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Abstract—Similarity-based approaches, commonly used mea-
sures for link prediction in graphs, rely on the assumption
that two nodes with high similarity are likely to form a link.
Among the three categories of similarity-based approaches,
local approaches are simpler and faster, while global approaches
are more complex and slower but often yield better performers
in real-world graphs. To achieve a good compromise between
computational cost and prediction performance, quasi-local
approaches utilize neighborhood information up to a certain
hop distance. However, most of them are still designed based
on global information in graphs. Moreover, they consider all
neighborhood information, even though some may be noisy
and affect prediction performance. Besides, most of these
approaches define similarity functions based solely on structural
features, ignoring node attributes that are available in many
real-world graphs. This paper presents a novel quasi-local
approach, LPST (Link Prediction based on Similarity between
affinity Trees), for link prediction utilizing affinity among
neighbors and node attributes. LPST starts with generating
affinity trees with neighbors based on a branch and bound
strategy for each end node. Then, a similarity function is defined
based on the available attributes and structural features that
are extracted from the affinity trees. LPST is evaluated against
both non-attributed and attributed homogeneous graphs. The
performance of the proposed approach is then compared
to state-of-the-art similarity-based link prediction approaches.
Experimental results show the effectiveness of the proposed
LPST approach in predicting links in graphs.

Index Terms—link prediction,
similarity-based approach, affinity tree.

homogeneous graph,

I. INTRODUCTION

INK prediction is one of the most compelling yet
challenging problems in the area of graph mining. It
predicts the probability of a link between two unlinked nodes
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by leveraging the available information in a graph [1], [2].
Link prediction approaches have been widely used in many
real-world applications, such as friend suggestions in social
networks [3], product recommendations in e-commerce [1],
inferring interactions in biological networks [4], [5], [6], [7],
hotel recommendations in hotel sales networks [8].
Similarity-based link prediction approaches, which assume
that two similar nodes are likely to be connected, have
been extensively studied in the literature because of their
explainability. These approaches are categorized into three
groups: local approaches, global approaches, and quasi-
local approaches [9]. Local approaches define the similarity
function based on the local neighborhood information only.
Local approaches, such as common neighbour (CN) [10],
Adamic-Adar(AA) [11], Resource Allocation (RA) [12],
Jaccard (JA) [13], CAR [14], LLHN [15], CCLP [16],
NLC [17], utilize neighbourhood information. Though lo-
cal approaches are simple, highly parallelable and appli-
cable to large graphs, they are less effective in predict-
ing links beyond the second hop neighbourhood. Global
approaches, such as Katz(KZ) [18], Global Leicht-Holme-
Newman (GLHN) [15], Flow Propagation(FP) [19], Random
Forest Kernel(RFK) [9], Random Walk(RW) [20], Random
Walk with Restart (RWR) [21], overcome the limitation of
local approaches by utilizing the global adjacency matrix to
compute the link probability beyond second-hop neighbour-
hood. However, the use of global information generates high
computational time and difficulties in parallel implementa-
tion for the global approaches, and they are infeasible to be
applied to large real-world graphs. Quasi-local approaches
make a good trade-off between computational time and
prediction performance; they are almost as computationally
efficient as local approaches, but not limited to neighbors
of neighbors. Local path index (LPI) [22], local random
walk (LRW) [23], and friend link (FL) [24] are examples
of quasi-local approaches that consider the neighbours up to
a predefined hop. Quasi-local approaches have gained much
popularity in recent years. In this paper, we address two
important issues in state-of-the-art quasi-local approaches.
Firstly, although the possibility of spurious or noisy links in
a real-world graph cannot be ignored and can have an impact
on the prediction results, the issue of spurious links in graphs
is neglected in nearly all state-of-the-art similarity-based
approaches [25], [26]. Secondly, most of the state-of-the-art
quasi-local approaches ignore the presence of node attribute
information, which could improve prediction performance. In
this paper, we present a new noble quasi-local link prediction
approach, namely LPST (Link Prediction based on Similarity
between affinity Trees), by maximizing the use of available
structural features and node attributes and pruning out the
suspectable spurious (we call weak) links neighbors from
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the link prediction function. The precise contributions are:
(1) generating an affinity tree for each end node based on
the branch and bound strategy by discarding weak links, (ii)
utilizing available node attributes along with the structural
features to define the link prediction function , and (iii) eval-
uating LPST on both attributed and non-attributed graphs.

II. THE PROPOSED LPST APPROACH

In the following sections II-A—II-B, we present the pro-
posed LPST approach. Overall, the approach starts with the
crucial step of generating an affinity tree for each end node of
a link based on the branch and bound strategy. Then, a noble
node similarity function is defined based on the extracted
structural and available attribute features from the two trees.

A. Affinity tree generation

A graph, G(V, E) formally represents a network, where
V' denotes the set of vertices (nodes), and E denotes the
set of edges (links). The link between two nodes x and y
is noted as e; ,. A path is a sequence of links between a
pair of nodes x, y that connects multiple nodes in a graph.
If there is a link e, , such that e, , € E, then y is called a
neighbour of the node, x. For an undirected graph, the node,
x is also called the neighbour of the node, y. The neighbours
of a node form a neighbour set for the node, x and denoted
by T'z.

The first step of the proposed LPST approach is to generate
an affinity tree for each node of a link. For a link e, ,,
two trees will be generated based on the branch and bound
strategy for the nodes x and y. The breadth first search
(BFS) is followed for the branching operation. The branching
operation is guided by a probability value that indicates the
probability of reaching the other end node (y/x) from the
current node (x/y). Assume a z-rooted tree will be generated
for the node x, assuming the probability of reaching node
y from node x is P, = 1.0. When branching, the cost of
the link e, ; for each child ¢ of x is computed from their
structural and attribute affinities of the nodes pair, (x,7) where
the structural affinity is defined as the Jaccard coefficient in

().
[Tz N T't|

[Tz U T't|

For the attribute affinity, we consider both numerical and
categorical attributes of nodes. Overlapping and cosine sim-
ilarity functions are used to compute the affinity of cate-
gorical and numerical attributes, respectively. Let, CT* =
{ctf,cty, ... ct&} and CT' = {ct}, cth, ..., ctl} are sets
of C categorical attributes of x and ¢, respectively. The
categorical attribute affinity of the nodes x and ¢ is defined

in (2). .
get — > iz Setf, ct)
xt C

where, S(ct?,ctt) =1 if ct? = ctl, and 0 otherwise.
Now let, NM* = {nm{,nm3,....,nm%} and NM' =
{nml,nmb, ...,nmk} are the sets of N numerical at-
tributes of x and ¢, respectively. The affinity of x and ¢ with
respect to their numerical attributes is defined in (3).

JAg = 6]
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The accumulated attribute affinity of the node, x and its child,
t is computed from their numerical (2) and categorical (3)
attributes affinities using (4).

(C x S5i) + (N x S3™)
C+ N

The overall affinity between nodes x and ¢ is defined based
on their attributes (4) and structural (1) affinities in (5).

S:rt = (4)

S(IE,t) =79 X Smt“”(l*’y)JAxt (5)

The user-defined parameter 0 < v < 1 gives the flexibility
to emphasize more on the structural or attribute information
in defining the affinity function (5). For a graph without node
attributes, we set v = 0.

The cost of the link e, ; is computed from its affinity score,
S(x,t) as (6).

Cost(z,t) =1— S(z,t) (6)

Hence, the probability of reaching the node y from root node
x through node ¢ is computed using (7).

Probability, P, = P, — Cost(x,t) @)

The inclusion of the link e, in the z-rooted affinity
tree is decided based on its current probability (p;) and a
user defined depth limit parameter, L. The link e, ; is
included in the z-rooted tree only in the case its probability
is above zero (i.e. P, > 0) and its depth (L;) from the root
is below or equal to the depth limit (i.e. L, <= L!I™t),
The four cases of accepting or rejecting the link e, ; in the
z-rooted tree are illustrated in Fig. 1. The branching and
bound process is repeated for each child and grandchild of
the root x until every node is visited or all children meet the
bounding conditions to generate the x-rooted tree. For each
node, ¢ of the tree, a data structure is maintained that stores
its parent, a probability score(P) to reach the destination
node, current depth (L) from its root, a popularity score as
the number of visit (Pop) to the node, its visiting status
(generated/ visited) and degree (D) of the node. When a node
t is branched from its parent z, its data structure is initialized
with parent; = x, Popy = Pop;+1, depthto L; = L, + 1,
D, = |I't] and Status; =" generated'. During branching,
a node could be branched from several parents in a graph.
Each time a branched node is explored, its data structure is
updated based on its current probability score, P; and its
proposed probability score, P, — Cost(x,t). Two cases are
observed here:

1) P < [P, — Cost(x,t)]: In this case, the proposed
probability is lower than the current probability. As a
result, the connection request from the current node (x)
to the child () is rejected with setting Pop, = Pop;+1
and D; = |T't|.

2) P, > [P, —Cost(x,t)]: In this case, the connection re-
quest is accepted as the proposed probability is greater
than or equal to the current probability. The informa-
tion of the node, ¢ is updated as P, = P, — Cost(x,t),
POpt:POpt+1, Lt:LI+1 anth=|1—‘t|

The overall procedure of affinity tree generation is de-
scribed in Algorithm 1.
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Fig. 1: Branch and bound decisions (x=parent, t=child,
Cost(x, t)=branching cost, P,=parent probability score,
L;=child’s depth, L'™¥=depth limit): (a) The branching
is accepted as the branching cost is less than the parent’s
probability and the child’s depth is less than the depth limit;
(b) The branching is rejected as the branching cost is greater
than the parent’s probability; (c) The branching is rejected
as the child’s depth is greater than the depth limit; (d) The
branching is rejected as the branching cost is greater than
the parent’s probability and the child’s depth is greater than
the depth limit.

B. Similarity score computation

The affinity tree generation step generates two affinity
trees for two end nodes of the link e, ,. Suppose, 'z and I'y
are the sets of all nodes in the z-rooted and y-rooted trees,
respectively. The first structural similarity between two trees
is defined based on their common neighbours in (8).

gl _ [Tz N Ty|

= — 8
*v = |z UTy| ®

The second structural similarity score is generated as ratio of
total nodes in two trees and total nodes in the original graph
as (9).
» _ o]+ [Ty
Sty = 2 x |V] ©
The similarity of two trees with respect to popularity and
depth is computed based on the common neighbour set, I'xN
T'y. Suppose that Pop?, L7 and PopY, LY are the popularity
and depth of the common neighbour, z € 'e N T'y in z-
rooted and y-rooted tree respectively. The popularity of a
common neighbour, z is normalized by its degree, and the
similarity score with respect to its popularity is defined in
Equation 10. The depth of the neighbour, z is normalized by
the depth limit (L!"™) and the similarity function is defined
as (11).

Pop? + PopY

10
2x D, (10

1
R —
b= Ty 2

zellzNl'y

Algorithm 1: z-rooted affinity tree generation

Input: Root node, x; graph, G(V, E); depth limit, L'*™;
Node Queue, Q ;

Output: z-rooted tree;

Initialization: Set, z.Status="generated”,
z.P=1,2.Pop=1,2.D = 0,x.Parent = 0, front =
1,rear =1 ;

Insert = into the queue, Q[rear] = {z} ;

while rear > front do

t = Q[front];

Set, t.Status="visited”;

if tP > 0.0 & L < L"™" then

Extract neighbour set, I't = {¢1, g2, g3, --...- b

foreach g € I't do

Compute cost, Cost(t, g) using (6) ;

Find the index of g in @,
ind = Q.Indexof(g);

if ind < O then

if node.Pro > Cost(node, g) then

Set, g.Status="generated’, g.Pop=1,
g.L=t.L+1, g.P=t.P-Cost(t,g), g.D=
|Tg|, g.Parent=t ;

Increment rear and insert g into queue,
rear=rear+1, Qfrear]=g;

end

else
Set, g.Pop=g.Pop+1,
if g.Status="generated”
AND g.P < (t.P — Cost(t, g)) then
Set, g.P=t.P-Cost(t,g), g.L=t.L+1,
g.Parent=t ;
end

end

end
end
Increment front, front=front+1,

end

4 1

B L+ LY
W TzNTy

2 % Llimit

(1)

D

zel'zNl'y

The structural similarity between x-rooted and y-rooted
trees is then defined based on similarity scores in ((8)-(11))
as the following (12).

4
ST i
ST = Z a; x S,
i=1

The parameter «v; describes the contribution of each struc-
tural information S:iy on the link formation between nodes
2 and y where 1 < ; < 0 and Z?ai =1.

On the other hand, the attribute similarity, SfyT between
node x and y is computed using (4). Thus, the similarity
score between nodes z and y is defined based on the
structural and attribute similarity as follows.

S(z,y) = B x Spf +(1-B)S2y

The parameter 0 < § < 1 gives the flexibility to set
more contribution of structural or attribute information in
the final similarity score, S(x,y). For the data set with no
node attributes, we set 8 = 0.

(12)

13)

III. EXPERIMENTS

We evaluate and describe performance of the proposed
LPST approach on both attributed and non-attributed graphs.
In Section III-A, we describe redour experimental graph

Volume 33, Issue 7, July 2025, Pages 2478-2489



Engineering Letters

datasets and procedures for preparing training and test
datasets. We define prediction performance metrics in Sec-
tion III-B and discuss experiment results in Section III-C.

A. The Datasets

We evaluate the proposed LPST link prediction approach
on five non-attributed and five attributed real-world bench-
mark graphs from different areas. The experimental graphs
are homogeneous and undirected. The non-attributed graphs
include Celegans [27], Hamster [28], Ecoli [29], PB [30],
Power [31], Router [32] and Yeast [33] in which the node
attributes are not available. Celegans is a metabolic graph
of neurons and synapses in the C. elegans worm. Hamster
is a social graph in which users are represented by nodes
and user friendships and family ties are represented by
links. Ecoli is a biological graph representing biological
links between operons in E.Coli bacteria. The PB (Political
Blog) graph represents the links between political blog
pages within the United States. Power represents an electri-
cal grid connectivity among power transmitters (generators,
transformers, substations) in western US. The Router graph
represents the links between routers in the internet. All
experimental graphs are homogeneous. The attributed graphs
include AdjNoun [34], Epinions [35], Football [36] Movie-
Tweeting [37], Political-Books [38], UK-Faculty [39] and
USAir [2]. AdjNoun is an undirected graph representing
co-occurring common nouns and adjectives in the novel
David Copperfield by Charles Dickens. Each node repre-
sents a labeled word (noun/adjective), with edges linking
adjacent words in the text. Epinions is a general consumer
review graph where nodes represent products and links
represent connectives between products which were co-rated
by consumers. Each node is attributed with its product’s
category. The Football graph is a network of American
football matches during the Fall 2000 where nodes represent
Division IA college teams, and edges connecting teams that
competed against each other. The node attribute indicates
to the conference to which each team belongs, with 10
different conferences. Movie-Tweetings is a movie rating
graph where nodes represent movies and two nodes are
connected if they are co-rated by the same user. The genre
of each movie is considered as its attribute. Political-Books
is another attributed graph where nodes represent books on
US politics available on Amazon.com, and links represent
co-purchases of books by the same customer. The type of
each book (liberal, neutral, or conservative) is considered as
the node attribute. UK-Faculty is a friendship network within
a UK university faculty, with nodes representing individuals,
edges representing friendships, and school affiliations serving
as node attributes. The attributed USAir graph represents
the transportation network of US airports, where airports
are represented as nodes connected by edges representing
direct flight between airports. Each airport node is attributed
with its location. In addition, we generate two syntactic
graphs, SynA and SynNA. SynA is an attributed graph,
where nodes have both numerical and categorical attributes
whereas SynNA is a simple non-attributed graph. These two
syntactic graphs are used only to investigate the effect of
graph sparsification on link prediction approaches. Table I
summarizes the characteristics of the graphs. For evaluating

the prediction performance of LPST, we follow a 10-cross
validation protocol. The existent link set E of a graph
G(V, E) is split into 10 groups. In each iteration, one group
is taken as the positive test set, and the remaining 9 groups
form the training set. A set of non-existent links, E’, is
also sampled randomly such that V. ,cpe,, ¢ E and
|E| = |E’|. The set E' is also split into 10 groups and one
group is taken as the negative test set. Each test set consists
of one positive and one negative test set. As a result, 10 test
and 10 training sets are prepared for each graph.

B. Performance Metrics

Precision measures the proportion of missing links that
are correctly predicted as positive link ([40], [41], [42]). The
computation of precision involves ranking all predicted links
from a test set, containing |E| positive and |E’| negative
links, in descending order of their similarity scores. In the
case where a negative link has the same similarity score as
a positive test link, the negative link is ranked lower. If L is
an user defined parameter and L, is the number of positive
test links among the L top ranked (also written as top-L)
predicted links, then the precision is defined as

. L,
Precision = T

A higher precision value signifies higher accuracy of the
prediction approach.

On the other hand, AUP (Area Under Precision curve)
measures the area under the precision curve ([14], [17]). The
precision curve is generated by evaluating precision at ten
incremental values of L (10-100% of existent links), each
paired with an equal number of non-existent links from the
test dataset. Since AUP takes into account the performance
at different values of L, it is considered more robust and
reliable.

(14)

C. Experimental Results & Discussion

In the following sections III-C1-III-C2, we summarize the
experimental results of the proposed LPST approach in non-
attributed and attributed graphs, comparing the results with
other local, quasi-local and global link prediction approaches.
In the experiments, we choose L as the size of positive
test links. We also investigate the effect of increasing graph
sparsity on the proposed approach in Section 4.3. We give
equal emphasis to all structural features used in (12) (i.e.
al = a2 = a3 = a4 = 0.25). Additionally, we assume
that attribute and structural information are eghave equal
importance in defining the similarity function, and so 8 = 0.5
for the attributed graphs.

1) Performance in non-attributed graphs: The proposed
LPST approach is evaluated on seven real-world non-
attributed graphs. We select the non-attributed graphs that
are the most dense (Ecoli) and most sparse (Router) to
visualize the distribution of similarity scores of the top-L
ranked test links computed by the proposed LPST approach
in Fig. 2. From the figures, it is clearly seen that the
majority of links in the top-L links are positive test links
for the dense one (Fig. 2a). In other words, the average
rank of positive (or existent) test links is higher than the
average rank of negative (or non-existent) test links. On
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TABLE I: Topological statistics of graph datasets: number of nodes(#Node), links(#Link), average node degree (NDeg),
clustering coefficient (C.Coef), average path length (APL), diameter (Diam) and attribute (— denotes no attribute), artifitially

generated graphs are marked with the * mark

Graph #Nodes | #Links | NDeg C.Coef | APL Diam Attribute
Celegans 297 2148 14.465 | 0.308 2.455 5 -
Ecoli 1805 42325 46.898 | 0.350 2.714 10 -
Hamster 1576 4031 5.115 0.32 3.217 8 -

PB 1222 14407 23.579 | 0.239 2.787 8 -
Power 4941 6594 2.669 0.107 18.989 | 46 -
Router 5022 6258 2.492 0.033 6.449 15 -
Yeast 2375 11693 9.847 0.388 5.096 15 -
AdjNoun 112 425 7.589 0.19 2.53 5 Categorical
Epinions 456 957 4.197 0.927 3.239 7 Categorical
Football 115 613 10.66 0.403 2.508 4 Categorical
MovieTweet | 182 509 5.593 0.817 3.997 9 Categorical
PolBooks 105 441 8.4 0.448 3.079 7 Categorical
UKFaculty 81 571 14.247 | 0.574 2.098 4 Categorical
USAir 332 2126 12.807 | 0.749 2.738 6 Numerical
SynNA* 300 3000 20.0 0.066 2.17 3 -
SynA* 300 3000 20.0 0.922 1.18 3 Categorical, Numerical

the other hand, the similarity scores of a few positive links
are high, but many positive and negative test links in top-
L links have very low similarity scores for the sparse one
(Fig. 2b). The possibility of generating small affinity trees
in sparse graphs may cause the similarity score to be low.
Based on the top-L ranked links, the precision scores of
the proposed LPST approach are computed for the non-
attributed graphs. Table II compares the precision scores of
LPST with those of local, global and quasi-local approaches.
From the table, precision improvements of 3.2%,3.2%,7.6%
and 44.4% are observed in Ecoli, Hamster, PB, and Router
graphs, respectively, when comparing LPST with the best
performing existing approach for each graph. For other
graphs, LPST is also very competitive. The extraction of
multiple structural features in the proposed LPST approach
likely contributes to these improvements in precision. Un-
fortunately, the LPST approach shows less precision scores
than that of a few other global approaches in some sparse
graphs like power; however, it still performs better than all
quasi-local and many local approaches. This can be due to
the partially reliance on common neighbourhood information
(likewise local approaches) for LPST to defining the similar-
ity function. This assumption is further strengthened by the
low precision scores for the common neighbour-based local
approaches. Carrying rich information by the affinity trees
for the end nodes could be the most post possible reason
behind showing less variance in standard deviation scores
across the experimental graphs. For most attributed graphs,
LPST shows significant improvements in precision scores
compared to global and quasi-local approaches. LPST is able
to utilize both structural and node attribute information in
attributed graphs and this could be the reason for success of
LPST in attributed graphs. Overall, it is observed that LPST
exhibits better precision scores for both highly dense and
sparse graphs. The standard deviation shows that precisions
of the LPST approach do not vary much across real-world
graphs.

The above precision scores are computed for a single value

of top-L. To describe the effect varying top-L on precisions,
we plot precision scores for 10 different values of L in Fig. 3
for two randomly selected graphs: Router and Yeast. In both
graphs, precision scores decrease with increasing the value
of top-L, with a few exceptions. From Fig. 3a, 3c and 3c,
it is evident that precisions are very high (very close to 1.0)
for small values of top-L and fall with increasing top-L. In
Fig. 3a, the precision scores for local approaches decrease
significantly as top-L increases as these approaches highly
depend on common neighborhood, which are less in sparse
graphs. Similar trends are also observed for quasi-local and
global approaches in Fig. 3e and 3c, respectively. However,
precision scores remain still very high till top-L = 0.5L.
Similar to other approaches, the precisions for LPST fall for
the Router graph. It should be emphasized that the decrease
in precisions are less significant in LPST approach when
comparing to other approaches. For the Yeast graph, the
precision scores for all approaches including LPST are quite
high, even for larger values of top-L. Yeast is a comparatively
dense graph, and the high number of common neighbors
could be the most possible reason behind the success of
existing approaches in this graph. Notably, the precision
scores for the proposed LPST approach in the Yeast graph
are quite stable and consistently higher than those of the local
approaches.

The performance metric AUP for the non-attributed graphs
is computed from the precision curves. The mean AUP scores
with their standard deviations are presented in Table III. The
success in precision table (Table II) holds in AUPs. From
the table, the highest AUP scores are observed for the LPST
approach in most cases. The most remarkable improvement
in AUP is found for the Router graph, where LPST improves
the AUP by nearly 28% compared to best performing existing
approach(LRW). Another important point is that the highest
AUP score for the Power graph is found for LPST, though the
precision score was much lower than the highest precision
in Table II. LPST is able to extract rich information from
sparse graphs than many similarity-based approaches and
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Fig. 3: Precision curve for two non-attributed graphs Router and Yeast: Horizontal axis represents the values of top-L as the
percentage of links in positive test set (e.g. top-L = 0.1L,0.2L, ..., L where L=number of positive test links) and vertical
axis represents the precision scores for each top-L. Fig. 3a, 3c, 3e show the precision curves for local, global and quasi-local
approaches respectively in Router graph for a single fold. And Fig. 3b, 3d, 3f show the precision curves for local, global
and quasi-local approaches respectively in Yeast graph for a single fold. The number in () in each cell represents area under
the precision curve.
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TABLE 1II: Precision scores for the non-attributed graphs: Graph-wise highest precision scores are marked in bold. The
numbers in the parentheses indicate standard deviations (e.g. the cell value 0.89(48) means the precision is 0.89 and the
standard deviation is 48 x 10~3). The superscript L, G and @ stands for local, global and quasi-local approaches respectively.

Approach Celegan Ecoli PB Power Router Hamster Yeast
AAL 0.89(48) 0.94(02) 0.92(07) 0.18(13) 0.12(13) 0.77(13) 0.79(17)
CARL 0.41(25) 0.86(04) 0.77(10) 0.01(03) 0.02(06) 0.34(18) 0.61(16)
ccLPr 0.89(51) 0.91(18) 0.92(06) 0.09(07) 0.11(12) 0.76(14) 0.78(07)
CNE 0.88(66) 0.94(13) 0.91(09) 0.18(13) 0.12(13) 0.77(13) 0.79(17)
JAL 0.87(73) 0.93(20) 0.90(52) 0.18(13) 0.12(13) 0.77(13) 0.79(17)
LLHNY 0.86(84) 0.93(02) 0.91(23) 0.18(13) 0.12(13) 0.77(13) 0.79(17)
NLCE 0.89(45) 0.92(20) 0.91(07) 0.08(07) 0.11(12) 0.75(13) 0.78(20)
RAL 0.89(48) 0.93(08) 0.92(06) 0.18(13) 0.12(13) 0.77(13) 0.79(17)
FPC 0.82(84) 0.73(109) 0.88(78) 0.61(24) 0.26(20) 0.89(89) 0.91(39)
GLHNG 0.79(103) 0.74(114) 0.88(64) 0.59(31) 0.26(38) 0.93(13) 0.91(15)
KZz¢ 0.64(103) 0.68(126) 0.71(159) 0.46(27) 0.36(23) 0.93(14) 0.92(13)
RFKG 0.83(86) 0.75(127) 0.89(53) 0.66(21) 0.26(18) 0.79(92) 0.75(138)
RWEC 0.81(93) 0.73(115) 0.86(87) 0.61(28) 0.26(31) 0.93(16) 0.92(14)
RWRC 0.77(146) 0.72(118) 0.89(73) 0.35(35) 0.25(28) 0.92(29) 0.91(16)
LPI® 0.80(124) 0.74(100) 0.87(80) 0.28(12) 0.28(16) 0.91(12) 0.90(14)
LRW® 0.86(82) 0.73(99) 0.87(84) 0.28(12) 0.28(16) 0.91(11) 0.90(13)
FL® 0.76(25) 0.79(15) 0.88(16) 0.26(10) 0.19(18) 0.92(17) 0.92(15)
LPST 0.89(51) 0.97(21) 0.99(09) 0.30(23) 0.52(27) 0.96(19) 0.89(42)

this could contribute behind the success of showing better
AUP scores for LPST in sparse graphs. For the remaining
graphs, LPST remain competitive when compared to other
approaches. Overall, LPST performs better in terms of AUP
scores on either highly dense or highly sparse graphs. The
standard deviations for LPST are lower than those of the
competing approaches in all the graphs except for the Power
graph. These indicate the stability of LPST approach in
prediction performance in terms of AUP.

2) Performance in attributed graphs: LPST effectively
utilizes available node attribute information to improve pre-
diction performance. The approach is evaluated against seven
real-world attributed graphs. Similar to the experiments with
non-attributed graphs, the similarity scores of test links are
computed and ranked according to their similarity scores in
decreasing order. A negative link has a higher ranking when it
has the same similarity score as a positive test link. We select
the attributed graphs that are the most dense (UK-Faculty)
and most sparse (Epinions) to visualize the distribution of
similarity scores of the top-L ranked test links computed by
the proposed LPST approach in Fig. 4. From the figures, it is
clearly seen that the majority of links in the top-L links are
positive test links for both dense and sparse graphs. In other
words, the average rank of positive (or existent) test links
is higher than the average rank of negative (or non-existent)
test links. The possibility of generating big affinity trees in
sparse graphs may cause the similarity score to be low. The
average node degree difference between the most dense and
most sparse non-attributed graphs is 44.406, compared to
just 10.050 for attributed graphs. Hence, a nearly similar
visualization is expected for the most dense (UK-Faculty)
and most sparse (Epinions) attributed graphs, unlike the more
distinguishable difference observed in non-attributed graphs.

Based on the top-L ranked test links, the precision scores of
the LPST approach for seven attributed graphs are tabulated
in Table IV along with those of other local, global and

quasi-local approaches. From the table, local approaches
shows very high precision in the USAir and UK-Faculty
graphs. LPST further improves the precision slightly, by
2-3%, utilizing node attributes. A notable improvement of
about 9% in precision is observed for LPST in the Epinions
graph. LPST outperforms in the MovieTweet graph by 4.5%,
UK-Faculty by 2.1%, and USAir by 3.2% compared to the
best existing approach. For other graphs, no single approach
wins always. Overall, the proposed LPST approach shows
significant improvements in precision compared to global and
quasi-local approaches for most of the attributed graphs in
the experiment. In contrast to non-attributed graphs, LPST
shows high precision scores in most attributed graphs by
utilizing the node attributes. To visualize the robustness of the
approaches in terms of precision, we plot the precision curves
for two randomly selected attributed graphs (AdjNoun, US-
Air), similar to Fig. 3. For the AdjNoun graph, the precision
scores begin to decrease in the second half. The overall
AUP score of LPST in this case is higher than some local
approaches and comparable to some quasi-local and global
approaches. In case of USAir graph, the curve is nearly flat
and the overall AUP score in this case is higher than that
of existing approaches. This is due to the fact that most
of the positive test links have higher similarity scores than
the negative test links. We observe an exceptional behaviour
in the RFK global approach, where the precision scores
normally fall with increasing top-L but rise again for larger
values of top-L. We compute the AUPs for the attributed
graphs from their precision curves. We record the mean and
standard deviation of AUPs for all graphs in Table V. From
the table, it is seen that the AUP scores of the proposed
LPST approach outperform those of the existing approaches
in most attributed graphs. A significant improvement in the
AUP scores of LPST is seen for the Epinion and USAir
graphs. For the remaining graphs, the AUPs for LPST remain
competitive when compared to other approaches.
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TABLE III: AUPs for the non-attributed graphs: Graph-wise highest AUPs are marked in bold. The AUP scores are interpreted
in the similar way to Table II.The superscript L, G and @ stands for local, global and quasi-local approaches respectively.

Approach Celegans Ecoli PB Power Router Hamster Yeast
AAL 0.88(20) 0.87(03) 0.90(07) 0.38(25) 0.28(24) 0.87(04) 0.88(04)
CARL 0.67(24) 0.86(01) 0.88(05) 0.02(06) 0.06(15) 0.60(19) 0.81(08)
ccLprL 0.88(20) 0.87(01) 0.89(07) 0.22(17) 0.26(23) 0.87(04) 0.86(05)
CNE 0.87(27) 0.87(06) 0.89(08) 0.38(25) 0.28(24) 0.87(04) 0.88(04)
JAL 0.87(38) 0.87(02) 0.89(10) 0.38(25) 0.28(24) 0.87(05) 0.88(04)
LLHNE 0.84(81) 0.85(12) 0.90(02) 0.38(25) 0.28(24) 0.87(08) 0.85(05)
NLCEL 0.88(14) 0.87(01) 0.89(08) 0.18(16) 0.26(24) 0.87(04) 0.87(06)
RAL 0.88(16) 0.87(03) 0.90(05) 0.38(25) 0.28(24) 0.87(04) 0.88(05)
FPC 0.83(67) 0.84(37) 0.89(12) 0.41(20) 0.51(23) 0.87(37) 0.89(15)
GLHNL 0.83(76) 0.84(48) 0.89(08) 0.40(17) 0.51(19) 0.90(02) 0.90(02)
KZG 0.75(107) 0.76(104) 0.78(105) 0.45(27) 0.52(13) 0.90(03) 0.89(03)
RFKC 0.84(66) 0.85(37) 0.89(06) 0.42(18) 0.51(32) 0.81(36) 0.85(42)
RWEC 0.83(71) 0.83(45) 0.88(28) 0.41(31) 0.51(21) 0.90(03) 0.90(02)
RWRC 0.83(64) 0.80(74) 0.88(25) 0.31(26) 0.50(18) 0.89(10) 0.89(06)
LPI® 0.83(68) 0.82(61) 0.89(16) 0.51(19) 0.54(21) 0.89(03) 0.89(02)
LRW® 0.85(68) 0.82(48) 0.88(24) 0.54(16) 0.55(25) 0.89(02) 0.89(01)
FL® 0.78(21) 0.82(42) 0.80(08) 0.53(11) 0.45(24) 0.89(03) 0.89(02)
LPST 0.88(15) 0.90(01) 0.95(06) 0.54(26) 0.76(17) 0.90(05) 0.87(17)
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Fig. 4: Similarity score distribution for the most dense (UK-Faculty) and most sparse (Epinions) attributed graphs where
yellow and khaki colored points represent the positive(=1) and negative(=0) test links respectively.

To demonstrate the stability of prediction performance,
we analyze the standard deviations across all real-world
experimental graphs. We compute the mean and range of
standard deviation for all 14 graphs. The mean and range
values for each approach are plotted in Fig. 6. For Fig. 6, it
is evident that local approaches generally exhibit lower mean
deviations in precision scores than all global and most quasi-
local approaches across the graphs. It is important to note that
LPST also shows lower mean deviation, similar to local ap-
proaches. Furthermore, the ranges of deviations for LPST are
lower than those of all global and quasi-local approaches and
are competitive with those of local approaches. Thus, LPST
can be considered more stable than other quasi-local and
global approaches with respect to prediction performance.
Along with extracting rich information, LPST is able to
filter noise when generating affinity tress and consequently
minimizing noise in simialrity score computation. This could
contribute to provide stability in prediction performance of
LPST in real-world graphs.

3) Effect of graph sparsification: We evaluate LPST for
different levels of graph sparsity to test prediction robustness.
We prepare nine additional graphs from the original SynA
with different sparsity by randomly removing 10%-90% with
an interval 10% of existent links. For each graph, we apply
10-fold validation to compute the mean AUP, as described
earlier. Similarly, we prepare nine additional graphs from
SynNA and compute the mean AUP for different sparsity
levels. We plot the AUPs of the approaches for different node
degrees in Fig. 7. Overall, all approaches show a decline
in performance as the average node degree decreases. From
Fig. 7a and 7b, it can be seen that the LPST approach is
less affected than local approaches when increasing sparsity
in both attributed SynA and non-attributed SynNA graphs.
This robustness may be attributed to LPST’s ability to extract
multiple features from the generated affinity trees, which
contributes to better AUPs than local approaches. When
compared to quasi-local approaches, the effect of increasing
the sparsity on LPST is nearly similar. On the other hand,
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Fig. 5: Precision curve for two randomly sampled attributed graphs AdjNoun and USAir: Horizontal axis represents the
values of top-L as the percentage of links in positive test set (e.g. top-L=10%-100% with an interval of 10% of total test
links) and vertical axis represents the precision. Fig. 5a, Se, 5S¢ show the precision curves for local, quasi-local and global
approaches respectively in AdjNoun graph for a single fold. And Fig. 5b, 5f, 5d show the precision curves for local, quasi-
local and global approaches respectively in USAir graph for a single fold. The number in () in each approach represents
area under precision (AUP) curve.

Fig. 6: Precision stability: Thick bar (sky) shows the mean deviation, and thin bar (black) shows the range of the deviations
for each approach over the real-world 14 graphs.
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TABLE 1IV: Precision for the attributed graphs: Graph-wise highest precision scores are marked in bold. This table is
interpreted in the similar way to Table II. The superscript L, G and () stands for local, global and quasi-local approaches,

respectively.

’ Approach ‘ AdjNoun ‘ Epinion ‘ Football ‘ MovieTweet‘ Pol.Book ‘ UKFaculty ‘ USAir
AAL 0.65(78) 0.89(33) 0.81(40) 0.89(49) 0.91(34) 0.95(55) 0.95(15)
CARFE 0.10(36) 0.70(40) 0.57(44) 0.65(99) 0.46(48) 0.83(66) 0.82(18)
CCLPE 0.67(79) 0.81(42) 0.81(51) 0.84(67) 0.91(37) 0.94(55) 0.94(18)
CNT 0.66(83) 0.89(33) 0.82(44) 0.89(49) 0.92(32) 0.93(50) 0.94(26)
JAL 0.66(94) 0.89(33) 0.82(41) 0.89(49) 0.92(33) 0.95(48) 0.94(33)
LLHN® 0.65(91) 0.89(33) 0.82(44) 0.89(49) 0.92(33) 0.94(73) 0.94(43)
NLCF 0.66(73) 0.79(40) 0.80(46) 0.82(68) 0.90(43) 0.95(56) 0.94(17)
RAT 0.65(65) 0.89(33) 0.81(40) 0.89(49) 0.91(34) 0.95(54) 0.95(15)
FP¢ 0.79(143) 0.47(49) 0.67(91) 0.55(66) 0.84(87) 0.76(214) 0.76(133)
GLHN® 0.72(149) 0.47(49) 0.82(45) 0.54(75) 0.89(63) 0.79(186) 0.75(147)
Kz¢ 0.75(135) 0.67(153) 0.83(36) 0.72(112) 0.73(177) 0.64(95) 0.75(162)
RFK® 0.72(151) 0.47(49) 0.76(88) 0.55(71) 0.83(77) 0.80(191) 0.82(141)
RWG 0.76(162) 0.47(49) 0.83(34) 0.55(66) 0.85(80) 0.77(196) 0.80(106)
RWR® 0.65(134) 0.46(48) 0.84(41) 0.37(72) 0.86(82) 0.75(217) 0.77(141)
LPI? 0.73(143) 0.46(51) 0.88(57) 0.25(71) 0.84(69) 0.74(211) 0.73(144)
LRW® 0.75(134) 0.46(51) 0.89(55) 0.25(71) 0.86(68) 0.75(195) 0.75(120)
FL? 0.76(149) 0.79(33) 0.89(60) 0.80(42) 0.87(52) 0.84(67) 0.85(20)
LPST® 0.65(105) 0.97(26) 0.80(51) 0.93(82) 0.93(76) 0.97(35) 0.98(18)

TABLE V:

AUPs for the attributed graphs: Graph-wise highest AUP scores are marked in bold fonts. The table is interpreted
in the similar way to Table II. The superscript L, G and @ stands for local, global and quasi-local approaches, respectively.

Approach AdjNoun Epinion Football MovieTweet | Pol.Book UKFaculty USAir
AAL 0.78(72) 0.89(04) 0.88(11) 0.89(05) 0.89(05) 0.89(11) 0.90(03)
CARL 0.23(77) 0.85(14) 0.79(26) 0.83(37) 0.71(37) 0.88(17) 0.88(04)
CCLPE 0.80(49) 0.88(09) 0.87(12) 0.88(11) 0.89(05) 0.89(12) 0.90(04)
CNL 0.75(91) 0.89(04) 0.88(08) 0.89(04) 0.89(06) 0.89(15) 0.90(03)
JAL 0.77(71) 0.89(04) 0.88(09) 0.89(05) 0.90(03) 0.89(11) 0.89(09)
LLHNE 0.75(99) 0.89(04) 0.88(09) 0.89(05) 0.90(03) 0.88(38) 0.87(64)
NLCE 0.82(31) 0.88(09) 0.85(19) 0.88(12) 0.89(06) 0.89(13) 0.90(04)
RAL 0.78(72) 0.89(04) 0.88(11) 0.89(05) 0.89(07) 0.89(16) 0.90(03)
FP¢ 0.82(105) 0.72(40) 0.76(89) 0.75(71) 0.86(48) 0.77(159) 0.83(73)
GLHN® 0.82(65) 0.72(40) 0.88(16) 0.75(78) 0.87(37) 0.80(160) 0.82(83)
Kz& 0.83(66) 0.51(182) 0.89(11) 0.70(123) 0.75(114) 0.77(98) 0.73(121)
RFK& 0.73(181) 0.72(40) 0.7991) 0.76(59) 0.86(44) 0.80(154) 0.84(76)
RWE 0.84(56) 0.72(40) 0.89(09) 0.75(68) 0.86(41) 0.77(153) 0.82(90)
RWRE 0.77(95) 0.72(40) 0.89(10) 0.62(73) 0.86(49) 0.80(115) 0.83(70)
LPI® 0.82(67) 0.71(43) 0.89(09) 0.47(85) 0.86(46) 0.80(147) 0.82(07)
LRW® 0.85(42) 0.71(43) 0.89(09) 0.47(85) 0.86(53) 0.79(135) 0.80(09)
FL® 0.83(68) 0.80(33) 0.89(09) 0.79(05) 0.80(05) 0.79(16) 0.80(03)
LPST® 0.79(97) 0.95(01) 0.87(17) 0.90(08) 0.92(11) 0.90(06) 0.94(04)

different behaviours are observed for non-attributed and
attributed graphs in Fig. 7e and 7d. For SynNA, LPST is
more affected by sparsity than global approaches, whereas
the trend reverses for the attributed graph, SynA. Overall,
LPST approach performs better with respect to AUPs for
the attributed graph, SynA, than for the non-attributed graph,
SynNA. The utilization of node attribute information along
with the structural information could be a potential reason
behind these trends.

IV. CONCLUSION

This paper introduces a novel quasi-local similarity-based
approach, LPST, for link prediction in homogeneous graphs.

Unlike state-of-the-art similarity-based approaches, LPST
leverages both structural and node attribute information in its
prediction task. Moreover, LPST distinguishes and discards
noisy neighbors when defining the node similarity function.
When compared to aligned state-of-the-art similarity-based
approaches, LPST demonstrates competitive prediction per-
formance on both attributed and non-attributed graphs. In
addition, LPST is less sensitive to graph sparsification than
other approaches. Although the computational time of LPST
are not directly compared, LPST can be assumed to be slower
than the local approaches, but faster than global approaches.

The future extension of this work could be extracting
additional useful features from the generated affinity trees to
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Fig. 7: AUP for different levels of sparsity for the syntactic graphs, SynA and SynNA. Different amount of links are removed
randomly from SynA and SynNA to generate graphs with desired average node degree.

further improve prediction performance. In addition, LPST
could be applied to very large-scale graphs in a parallel
environment to investigate its computational efficiency and
prediction performance.
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