence to a narrower region.

• Kernel: This parameter defines the kernel function used
by the SVM model. We explored both the RBF and
polynomial kernels.

The results of the GridSearchCV optimization are
presented in Table II. As shown, the best-performing
hyperparameter configuration consists of C=10,
Gamma=0.01, and the RBF kernel.

D. Numerical results

Following the preprocessing and data augmentation
stages, K-means clustering was applied to isolate nuclei
from the background, specifically in ALL-IDB2 images. The
segmented images were then processed using the pre-trained
DenseNet-201 model for feature extraction. Subsequently,
multiple classifiers—SVM, RF, and XGBoost—were
evaluated to assess classification performance.

As presented in Table III, the SVM classifier achieved
the highest accuracy on both datasets during the testing
phase. The proposed method was further applied to the
C-NMC-2019 dataset, where SVM again demonstrated
superior performance.

Table III presents the classification accuracy of the
XGBoost, RF, and SVM models combined with the
pre-trained DenseNet-201 model for both datasets. Notably,
the model achieved 100% accuracy on the training sets,
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TABLE II: Best values of SVM’s hyperparameters based on GridSearchCV

Hyperparameter Value range GridSearchCV result

C [0.1, 1, 10, 100, 1000] 10
Gamma [1, 0.1, 0.01, 0.001, 0.0001] 0.01
Kernal [rbf, poly] rbf

TABLE III: Classification accuracy of XGBoost, RF, and SVM models with the pre-trained DenseNet-201 model for both
datasets

XGBoost RF SVM

Dataset Training Testing Training Testing Training Testing

ALL-IDB2 100 97.6 100 95.97 100 100
C-NMC-2019 100 98.0 100 97.19 100 99.13

indicating that all training samples were classified correctly.
However, this may suggest overfitting, where the model
memorizes training data but struggles with generalization to
unseen data.

The true measure of model performance lies in
its generalizability. In this regard, the proposed model
demonstrated excellent performance on the testing sets,
achieving 100% accuracy on ALL-IDB2 and 99.13%
accuracy on C-NMC-2019. These results highlight its
effectiveness in classifying leukemia cells.

E. Quantitative evaluation

We conducted a quantitative evaluation to assess the
performance of the proposed method. This evaluation
involved comparing various neural networks (NNs) as
feature extractors and different machine learning (ML)
algorithms as classifiers to identify the most effective
combination for the ALL-IDB2 dataset.

Table IV presents a summary of the performance
comparison. As observed, the combination of DenseNet-201
for feature extraction and SVM as the classifier achieved the
highest accuracy on both datasets. Figures 10–12 visually
depict the confusion matrices corresponding to each model
combination reported in Table IV for the ALL-IDB2 dataset.
In addition, Figure 13 presents the confusion matrices for
Random Forest, XGBoost, and SVM, with DenseNet-201
as the feature extractor for the C-NMC-2019 dataset. These
confusion matrices provide a detailed breakdown of the
classification results for each class.

We observed that DenseNet-based architectures
consistently outperformed VGG-19 and ResNet-50.
This may be attributed to DenseNet’s inherent ability to
promote feature reuse and enhance gradient flow within the
network, leading to more effective feature extraction.

To further analyze the performance of DenseNet-201
as a feature extractor, we evaluated its effectiveness
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Fig. 10: The ALL-IDB2 confusion matrices for XGBoost
with different feature extractors: (a) VGG-19, (b) ResNet-50,
(c) MobileNetV2, (d) DenseNet-169, (e) DenseNet-121, and
(f) DenseNet-201.

using different classifiers (RF, XGBoost, and SVM) on
two datasets: ALL-IDB2 and C-NMC-2019. Tables V
and VI provide a comprehensive evaluation of these
results, including accuracy, specificity, sensitivity, precision,
F1-score, and area under the curve (AUC). Notably, SVM
achieved the highest performance across all metrics on both
datasets.

Figures 14 illustrates the ROC curves for each classifier
applied to DenseNet-201 features for both datasets.
It presents the ROC-AUC curves, demonstrating the
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TABLE IV: Performance assessment of different classifiers and feature extraction networks of both datasets

Dataset ALL-IDB2 C-NMC-2019

XGboost RF SVM XGboost RF SVM
VGG-19 89.26 84.22 96 96.0 95.7 96.2
Resnet-50 85.90 84.89 84.4 95.66 95.88 95.5
MobileNetv2 93.62 92.95 71.90 97.25 96.84 98.6
DenseNet-121 96.6 94.3 99.3 97.8 97.0 98.7
DenseNet-169 96.64 93.3 99.7 97.87 97.1 99.00
DenseNet-201 97.68 95.97 100 97.53 97.19 99.13
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Fig. 11: The ALL-IDB2 confusion matrices for RF with
different feature extractors: (a) VGG-19, (b) ResNet-50, (c)
MobileNetV2, (d) DenseNet-169, (e) DenseNet-121, and (f)
DenseNet-201.

performance of different models in the classification process.
14a shows that SVM achieves the best performance (AUC
= 0.99) compared to Random Forest (AUC = 0.95) and
XGBoost (AUC = 0.90), highlighting the robustness of
the proposed model that combines DenseNet and SVM.
Figures 14b and 14c display the model’s performance on
the ALL-IDB2 and C-NMC-2019 datasets separately, further
emphasizing the superiority of SVM for classification in both
cases. On the ALL-IDB2 dataset, SVM achieved the highest
performance (AUC = 0.99), followed by Random Forest
(AUC = 0.95) and XGBoost (AUC = 0.90). Similarly, for the
C-NMC-2019 dataset, SVM attained the highest AUC (0.99),
outperforming Random Forest (AUC = 0.94) and XGBoost
(AUC = 0.89). Here, we can see that SVM outperforms
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Fig. 12: The ALL-IDB2 confusion matrices for SVM with
different feature extractors: (a) VGG-19, (b) ResNet-50, (c)
MobileNetV2, (d) DenseNet-169, (e) DenseNet-121, and (f)
DenseNet-201.

both RF and XGBoost in all evaluation metrics when using
DenseNet-201 features. This suggests that SVM might be
particularly well-suited for this specific classification task
due to its ability to learn complex decision boundaries
between different cell types.

F. Ablation study

To gain a deeper understanding of the impact of different
processing steps on the overall performance, we conducted
an ablation study. This involved evaluating the model’s
performance with and without specific procedures. More
specifically, this section evaluates the impact of two
key techniques employed in our proposed method: image
segmentation and data augmentation.
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TABLE V: Overall performance assessment of classifiers with features extracted by DenseNet-201 of ALL-IDB2 dataset

Classifier Accuracy Specificity Sensitivity Precision F1-score AUC

XGBoost 97.65 98.64 96.68 98.63 98.63 99.70
RF 95.97 96.60 95.40 95.36 96.00 99.38
SVM 100 100 100 100 100 100

TABLE VI: Overall performance assessment of classifiers with features extracted by DenseNet-201 of C-NMC-2019 dataset

Classifier Accuracy Specificity Sensitivity Precision F1-score AUC

XGBoost 97.53 96.20 98.92 96.19 98.00 99.81
RF 97.19 95.05 99.48 95.10 97.20 99.40
SVM 99.13 99.24 99.01 99.00 99.10 99.96

ALL Normal

AL
L

No
rm

al

1539

15758

82

(a)

ALL Normal

AL
L

No
rm

al

1559

156617

62

(b)

ALL Normal

AL
L

No
rm

al

1605

157112

16

(c)

Fig. 13: The C-NMC-2019 confusion matrices for
DenseNet-201 as a feature extractor with different classifiers:
(a) XGBoost, (b) RF, (c) SVM.

1) Impact of segmentation: Image segmentation plays
a crucial role in isolating cells of interest (nuclei) from
background noise in images. Table VII presents the
performance of different feature extractors and classifiers
(XGBoost, RF, and SVM) when applied with and without
image segmentation (denoted as “Seg” and “NoSeg,”

respectively). Notably, segmentation was applied only to
the ALL-IDB2 dataset, as the C-NMC-2019 dataset already
consists of pre-segmented cells.

As observed in the table, applying image segmentation
consistently improves the classification accuracy for all
models. This suggests that isolating the relevant regions
(nuclei) from the background noise enhances the feature
extraction process and ultimately leads to better classification
results. As shown, with DenseNet-201 as the feature
extractor, SVM achieved an accuracy of 94.23% with
segmentation, which increased to 100% with augmentation
(as demonstrated in the later section).

2) Impact of augmentation: Data augmentation is another
technique commonly used to improve the performance
of deep learning (DL) models, particularly convolutional
neural networks (CNNs). CNNs rely heavily on large
amounts of training data to learn effective features. Data
augmentation artificially expands the training dataset by
generating variations of existing images through techniques
such as flipping, rotation, and scaling. This helps the model
become more robust to variations in real-world data and
reduces the risk of overfitting.

Table VIII presents the impact of data augmentation
on classification accuracy using DenseNet-201 and three
different classifiers (XGBoost, RF, and SVM) with the
segmented ALL-IDB2 dataset. ”Aug” and ”NoAug” indicate
the results with and without data augmentation, respectively.

As shown in the table, data augmentation significantly
enhances performance across all classifiers. Notably, when
using SVM with DenseNet-201 features, accuracy increases
from 92.30% without data augmentation to 100% with data
augmentation.

G. Comparison with state-of-the-art methods

We compared the performance of our proposed method
with several recent state-of-the-art approaches for blood cell
classification reported in the literature. Table IX presents a
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TABLE VII: The impact of data segmentation on classification accuracy with respect to different classifiers and different
features extractors (the ALL-IDB2 dataset)

XGBoost RF SVM

Network Seg NoSeg Seg NoSeg Seg NoSeg

VGG-19 84.61 88.46 88.46 80.76 94.23 92.3
Resnet-50 82.69 82.69 88.46 76.92 80.8 80.76
MobileNetv2 90.38 90.38 90.38 90.38 94.23 90.38
DenseNet-169 90.38 92.30 98.07 98.03 96.15 92.30
DenseNet-121 86.53 82.69 96.15 88.46 92.30 90.38
DenseNet-201 90.38 88.46 94.23 92.30 94.23 92.30

TABLE VIII: The impact of data augmentation on classification accuracy was evaluated using DenseNet-201 as a feature
extractor and multiple classifiers on the segmented versions of both datasets.

XGBoost RF SVM

Dataset Aug NoAug Aug NoAug Aug NoAug

ALL-IDB2 97.65 90.38 95.97 94.23 100 92.30
C-NMC-2019 97.53 89.17 97.20 87.40 99.13 90.20

comparative analysis for the ALL-IDB2 dataset, detailing
the segmentation technique, feature extractor, classifier, and
achieved accuracy for each method.

As shown in the table, our proposed method—utilizing
K-means clustering for segmentation, DenseNet-201 for
feature extraction, and SVM for classification—achieves
the highest accuracy (100%) on the ALL-IDB2 dataset.
Some previous methods achieved comparable accuracy (e.g.,
99.42% by [17] and 98.7% by [16]).

For the C-NMC-2019 dataset, where the class imbalance
is a concern, we further evaluated our model by using
F1-score, a common metric for imbalanced datasets. Table
X compares our method with other recent approaches. As
can be seen, our proposed method using DenseNet-201 with
SVM achieves the highest F1-score (99.10%) and accuracy
(99.13%) on the C-NMC-2019 dataset.

our approach offers several advantages:

1) Simpler segmentation: Our method employs K-means
clustering, a well-established and computationally
efficient technique for image segmentation. In
contrast, some other methods rely on more complex
architectures, such as modified U-Net ([17]).

2) Deeper feature extraction: We leverage the capabilities
of DenseNet-201, a deep CNN known for its
robust feature extraction abilities. This contrasts with
methods using shallower networks (e.g., Xception and
DenseNet in [34]) or entirely different approaches,
such as centering with SSOA ([35]).

3) Effective classification: Our choice of SVM as the
classifier has proven to be highly effective for
this specific classification task. While other methods
explore various classifiers (e.g., logistic regression and

RF [36]), SVM’s ability to learn complex decision
boundaries makes it particularly well-suited for blood
cell classification.

Figure 15a compares the performance of the proposed
model with previous methods. The results demonstrate
that the proposed model outperforms other approaches,
such as Elrefaie et al. [16] (98.7%) and Balasubramanian
et al. [17] (99.42%), achieving 100% accuracy on the
ALL-IDB2 dataset. This improvement is attributed to a
robust framework integrating pre-processing, segmentation,
and data augmentation techniques, significantly enhancing
the model’s performance. Similarly, Figure 15b illustrates
the superiority of the proposed model on the C-NMC-2019
dataset, achieving an accuracy of 99.13%.

V. CONCLUSION

In this study, we proposed a novel method for blood
cell classification by integrating image preprocessing,
augmentation, segmentation, feature extraction, and
classification techniques. Our method achieved an
outstanding accuracy of 100% on the ALL-IDB2 dataset
and 99.13% on the C-NMC-2019 dataset, outperforming
several recent state-of-the-art approaches.

The ablation study highlighted the critical role of both
image segmentation and data augmentation in enhancing
overall performance. Isolating the cells of interest (nuclei)
from background noise improved the feature extraction
process, while data augmentation, a widely used deep
learning technique, enhanced model robustness, reduced the
risk of overfitting, and addressed data imbalance.

A comparative analysis demonstrated several advantages
of our approach. Our method employs K-means clustering, a
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Fig. 14: ROC curves of the three classifiers: XGBoost, RF,
SVM and DenseNet-201 as feature extraction.
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Fig. 15: comparison with State-of-the-Art Methods (a)
ALL-IDB2, (b) C-NMC-2019 dataset.

well-established and computationally efficient segmentation
technique, whereas some existing methods rely on more
complex architectures. Additionally, we leverage the strong
feature extraction capabilities of DenseNet-201, a deep
CNN. Finally, our choice of SVM as the classifier proved
particularly effective due to its ability to learn complex
decision boundaries between different cell types.

While our model achieved 100% accuracy on the
ALL-IDB2 dataset and 99.13% on the C-NMC-2019
dataset, such high test set performance may suggest
potential overfitting. However, the significant performance
improvement over existing methods underscores the
effectiveness of our approach for blood cell classification.
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Future work could focus on evaluating the generalizability
of the model across additional blood cell classification
datasets and exploring strategies to mitigate overfitting.
Moreover, incorporating domain knowledge about blood
cell morphology into the model could further enhance its
accuracy and robustness.
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