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Abstract—This paper employs Smoothed Particle 

Hydrodynamics (SPH) to solve the Burgers equation and 
proposes a semi-implicit scheme with unconditional stability. 
The accuracy and robustness of SPH and kernel Derivative 
Free-SPH (KDF-SPH) are demonstrated by several numerical 
tests, including the 1D, 2D, 3D Burgers equation in both regular 
irregular domains.  Several test problems are presented to 
compare the results with other numerical methods in the 
literature. The findings reveal that KDF-SPH performs better 
in simulations, exhibiting lower errors. This study provides a 
new perspective on numerical simulations in fluid dynamics and 
offers a precise and efficient computational tool for researchers 
in related fields. 
 

Index Terms—Burgers equation, Irregular domain, SPH, 
Stability analysis 
 

I. INTRODUCTION 
artial differential equations (PDEs) are fundamental 
mathematical tools for describing physical phenomena 

and engineering problems. They provide precise descriptions 
of how the state of a system changes over time and space, 
making them essential in fields such as theoretical physics, 
chemical dynamics, bioinformatics, and electrical 
engineering [1]. With the rapid advancement of science and 
technology, the applications of PDEs have expanded 
significantly, and their role in interdisciplinary research has 
grown increasingly important. Among these, 
reaction-diffusion equations are particularly noteworthy for 
their ability to model simultaneous diffusion and chemical 
reactions in a medium. PDEs also play a critical role in 
modeling wave propagation, heat transfer, fluid dynamics, 
and numerous other physical processes. Their capacity to 
capture complex interactions and behaviors makes them 
indispensable in both theoretical studies and practical 
applications. For instance, in bioinformatics, PDEs are 
widely used to model the spread of diseases and the dynamics 
of biological populations, while in electrical engineering, 
they describe electromagnetic wave propagation and signal 
processing. 

Nonlinear PDEs are considerably more complicated than 
linear PDEs, and as a result, finding an exact solution is 
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usually limited to simpler situations or certain types of 
equations. In such cases, numerical solutions may effectively 
solve these difficulties [2]. The complexity of nonlinear 
PDEs stems from their ability to model turbulence, shock 
waves, and chaotic behavior—phenomena that are inherently 
resistant to analytical treatment. This inherent complexity 
necessitates numerical approaches when analytical solutions 
prove intractable. 

The Burgers equation exemplifies these characteristics by 
combining a linear diffusion term with nonlinearity. 
Proposed by J.M. Burgers in 1948 [3] to model fluid 
turbulence, it remains a crucial equation in the study of fluid 
mechanics and nonlinear dynamics. Recent computational 
advancements have broadened its applications to viscoelastic 
wave propagation, viscous shock waves, gas transport, 
semiconductor diffusion, and combustion processes [4]. Its 
nonlinearity can lead to the formation of shock waves in 
finite time, making the Burgers equation an excellent 
benchmark for testing numerical methods in fluid dynamics. 

Numerous scholars have proposed various numerical 
solutions to the Burgers equation. For instance, Chen [5] 
employed finite difference methods and conducted an error 
analysis, while Wang et al. [6] developed a fourth-order 
implicit compact difference scheme that conserves energy. 
Zhang et al. [7] applied a linearized compact difference 
scheme to solve a two-dimensional Sobolev equation 
featuring a Burgers-type nonlinear term. Xu et al. [8] 
introduced modified non-conforming finite element schemes 
for nonlinear Burgers equations and performed a 
super-convergence analysis. Additionally, Wang et al. [9] 
developed a multi-region Galerkin approach, and Zhao et al. 
[10] utilized a space-time continuous Galerkin method to 
solve the 2D Burgers equation. Wang et al. [11] also 
employed a weak Galerkin finite element method to solve 
Burgers equations with fractional time derivatives. While 
these methods ensure numerical accuracy, they are heavily 
dependent on mesh discretization, which can affect the 
quality of results and incur substantial computational costs. 
Furthermore, these methods encounter challenges when 
dealing with irregular domains. Despite their accuracy, 
mesh-dependent methods face significant challenges in 
handling high-dimensional problems or irregular domains, 
where mesh generation becomes computationally prohibitive. 
Moreover, adaptive mesh refinement techniques often 
introduce additional complexity, limiting their practicality in 
dynamic simulations. These limitations motivate the 
exploration of mesh-free alternatives, such as SPH, which 
inherently bypass grid-related constraints. To overcome the 
limitations of mesh-dependent methods, mesh-free methods 
have been developed, which do not require grid generation. 
Prominent mesh-free methods include Smoothed Particle 
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Hydrodynamics (SPH), Discrete Element Method (DEM), 
and Element-Free Galerkin Method (EFG) [12]–[17]. SPH, 
initially proposed by Lucy [18] and Gingold [19] in 1977, has 
found widespread application in astrophysical simulations. 
This method combines the advantages of being mesh-free, 
Lagrangian, and particle-based [20], [21], making it 
particularly suitable for simulating large deformations, free 
surface flows, and complex interface motions [22]–[25]. 
However, traditional SPH has faced criticism for its lower 
accuracy, prompting the development of enhanced versions 
such as Corrective Smoothed Particle Hydrodynamics 
(CSPH), Moving Least Squares Particle Hydrodynamics 
(MLSPH), and KDF-SPH. 

In this paper, we aim to solve the Burgers equation using 
two SPH methods: conventional SPH and KDF-SPH. The 
time derivative are addressed using the Euler method, while 
SPH is employed to approximate the spatial derivatives, 
resulting in a semi-implicit discretization scheme. We 
analyze the stability of the scheme using the spectral radius 
criterion, demonstrating that both methods are 
unconditionally stable. To evaluate their reliability, accuracy, 
and efficiency, we conduct numerical simulations of the 
Burgers equation in 1D, 2D, and 3D cases, including 
irregular domains. The results confirm the stability, 
effectiveness, and high efficiency of the proposed schemes. 
Comparisons of errors indicate that KDF-SPH yields smaller 
errors and provides superior simulation results, making it 
more suitable for solving the Burgers equation. 

The paper is organized as follows: Section 2 provides a 
detailed explanation of the tensor representation of the 
Burgers equation. Section 3 introduces the kernel 
approximations for the two SPH methods. Section 4 presents 
the discretization process of the Burgers equation using these 
methods and analyzes the stability of the discrete 
formulations based on the spectral radius criterion. Section 5 
discusses numerical experiments for various forms of the 
Burgers equations and compares the two methods with other 
methods in the literature, highlighting the effectiveness and 
accuracy of KDF-SPH. Finally, Section 6 concludes the 
paper and offers prospects for future research. 

 

II. THE  NONLINEAR BURGERS EQUATION 
The Burgers equation is a simplified form of the 

Navier-Stokes equations and holds significant importance in 
fluid dynamics. It describes fluid motion in both 
compressible and incompressible cases. The formulation of 
the Burgers equation in the Eulerian coordinate system is as 
follows: 

 
1

t Re

   


u u u u                           (1) 

 
The initial value condition of the above equation is 
 

( ,0) ( ),x x x  u                     (2) 
 
The Dirichlet boundary condition is 
 

( , ) ( , ),x t x t x  u                 (3) 

where  u  is the velocity component in the x  direction. 
u u represents the nonlinear convection or advection of the 

velocity field. It describes the transport of momentum due to 
the fluid's velocity.  

The Reynolds number Re  is a dimensionless quantity that 
characterizes the flow regime, representing the ratio of 
inertial forces to viscous forces in the fluid. The term 

1
Re

u represents the viscous diffusion of momentum. It 

describes the effect of viscosity, which tends to smooth out 
velocity gradients in the fluid.  
 

III. THE MESHLESS METHOD-SPH METHOD 
In this section, we introduced two types of SPH methods: 

traditional SPH and the KDF-SPH. These methods will be 
applied in the subsequent sections to solve the Burgers 
equation and to analyze their performance. 
 

A. The traditional SPH method 
The kernel approximation of a continuous function ( )f x  

is expressed as the integral of the product of the kernel 
function ( , )W x h x  and the function ( )f x ,  represented 
by the notation ( )f x  [26].  

 
( ) ( ) ( , )f f W x h d


     x x x x                  (4) 

 
where W  represents the non-negative domain of the kernel 
function, ( , )W x h x  denotes the smoothing kernel function,  
d  indicates the dimensionality of the function, and h  is the 
smoothing length. 

The n-th order partial derivative of a continuous function 

( )f x , denoted as ( )n

n

f
x




x , can replace ( )f x  in the 

aforementioned expression to drive the kernel approximation 

for ( )n

n

f
x




x . 

 
( ) ( ) ( , )

n n

n n

f f W h d
x x 



    
 

x x x x x      (5) 

 
The particle approximation formulation transforms the 

kernel function expression ( , )W x h x  into a discrete form 
by summing over all particles in the solution domain W . 

 

1
( ) ( ) ( , )

M

i j i j j
j

f f W h V


    x x x x              (6) 

 
1

( ) ( ) ( , )
n nM

i
j i j jn n

j

f f W h V
x x 

       x x x x   (7) 

 
where M  denotes the total number of particles within the 
influence domain of the kernel function, and jV  represents 
the volume of the j-th infinitesimal element dx . The volume 
of an infinitesimal element can be expressed in terms of mass 
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m  and density   as mV


  . 

 

B. KDF-SPH Method 
The Taylor expansion of ( )f x  at x  gives [27]: 

2

2 2

( )( ) ( ) ( )

1 ( ) ( )( )
2

( )( )

( )
2

i i
i

i i j j
i j

i i

i

j ji i

i j

ff f x x
x

f x x x x
x x

x xff h
x h

x xx xh f
x x h h

    


    
 

 
  


  


 

x

xx x

x

x

x

                 (8)  

 
where i  and j  are summed over their ranges. 

By multiplying both sides of (9) by ( , )l lx x W h
h
 

x x , 

and then integrated over the influence domain of the kernel 
function. We obtain: 

 

1 2

2 2
3

3

( )( ) ( )

( ) ( )
2

l ill l

i

ijk

i j

x x ff M f hM
h x

h fM o h
x x

  
 




 

 

xx x

x
           (9) 

 
where 

( ) ( ) ( )

( , )

nn nji k ji l

W

nj jn ni j k i i l l
n

x xx x x xM
h h h

W x x h dx


   









  

are n-moment of the kernel function and i j kn n n n   . It 
can be proved that the kernel function’s moment constants 
and independent from h . 

Due to the properties of the kernel function moments, it is 
known that 2 0ilM   for i j , and 3 0ijkM  , we obtain: 

 

2

1
2

2

( ) ( )
( ) ( )

l

i
i

f M f
f h o h

x hM

 



 



l lx x x x
x      (10) 

 
Similarly, both sides of (9) can be multiplied by 

2( ) ( , )l lx x W h
h
 

x x , and integrated over the influence 

domain of the kernel function. We obtain: 
 

2
2

2 3

2 2

4

3 3
4

5

( )( ) ( )

( )
2

( ) ( )
6

l ilkl l

i

ijlk

i j

ijhlk

i j h

x x ff M f hM
h x

h fM
x x

h fM o h
x x x

        


 

 




  

xx x

x

x

        (11) 

 
Due to the properties of the kernel function moments, it is 

known that 3 0ilkM   for i l , 4 0ijlkM   for ,i j l , and 

5 0ijhlkM  . We obtain: 
2 2

2

2 1

42 2

2
2

2

( ) 2

( ) ( ) ( )

i l

i

ll l

f M
x h

x x f M f o h
h

    

       
   


x

x x
   (12) 

 

IV. DISCRETIZED SCHEME AND STABILITY 
ANALYSIS OF THE BURGERS EQUATION 

This section utilizes the one-dimensional Burgers equation 
as a case study for discretization. Following this, a 
comprehensive stability analysis is conducted on the 
resulting discrete formulation to evaluate the validity and 
robustness of the discretization scheme. 

 

A. Discretized Scheme of the Burgers Equation  
In most cases, the SPH requires very small time step, 

which can significantly slow down the compuatational 
process.  To address this issue and enhance the reliability of 
the method, a semi-implicit framework is proposed. A 
one-dimensional model is presented as an example: 

 
2

2

( , ) ( , ) 1 ( , )( , )

0 , 0, 0

u x t u x t u x tu x t
t x Re x

x L t Re

  
 

  
   

        (13) 

 
The Crank-Nicolson method is initially employed to 

discretize the aforementioned partial differential equation: 
 

1 11 1
2 2

n n n n n nn n
x x xx xxu u u u u uu u

dt Re

   
        (14) 

 
By employing the two SPH methods outlined previously 

and to facilitate the stability analysis of the introduced 
equation, we represent it in matrix form: 

 
1

1 2

1 2

1
2

1
2

n
N

n
N

dtI DK K U
Re

dtI DK K U
Re

        
       

        (15) 

 
where NI  is an N N  identity matrix, and matrices 1K  and 

2K  represent the approximations of first-order and 
second-order partial derivatives, respectively, derived 
through two SPH. The vector D  is defined as: 
 

1 0

0

n

n
N

u
D

u

 
 

  
 
 


  


                          (16) 

 

B. Stability Analysis of the Burgers Equation 

Assuming u  in xuu  is a local constant, the error at the 
n-th time level is defined as follow: 
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Fig. 2.  Spectral radius of 1D, 2D, 3D Burgers equation: (a) 1D Burgers equation of the spectral radius as dt, (b) 1D Burgers equation of the spectral radius as 
N, (c) 2D Burgers equation of the spectral radius as dt, (d) 2D Burgers equation of the spectral radius as N, (e) 3D Burgers equation of the spectral radius as dt 
and (f) 3D Burgers equation of the spectral radius as N.
 

exact app
n n ne u u                            (17) 

  
The error equation associated with the discretized Burgers 

equation, as previously introduced, can be formulated as 
follows: 
 

1

2 2
n ndt dtH K e H K e           

         (18)  

 

where H I , 1 2
1K DK K
Re

  . Simplifying, one obtains: 

 
1n ne Pe                                   (19) 

 

where 
1

2 2
dt dtP H K H K


           

. The numerical 

scheme’s stability is ensured when the 2-norm of the matric 
P  is less than or equal to 1. This condition is equivalent to 
the spectral radius of the matrix P  being less than or equal to 
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1, denoted as ( ) 1P   [28]. 
Fig. 1 presents the spectral radius plots of the 1D, 2D, and 

3D Burgers equations using the SPH and KDF-SPH as dt  
and N vary. From these six figures, we can clearly observe 
that, regardless of whether it is the one-dimensional or 
higher-dimensional Burgers equations, the spectral radius 
varies with dt  and N , remaining less than or equal to one 
( ( ) 1P   ). This indicates that both methods are stable. 

V.  NUMERICAL EXPERIMENT 
In this section, we apply the discretization methods 

detailed in the previous section to benchmark our results 
against those derived from other numerical methods. We 
perform numerical computations and simulations for various 
Burgers equation, including those defined on irregular 
domains. All numerical experiments in this section utilize 
cubic B-spline kernel functions [29], [30]. To validate the 
effectiveness of the proposed methods, we conduct an error 
analysis based on the infinity norm (denoted by the infinity 
symbol), which is defined as follows: 

 
1max | |j N j jL U u                         (20) 

  
where ju  represents exact solution of ( , )u x t  and jU  is the 
numerical solution. 
    The kernel function ( , )W x x h  is defined as:  
 

2 3

3

2 1 0 1
3 2
1( , ) (2 ) 1 2
6
0 2

d
d

s s s

W x x h s s
h

s



    

    





         (21) 

 
where d  represents the dimension of the function, and s  is 

defined as rs
h

 . Where r x x   is the distance between 

points 'x  and x . Additionally, d  takes the values of 1, 15
7

 

and 3
2

 for 1D, 2D, and 3D cases respectively. 

Example 1. We consider the following 1D Burgers equation 
[31], [32]: 

 
2

2

( , ) ( , ) 1 ( , )( , )u x t u x t u x tu x t
t x Re x

  
 

  
           (22) 

 
where the ranges of x  and t  are 0 2x  , 0 t T  . With 
the initial condition is: 
 

1 sin( ) 4sin(2 )( ,0) 2 0 2
4 cos( ) 2cos(2 )

,x xu x x
Re x x

 
 


  
 

   (23) 

 
and the Dirichlet boundary value condition is: 
 

(0, ) 0, (2, ) 0, 0u t u t t T                (24) 
 

Let 2 1expG t
Re

   
 

 and 2 1 2exp 4L
Re t

   
 

. Then, 

the analytical solution is: 
 

1 sin( ) 4sin(2 )( , ) 2
4 cos( ) 2cos(2 )

x G x Lu x t
Re x G x L

 
 




 
      (25) 

 
TABLE I 

COMPARISON OF THE L  ERROR FOR EXAMPLE 1 AT TIME   0.1T  S  

Method x = 1/20  x = 1/40 x = 1/80  

SPH 11.499 10   26.513 10   23.050 10   
KDF-SP

H 
24.352 10  21.674 10   36.647 10  

 

 
Fig. 2.  Simulation results of Example 1 at various Re  

 
Table I compares the L  error of the | |u  generated by 

both SPH and KDF-SPH in solving the 1D Burgers equation 
at different spatial steps ( 1/ 20,1/ 40,1/ 80x  ) with 

1Re  . The results indicate that KDF-SPH produces 
significantly smaller errors than SPH at the same spatial step 
sizes. Furthermore, these findings confirm the effectiveness 
of the proposed approach in solving the 1D Burgers equation, 
as it significantly reduces errors and improves convergence 
accuracy. 

To further illustrate the accuracy of the method, Table Ⅱ 
presents a comparison of the  L  errors between the KDF- 
SPH and other methods at two different time instances, 

0.1T  s and 1T  s, for various Re  values. The results 
demonstrate that KDF-SPH achieves better accuracy in terms 
of error rates, indicating its superior performance in 
simulating the one-dimensional Burgers equation. 

Fig. 2 compares numerical results from KDF-SPH with the 
analytical solution for 100Re   and 1000Re  . The 
comparison is conducted under conditions: 1/100t  , 

1/ 20x  , and 0.1T  s. The solid black line represents the 
analytical solution, whereas the blue line denotes the 
numerical solution obtained from KDF-SPH. The figure 
clearly shows that the numerical results align well with the 
analytical solution across different Re  values, simplifying 
the accuracy and reliability of the proposed method. 
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Fig. 3.  Comparison of numerical and exact solution through KDF-SPH for Example2 

  
TABLE Ⅱ 

COMPARATIVE STUDY OF THE L  ERROR BETWEEN DIFFERENT METHODS FOR EXAMPLE 1 

Re   0.1T  s  1T  s  
[31] [32] KDF-SPH [31] [32] KDF-SPH 

210  34.41 10  33.13 10   33.37 10   23.13 10   22.12 10   21.44 10   
310   54.60 10   54.30 10   53.68 10   44.45 10   44.15 10   43.38 10   
410   74.62 10   74.42 10   73.68 10   64.61 10   64.40 10   63.65 10   
510   94.62 10   94.46 10   93.70 10   84.62 10   84.43 10   83.68 10   

 
TABLE Ⅲ 

COMPARISON OF THE L  ERROR FOR EXAMPLE 2 AT 0.5T  S  

Method 
1 1( , ) ( , )
20 20

x y     1 1( , ) ( , )
40 40

x y     1 1( , ) ( , )
60 60

x y     1 1( , ) ( , )
80 80

x y     

SPH 59.328 10  54.741 10  53.173 10     52.384 10  
KDF-S

PH 
51.125 10   65.679 10   63.800 10   62.960 10  

 
TABLE Ⅳ 

COMPARATIVE STUDY OF THE L  ERROR BETWEEN DIFFERENT METHODS FOR EXAMPLE 2 

( , )x y    1Re   10Re   
[33] KDF-SPH [33] KDF-SPH 

1 1( , )
20 20

 41.4830 10  41.1755 10   33.0770 10   31.9928 10   

1 1( , )
40 40

  42.9210 10   55.9315 10   21.6260 10   47.5417 10   

1 1( , )
80 80

  45.8200 10   52.9750 10   23.8200 10   43.2259 10   

 

         
Fig. 4.  Simulation results of Example 2 through KDF-SPH at 0.5T  s: (a) Numerical solution of u  , (b) Analytic solution of u .  
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Fig. 3 presents a comparison of the numerical solution and 
the analytical solution for 100Re  , 0.001t  , 1/ 20x  , 
and 0.1T  s. In this figure, (a) represents the numerical 
solution obtained using the KDF-SPH, while (b) represents 
the exact solution. The image demonstrates a minimal error 
between the numerical and exact solutions, confirming the 
reliability of the numerical method. 
Example 2. We consider the following 2D Burgers equation 
with Dirichlet boundary conditions: 
 

2 2

2 2

1 ( , ) , 0u u u u uu v x y t
t x y Re x y

     
           

 (26) 

 
with the analytical solution is 

 

( )
2

1( , , )
1

Re x y tu x y t
e

 


                      (27) 

 
and the Dirichlet boundary condition can be obtained by the 
above analytical solution. 

Table Ⅲ compares the L -norm errors between SPH and 
KDF-SPH across various spatial steps for Re =0.1. The 
results indicate that KDF-SPH consistently outperforms SPH. 
This demonstrates its effectiveness in simulating the Burgers 
equation. To further validate the method, we compare the L  
error under different ( , )x y   resolutions at 1Re   and 

10Re  , with 0.25T  s, against the results from [33] in 
Table Ⅳ. The findings confirm that KDF-SPH provides 
superior accuracy and effectiveness. 
   To illustrate the accuracy of the proposed method in 
Example 2, Fig. 4 compares numerical and analytical 
solutions of u  for 0.1Re   and 0.5T  s. Using a spatial 
step size of (1/ 40,1/ 40) , the results from KDF-SPH show 
strong agreement with the analytical solution.  

Fig. 5 presents numerical solutions for four irregular 
domains: a trilobed region, a star-shaped region, a 
pentagram-shaped region, and a gear-shaped region, with a 
spatial step size of (1/ 40,1/ 40) . The fitting effect is very 
good, showing the accuracy of the numerical solutions. 
Additionally, Table Ⅴ shows that KDF-SPH exhibits 
significantly higher precision when simulating these four 
types of regions. These results demonstrate the robustness of 
the proposed method in solving the 2D Burgers equation in 
irregular domains. 

 
TABLE Ⅴ 

NUMERICAL SOLUTION ERROR IN FOUR IRREGULAR DOMAINS FOR 
EXAMPLE 2 

Irregular Domains L (SPH) L (KDF-SPH) 

Trilobed Region 31.892 10  45.401 10   

Star-shaped Region 32.105 10   44.961 10   
Pentagram-shaped 

Region 
31.584 10   32.903 10   

Gear-shaped Region 33.573 10   42.126 10   

 
Example 3. In fluid dynamics, the two-dimensional coupled 
Burgers equations represent a set of particle differential 
equations that govern the behavior of velocity fields. These 
equations are widely utilized in fluid dynamics, turbulence 

  

 
 

 
 

 
 

Fig. 5.  Numerical simulation of the solution u  in four irregular domain for 
Example 2: (a) A trilobed region, (b) A star-shaped region, (c) A 
pentagram-shaped region, (d) A gear-shaped region. 
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Fig. 6.  Overall error through KDF-SPH for Example 3: (a) A trilobed region, (b) A star-shaped region, (c) A pentagram-shaped region, (d) A gear-shaped 
region. 
 

TABLE Ⅵ 
COMPARISON OF THE L  ERROR FOR EXAMPLE 3 AT TIME 0.5T  S  

( , )x y    
SPH KDF-SPH 

( , , )u x y t   ( , , )v x y t   ( , , )u x y t   ( , , )v x y t   
(1/ 20,1/ 20)  66.40 10  66.40 10   76.92 10   76.92 10   

(1/ 40,1/ 40)   62.99 10   62.99 10   73.60 10   73.60 10   

(1/ 60,1/ 60)   62.01 10   62.01 10   72.40 10   72.40 10   

(1/ 80,1/ 80)   61.51 10   61.51 10   71.81 10   71.81 10   

 

  
Fig. 7.  Simulation results through KDF-SPH for Example 3: (a) Numerical solution of u , (b) Analytic solution of u , (c) Numerical solution of v , (d) 
Analytic solution of v . 
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modeling, and the study of nonlinear wave 
phenomena, making them significant in both 
physics and engineering applications [34]. 
Therefore, we consider the following 2D coupled 
Burgers equation: 
 

2 2

2 2

2 2

2 2

1

1

u u u u uu v
t x y Re x y

v v v v vu v
t x y Re x y

      
           


                

           (28) 

 
with the analytical solution is: 
 

Re( 4 4 )
32

Re( 4 4 )
32

3 1( , , )
4

4 1

3 1( , , )
4

4 1

x y t

x y t

u x y t
e

v x y t
e

  

  

        

  
  

  
  

           (29) 

 
and the Dirichlet boundary condition can be obtained by the 
above analytical solution. 

Fig. 6 presents a comparative analysis of the overall errors 
for the velocity components u  and v  at 0.5T  s and 

0.1Re  . The symmetric distribution of errors indicates 
strong agreement between the KDF-SPH results and the 
analytical solutions. Furthermore, Fig. 7 simulates the 
solution of the 2D coupled Burgers equation using two SPH 
methods. For 0.1Re  , ( , ) (1/ 20,1/ 20)x y    and 

0.5T  s, the numerical and analytical solutions for u  and 
v  are compared. The results show good agreement, with 
errors smaller than those from SPH. This demonstrates that 
KDF-SPH effectively models the coupled 2D Burgers 
equation system. 

Table Ⅵ compares the errors in u  and v  for two different 
SPH methods at 0.1Re   and 0.5T  s, with different 
spatial steps. The results indicate that KDF-SPH outperforms 
SPH across four different particle counts, with errors 
decreasing as the number of particles increases. This Burgers 
equation is given by: 

 2 2 2

2 2 2

1u u u u u u uu
t x y z Re x y z

        
                

     (30) 

 
with the analytical solution is:  
 

2
2

2
2

3

3

2 sin( ( ))( , , , )

cos( ( ))

a t
Re

a t
Re

a e a x y zu x y z t

Re e a x y z





 

 


 


  

       


 
        
 

 (31) 

 
and the Dirichlet boundary condition can be obtained by the  
 
above analytical solution. 

Fig. 8 illustrates a comparison between the numerical 
solution obtained using KDF-SPH and the analytical solution 
for the 3D Burgers equation with 10Re  , 5   and spatial 

step ( , , ) (1/10,1/10,1/10x y z    ） . The comparison 
shows that KDF-SPH achieves excellent agreement with the 
analytical solution, confirming the accuracy of the proposed 
method. Additionally, Table Ⅶ presents a comparison of the 
errors between the two methods at different spatial step sizes. 
The analysis reveals that KDF-SPH exhibits superior 
accuracy over traditional SPH, with errors decreasing as the 
number of particles increases. This reduction in error further 
demonstrates the efficacy of KDF-SPH in resolving the 
three-dimensional Burgers equation. The improved 
performance of KDF-SPH can be attributed to its enhanced 
kernel approximation, which effectively handles the 
complexities of higher-dimensional problems. Furthermore, 
the method's ability to maintain stability and accuracy across 
a wide range of Reynolds numbers and spatial resolutions 
underscores its robustness.  
Example 5. Next, we proceed to consider the 
three-dimensional coupled Burgers equations and simulate 
them using two methods to compare their errors. The 
equations are as follows: 
 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1

1

1

u u u u u u uu v w
t x y z Re x y z

v v v v v v vu v w
t x y z Re x y z

w w w w w w wu v w
t x y z Re x y z

        
              

                       
                       

 (32) 

 

Let 
2 2 2

2a b c t
ReQ e

 


 , a x    , b y    , c z     , 
then the analytical solution is: 
 

 

 

 

2 cos sin sin( , , , )
sin sin sin

2 sin cos sin( , , , )
sin sin

2 sin sin cos( , , , )
sin sin sin

a Qu x y z t
Re Q

b Qv x y z t
Re Q
c Qw x y z t

Re Q

   
   
   
  
   
   

      
 

   
        

  
      
  

   

       (33) 

 
and the Dirichlet boundary condition can be obtained by the 
above analytical solution. 

Table Ⅷ presents the numerical simulation results for the 
coupled three-dimensional Burgers equation using two 
different methods under the parameters 100Re  , 0.1T  s, 

1a  , 1b  , and 1c  .  The table provides a comparative 
analysis of the associated errors for different spatial steps. 
The results show that both methods are applicable to the 
equation set; however, KDF-SPH exhibits significantly 
reduced numerical solutions for all three velocity 
components compared to SPH. Furthermore, KDF-SPH 
demonstrates a consistent decrease in error as the number of 
number of particles increases. It is more accurate for solving 
the three-dimensional Burgers equations and is a better tool 
for numerical simulations.   

VI. CONCLUSION 
In this paper, we present a numerical approach based on 

SPH and KDF-SPH method, combined with the finite various  
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TABLE Ⅶ 
COMPARISON OF THE L  ERROR FOR EXAMPLE 4 AT 0.1T  S AND 0.5   

Method 
1 1 1( , , ) ( , , )

10 10 10
x y z      1 1 1( , , ) ( , , )

15 15 15
x y z      1 1 1( , , ) ( , , )

20 20 20
x y z      

SPH 41.085 10  56.349 10  54.870 10   
KDF-SP

H  
53.719 10   53.557 10   53.557 10   

 
 

TABLE Ⅷ 
COMPARISON OF THE L  ERROR FOR EXAMPLE 5 AT TIME 0.1T  S AND 0.5      

( , , )x y z     
SPH  KDF-SPH  

( , , , )u x y z t   ( , , , )v x y z t   ( , , , )w x y z t   ( , , , )u x y z t  ( , , , )v x y z t  ( , , , )w x y z t  
1 1 1( , , )

10 10 10
 31.873 10  31.873 10   37.890 10   58.768 10   41.061 10   35.027 10   

1 1 1( , , )
15 15 15

  31.955 10   31.965 10   39.250 10   54.721 10   57.492 10   36.898 10   

1 1 1( , , )
20 20 20

  31.982 10   31.986 10   39.991 10   53.907 10   56.810 10   38.178 10   

 

 
Fig. 8.  Simulation results through KDF-SPH for Example 4: (a) Numerical solution of u , (b) Analytic solution of u .

 
method for solving the Burgers equation. Due to the 
nonlinear nature of the Burgers equation, implicit schemes 
often lead to high computational costs. To address this issue, 
we propose a semi-implicit scheme, whose unconditional 
stability is demonstrated through a stability analysis. The 
effectiveness and accuracy of the proposed scheme are 
quantified by comparing numerical solutions with exact 
solutions in 1D, 2D, and 3D test cases. The results show that 
KDF-SPH outperforms traditional SPH and other methods in 
the literature, making it more suitable for solving the Burgers 
equation. 

In future work, we aim to develop more efficient methods 
for handling nonlinear terms to further reduce computational 
time and enhance accuracy. Additionally, we plan to extend 
the proposed approach to solve other type of Burgers 
equation, such as fractional Burgers equation or coupled 
Burgers systems, to explore its applicability in a wider range 
of fluid dynamics problems.     
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