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Abstract—This paper proposes a modified Leslie-Gower
predator-prey model incorporating saturation wind effects to
explore the nonlinear impact of wind speed on ecosystem
dynamics. By introducing a saturation function ϕ(ω) = 1+ ω

k+ω
,

we analyze the system’s stability, persistence, and bifurcation
behavior. Key findings include:

1) Critical Wind Speed (ωc): A critical wind speed ωc is
identified, beyond which the system transitions from a
coexistence state to prey extinction, highlighting wind
speed’s role in ecosystem stability.

2) Saturation Effect: At low wind speeds, predation rate
increases linearly with wind speed but saturates at high
wind speeds, reflecting organisms’ adaptive strategies
to extreme conditions. This saturation effect balances
predation pressure and prey survival.

3) Global Stability and Persistence: The positive equilibrium
E∗ is globally asymptotically stable when r > αϕ(ω)c,
ensuring predator-prey coexistence. The system is also
shown to be persistent under this condition.

4) Transcritical Bifurcation: The system undergoes a trans-
critical bifurcation at ωc, where the positive equilibrium
E∗ collides with the prey-free equilibrium E1(0, c), lead-
ing to a state transition.

Numerical simulations validate the theoretical results,
demonstrating how wind speed influences ecosystem dynamics.
This study provides a new perspective on the interplay between
climatic factors and biological interactions, with implications
for ecological conservation and pest control.

Index Terms—Leslie-Gower, predator-prey model, stability,
saturation wind effects

I. INTRODUCTION

IN nature, predator-prey relationships are one of the most
fundamental interspecies interactions. As such, they have

been a long-standing focus of research for biomathemati-
cians, as seen in references [1]-[31] and the cited literature.
Recently, scholars have begun to pay attention to the impact
of wind on the dynamical behavior of predator-prey systems
[17]-[22]. Among them, Jawad, Sultan, and Winter [17],
based on observations from [16] that reed warblers’ nests
exposed to wind may lead to an increased detection rate by
aerial predators, proposed the following predator-prey system
with wind effects:
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du

dt
= ru

(
1− u

K

)
− αuv

ϕ(ω)
− equ,

dv

dt
= sv

(
1− v

ϕ(ω) + βu+ c

)
− γv,

(1)

where ϕ(ω) represents the wind effect. The authors thor-
oughly investigated the dynamic behavior of this model.
However, numerical simulations in [17] showed that as wind
speed increases, the population densities of both predators
and prey increase. This is counterintuitive, as higher wind
speeds would make reed warblers’ nests more easily de-
tectable, implying that the warblers are more likely to be
captured, and thus their population density should decrease.
Therefore, the results of [17] do not align with the ecological
background described above. Recently, Huang, Chen, Zhu,
and Li[18] argued that model (1) does not reflect reality and
proposed a more reasonable model:

du

dt
= ru

(
1− u

K

)
− αϕ(ω)uv − equ,

dv

dt
= sv

(
1− v

βϕ(ω)u+ c

)
,

(2)

where ϕ(ω) = 1 + ω. Their research demonstrated that as
wind speed increases, the prey population indeed decreases,
while the predator population increases, which aligns with
the observations in [16].

If we consider more natural scenarios of population sur-
vival, model (1) can be further improved. In fact, under the
influence of wind, both prey and predator populations adopt
certain strategies:

• Prey Behavior and Survival:
– Predator Avoidance: Wind affects the prey’s sen-

sory and mobility capabilities. At low wind speeds,
prey can more clearly use visual, auditory, and
other senses to detect approaching predators and
take timely evasive actions, so the impact of wind
on predator avoidance is minimal. As wind speed
increases, the sound of the wind may mask the
predator’s noises, and wind may also interfere with
the prey’s vision (e.g., by raising dust), making it
harder for the prey to detect predators, thus in-
creasing the risk of predation. However, when wind
speed reaches a certain level, strong winds may also
severely limit the predator’s mobility, making it
difficult for flying predators to maintain stable flight
and accurately capture prey. Additionally, prey may
find sheltered areas or adopt specific wind-resistant
behaviors to avoid predation, so the impact of wind
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on predation risk no longer increases significantly,
showing a saturation effect. For example, hares on
grasslands can detect approaching hawks well in
light winds; in strong winds, although it becomes
harder to detect hawks, the difficulty of hunting
for hawks also increases, and hares may hide in
burrows or other sheltered areas, causing the impact
of wind on predation risk to saturate.

– Foraging Behavior: Wind also affects the foraging
activities of prey. At low wind speeds, prey can
relatively easily search for food within a specific
range. As wind speed increases, it may scatter or
bury some plant-based food resources, increasing
the difficulty of foraging. However, when wind
speed reaches saturation, prey may change their
foraging strategies, such as seeking food sources
less affected by strong winds (e.g., underground
roots) or reducing foraging activities and waiting
for the wind to subside. Thus, the impact of wind
on prey foraging also saturates at high wind speeds.
For example, some insects can typically forage for
nectar on flowers in light winds, but in strong
winds, the nectar may be blown away or the flow-
ers damaged, making foraging difficult. However,
when the wind becomes extremely strong, insects
may hide on the undersides of leaves or other
sheltered spots, no longer being further affected by
the wind.

• Predator Behavior and Hunting Efficiency:

– Prey Localization: Predators rely on various sen-
sory cues to locate prey, and wind can interfere with
these cues. Predators can use low wind speeds to
track prey through smell, hearing, and other senses.
As wind speed increases, it may disperse the prey’s
scent and mask the sounds made by the prey, reduc-
ing the predator’s ability to locate prey. However,
when wind speed exceeds a saturation point, preda-
tors may abandon sensory cues severely affected
by strong winds and adopt other relatively stable
hunting strategies, such as using vision to search for
prey in open areas less affected by wind or waiting
for prey in specific terrains (e.g., leeward slopes).
Thus, wind interference on predator localization no
longer increases significantly at high wind speeds,
showing a saturation effect. For example, foxes
hunting voles can track vole burrows by scent in
light winds, but the scent is dispersed in strong
winds. However, in powerful winds, foxes may
choose to wait in open areas where voles frequently
appear, using vision to observe vole movements,
so the impact of wind on their hunting localization
no longer increases with further increases in wind
speed.

– Hunting Actions: For flying or highly mobile preda-
tors, wind speed directly affects their hunting ac-
tions. Low wind speeds help predators maintain
stable flight or movement for hunting. As wind
speed increases, predators need to expend more en-
ergy to counteract the wind, reducing the flexibility
and accuracy of their hunting actions. When wind

speed reaches a saturation point, predators’ physi-
cal capabilities and behavioral strategies limit the
extent to which their hunting efficiency decreases
with further increases in wind speed. For example,
raptors can easily soar and dive to hunt in low
winds, but in strong winds, flying becomes difficult.
However, in robust winds, raptors may adjust their
flight altitude and speed to find relatively stable air
currents, so the impact of wind on their hunting
actions no longer increases indefinitely with wind
speed.

Based on the above observations and analysis, a predator-
prey model considering the saturation effect of wind may
better reflect the actual ecological background. Therefore,
we propose the following model:

du
dt = ru

(
1− u

K

)
− αϕ(ω)uv

def
= uF1(u, v),

dv
dt = sv

(
1− v

βϕ(ω)u+ c

)
def
= vF2(u, v),

(3)

where

F1(u, v) = r
(
1− u

K

)
− αϕ(ω)v,

F2(u, v) = s

(
1− v

βϕ(ω)u+ c

)
,

(4)

and
• ϕ(ω) = 1+ ω

k+ω is the saturation function, ω is the wind
speed, and k is the saturation constant, representing the
wind speed at which the effect saturates. When ω → 0,
ϕ(ω) → 1; when ω → ∞, ϕ(ω) → 2. This indicates that
the impact of wind speed increases with wind speed at
low wind speeds but saturates at high wind speeds. The
choice of saturation function is motivated by its ability
to capture both linear response at low wind speeds
and adaptive saturation at high speeds. Comparatively,
classical linear models (e.g., ϕ(ω) = 1 + ω) in [17]
fail to reflect behavioral adaptations observed in field
studies [16].

• r is the intrinsic growth rate of the prey population,
K is the environmental carrying capacity of the prey
population, α is the predation efficiency coefficient, and
αw is the number of prey consumed by a single predator
in the absence of wind.

• s is the intrinsic growth rate of the predator population,
and c represents other food sources.

In the above model (3), we make the following assump-
tions:

• Prey Equation:
– The growth of the prey population is limited by the

environmental carrying capacity K.
– The predation rate αϕ(ω) is influenced by wind

speed but saturates as wind speed increases.
• Predator Equation:

– The growth of the predator population is limited
by the prey density, with a carrying capacity of
βϕ(ω)u+ c.

– Wind speed affects the predator’s carrying capacity
through ϕ(ω), but the effect saturates as wind speed
increases.
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This paper aims to thoroughly investigate the dynamical
behavior of system (3) and provide a definitive answer to how
wind effects influence the system’s dynamics. The paper is
organized as follows: In the next section, we will explore the
positivity and boundedness of the solutions to the system (3);
in Section 3, we will analyze the existence of equilibrium
points; In Section 4, we investigate the local stability of
the equilibrium points; in Section 5, we will discuss the
extinction property of the system; in Section 6, we will
discuss the global stability of the equilibrium points; in
Section 7, we will examine the persistence property of the
system; in Section 8, we will investigate the influence of wind
effect; in Section 9, we state the discoveries of the paper; in
Section 10, we will present numerical simulations to validate
our theoretical findings; and finally, we will summarize the
impact of wind effects on the dynamical behavior of system
(3) and highlight our discoveries.

II. POSITIVITY AND BOUNDEDNESS OF SOLUTIONS TO
SYSTEM (3)

The following result is obtained regarding the positivity
of solutions to system (3).
Theorem 2.1 The positive quadrant R+

2 = {(u, v)|u >
0, v > 0} is an invariant set for system (3).
Proof. From (3), for all t ∈ [0,+∞), we have:

u(t) = u(0) exp

{∫ t

0

F1(u, v)dt

}
> 0,

v(t) = v(0) exp

{∫ t

0

F2(u, v)dt

}
> 0.

This completes the proof of Theorem 2.1.
Theorem 2.2. For system (3), the solutions u(t) and v(t)
with the initial conditions u(0) > 0 and v(0) > 0 are
uniformly bounded.
Proof. From the first equation of system (3), we have:

du

dt
≤ ru(1− u

K
),

An application of Lemma 2.3 in [25] to the preceding
inequality leads to:

lim sup
t→+∞

u(t) ≤ K. (5)

Hence, for any sufficiently small positive constant ε > 0,
there exists a time T1 > 0 such that for all t ≥ T1, the
following inequality holds:

u(t) < K + ε. (6)

For t ≥ T1, from the second equation of system (3) and
equation (6), we have:

dv

dt
= vF2(u, v)

≤ sv

(
1− v

βϕ(ω)(K + ε) + c

)
,

By applying Lemma 2.3 in [25] to the aforementioned
inequality, we derive:

lim sup
t→+∞

v(t) ≤ βϕ(ω)(K + ε) + c. (7)

Because ε represents an arbitrarily small positive number,
when we consider the limit as ε approaches 0 in equation
(7), we get:

lim sup
t→+∞

v(t) ≤ βϕ(ω)K + c. (8)

Equations (5) and (8) indicate that for the system (3) with
initial conditions u(0) > 0 and v(0) > 0, the solutions and
are uniformly bounded.

The proof of Theorem 2.2 is thus completed.

III. EXISTENCE ANALYSIS OF EQUILIBRIUM POINTS FOR
SYSTEM (3)

Regarding the existence of equilibrium points for system
(3), we have the following result.

Theorem 3.1 The vanishing equilibrium point E0(0, 0),
the prey-free equilibrium point E1(0, c), and the predator-
free equilibrium point E2(K, 0) always exist for system (3).
Moreover, if and only if the following condition holds:

r > αϕ(ω)c, (9)

the system has a unique positive equilibrium point
E∗(u∗, v∗), where:

u∗ =
r − αϕ(ω)c
r
K + αβϕ2(ω)

, v∗ = βϕ(ω)u∗ + c. (10)

Proof. The equilibrium points of system (3) satisfy the
following equations:

uF1(u, v) = 0,

vF2(u, v) = 0.

(11)

Considering the second equation in (11), we find that v =
0 or v = βϕ(ω)u + c. When v = 0 is substituted into the
first equation of (11), we obtain:

ru
(
1− u

K

)
= 0 (12)

The solutions to equation (12) are u1 = 0 and u2 = K.
Therefore, system (3) has an vanishing equilibrium point
E0(0, 0) and a prey-free equilibrium point E2 = (K, 0).

When we substitute v = βϕ(ω)u+c into the first equation
of (11), the following is obtained:

ru
(
1− u

K

)
− αϕ(ω)u

(
βϕ(ω)u+ c

)
= 0 (13)

Obviously, system (13) has a solution u = 0, consequently,
system (3) admits a prey-free equilibrium point E1 = (0, c).
Under the condition (9), equation (13) has a unique positive
solution u∗, where u∗ is given by (10). Consequently, in
system (3), there exists exactly one positive equilibrium point
E∗(u∗, v∗).

Hereby, the proof of Theorem 3.1 reaches its conclusion.

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2524-2541

 
______________________________________________________________________________________ 



IV. LOCAL STABILITY ANALYSIS OF EQUILIBRIUM
POINTS FOR SYSTEM (3)

Theorem 4.1 The local stability conclusions for the
equilibrium points of the system (3) are as follows:

The vanishing equilibrium point E0(0, 0) always unstable.
The predator-free equilibrium point E1(0, c) stable when

r < αϕ(ω)c.
The prey-free equilibrium point E2(K, 0) always unstable.
The positive equilibrium point E∗(u∗, v∗) is always lo-

cally asymptotically stable when it exists (r > αϕ(ω)c).
proof The Jacobian matrix of system (3) is given by:

J(u, v) =

 ∂f

∂u

∂f

∂v
∂g

∂u

∂g

∂v

 ,

where:

∂f

∂u
= r

(
1− 2u

K

)
− αϕ(ω)v,

∂f

∂v
= −αϕ(ω)u,

∂g

∂u
=

sβϕ(ω)v2

(βϕ(ω)u+ c)2
,

∂g

∂v
= s

(
1− 2v

βϕ(ω)u+ c

)
.

1) The vanishing equilibrium point E0 = (0, 0):
The Jacobian matrix is:

J(E0) =

(
r 0
0 s

)
.

The eigenvalues are λ1 = r > 0 and λ2 = s > 0.
Hence, E0 is always an unstable source, indicating
that the simultaneous extinction of both populations
is impossible in the system (3).

2) The predator-free equilibrium point E1 = (0, c):
The Jacobian matrix is:

J(E1) =

(
r − αϕ(ω)c 0

sβϕ(ω) −s

)
.

The eigenvalues are λ1 = r−αϕ(ω)c and λ2 = −s <
0. The stability condition is:

• E1 is locally asymptotically stable if r < αϕ(ω)c;
otherwise, it is unstable.

3) The prey-free equilibrium point E2 = (K, 0):
The Jacobian matrix is:

J(E2) =

(
−r −αϕ(ω)K
0 s

)
.

The eigenvalues are λ1 = −r < 0 and λ2 = s > 0.
Thus, E2 is always an unstable saddle point, indicating
that prey populations cannot survive while predator
populations become extinct.

4) The positive equilibrium point E∗ = (u∗, v∗):
The Jacobian matrix is:

J(E∗) =

(
− ru∗

K −αϕ(ω)u∗

sβϕ(ω) −s

)
.

The trace and determinant are:

Tr(J) = −ru∗

K
− s < 0,

Det(J) =
ru∗s

K
+ αβϕ2(ω)su∗ > 0.

In light of the Routh-Hurwitz criterion, the positive
equilibrium E∗ is invariably locally asymptotically
stable provided that r > αϕ(ω)c.

Thus, the proof of Theorem 4.1 comes to an end.

V. EXTINCTION ANALYSIS

In the preceding section, we demonstrated that the bound-
ary equilibrium points E0 and E2 are unstable, while the
boundary equilibrium point E1 and the positive equilibrium
point E∗ are locally stable under appropriate conditions.
A natural question is whether we can further explore their
global stability. This section aims to identify sufficient condi-
tions ensuring the global asymptotic stability of the prey-free
equilibrium point E2(0, c). We have achieved the following
result.
Theorem 5.1 Under the condition

r < αϕ(ω)c, (14)

the prey-free equilibrium point E2(0, c) is globally attractive.
Proof. For a sufficiently small ε > 0, for the sake of
generality, assume

0 < ε < c− r

αϕ(ω)
(15)

Then, one can conclude from inequality (14) that

r < αϕ(ω)(c− ε) (16)

From the second equation of system (3) and the positivity of
the solutions, we have

dv
dt = vF2(u, v)

≥ sv
(
1− v

c

)
.

(17)

By applying Lemma 2.3 from [25] to the aforesaid inequality,
we arrive at

lim inf
t→+∞

v(t) ≥ c. (18)

Given any arbitrarily small ε > 0 that satisfies (15), there is
a T1 > 0 for which, for every t > T1,

v(t) > c− ε. (19)

For t > T1, from the first equation of (3), it follows that
du
dt = ru

(
1− u

K

)
− αϕ(ω)uv

≤ ru
(
1− u

K

)
− αϕ(ω)u(c− ε)

≤
(
r − αϕ(ω)(c− ε)

)
u.

(20)

Hence, for t ≥ T1,

u(t) ≤ u(T1) exp
{∫ t

T1

(
r − αϕ(ω)(c− ε)

)
(t− T1)dt

}
.

Applying (16) leads to

lim
t→+∞

u(t) = 0. (21)

For above ε > 0, there exists a T2 > T1, such that

u(t) < ε for all t ≥ T2. (22)
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It follows from the second equation of (3) and (22) that

dv
dt = sv

(
1− v

βϕ(ω)u+ c

)
≤ sv

(
1− v

βϕ(ω)ε+ c

)
.

(23)

Hence
lim sup
t→+∞

v(t) ≤ βϕ(ω)ε+ c. (24)

Since ε is enough small positive constant, seeting ε → 0 in
(24) leads to

lim sup
t→+∞

v(t) ≤ c. (25)

Combined with (18) and (26) leads to

lim
t→+∞

v(t) = c. (26)

(21) and (26) shows that the prey-free equilibrium point
E2(0, c) is globally attractive.

The proof of Theorem 5.1 is finished.

VI. GLOBAL STABILITY OF THE POSITIVE EQUILIBRIUM
POINT E∗ = (u∗, v∗)

This section aims to conduct a study on the global stability
of the positive equilibrium point within the system (3). The
following result can be obtained.
Theorem 6.1 If the following condition holds:

r > αϕ(ω)c (27)

then the positive equilibrium point E3(u
∗, v∗) is globally

asymptotically stable.
proof Provided that r > αϕ(ω)c, the positive equilibrium
point exists and is locally asymptotically stable.

Below, we further prove its global stability.
Construct a Volterra-type Lyapunov function:

V (u, v) =

∫ u

u∗

ξ − u∗

ξ
dξ + a

∫ v

v∗

η − v∗

η
dη,

where a > 0 is a parameter to be determined. Compute its
derivative along the system trajectories:

dV

dt
=

(
1− u∗

u

)
du

dt
+ a

(
1− v∗

v

)
dv

dt

= (u− u∗)
[
r
(
1− u

K

)
− αϕ(ω)v

]
+a(v − v∗)

[
s

(
1− v

βϕ(ω)u+ c

)]
.

Substituting the equilibrium conditions

r

(
1− u∗

K

)
= αϕ(ω)v∗

and
v∗ = βϕ(ω)u∗ + c,

and simplifying, we obtain:

dV

dt
= − r

K
(u− u∗)2 − as

(v − v∗)2

βϕ(ω)u+ c

+
[
αϕ(ω)(u− u∗)(v − v∗)

−asβϕ(ω)
(v − v∗)(u− u∗)

βϕ(ω)u+ c

]
.

Choose a = αϕ(ω)(βϕ(ω)u∗+c)
βϕ(ω) to eliminate the cross terms.

Then:

dV

dt
= − r

K
(u− u∗)2 − αϕ(ω)s

βϕ(ω)u+ c
(v − v∗)2 ≤ 0.

By LaSalle’s invariance principle, the maximal invariant
set is {(u∗, v∗)}. Therefore, E∗ is globally asymptotically
stable.

This completes the proof of Theorem 6.1.
Remark 6.1 Based on Theorem 6.1, it is globally asymp-
totically stable once the positive equilibrium point exists. In
other words, system (3) does not exhibit bifurcation at E3.

VII. UNIFORM PERSISTENCE

A system is said to be persistent if, for any initial condition
(u(0), v(0)) ∈ R+ ×R+, there exists a constant δ > 0 such
that:

lim inf
t→+∞

u(t) ≥ δ, lim inf
t→+∞

v(t) ≥ δ.

Regarding the persistence of system (3), we have the
following theorem.
Theorem 7.1 If r > αϕ(ω)c, then system (3) is persistent.
Proof From Theorem 2.2, the solutions of the system satisfy:

lim sup
t→+∞

u(t) ≤ K, lim sup
t→+∞

v(t) ≤ βϕ(ω)K + c.

Thus, the solutions always remain within the region
Ω = [0,K] × [0, βϕ(ω)K + c]. Next, we exclude boundary
attractors, i.e., we need to prove that no trajectories within
Ω tend to the boundary equilibrium points. Consider the
following two cases:

• Prey Extinction: If r < αϕ(ω)c, then E1 is globally
stable, and the prey population goes extinct. However,
the current condition is r > αϕ(ω)c, so E1 is unstable.

• Predator Extinction: E2 is always a saddle point, and
its stable manifold lies on the v = 0 axis. However, the
initial values of the system solutions are in R+ × R+,
so the solutions will not tend to E2 along this manifold.

Now let us consider the average Lyapunov function

P (u, v) = uθvη,

where θ, η > 0 are weight parameters. Let

θ =
ηβϕ(ω)v∗

αϕ(ω)u∗(βϕ(ω)u∗ + c)
.

Taking the derivative of P (u, v) concerning time t, ac-
cording to the chain - rule for composite functions,

dP

dt
=

∂P

∂u

du

dt
+

∂P

∂v

dv

dt
.

We have:
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dP
dt = θuθ−1vη

(
ru(1− u

K )− αϕ(ω)uv
)

+ηuθvη−1
(
sv(1− v

βϕ(ω)u+c )
)

= θuθvη
(
r(1− u

K )− αϕ(ω)v
)

+ηuθvη
(
s(1− v

βϕ(ω)u+c )
)

= uθvη
[
θ
(
r(1− u

K )− αϕ(ω)v
)

+η
(
s(1− v

βϕ(ω)u+c )
) ]

= uθvη

[
ηsβϕ(ω)v∗r

αϕ(ω)u∗(βϕ(ω)u∗ + c)

− ηsβϕ(ω)v∗ru

Kαϕ(ω)u∗(βϕ(ω)u∗ + c)

− ηsβϕ(ω)v∗αϕ(ω)v

αϕ(ω)u∗(βϕ(ω)u∗ + c)

+ηs− ηsv

βϕ(ω)u+ c

]

(28)

Because the positive equilibrium point E∗ meets the condi-
tion

r(1− u∗

K
) = αϕ(ω)v∗,

namely,

r − ru∗

K
= αϕ(ω)v∗,

then
ηsβϕ(ω)v∗r

αϕ(ω)u∗(βϕ(ω)u∗ + c)

=
ηsβϕ(ω)

αϕ(ω)u∗(βϕ(ω)u∗ + c)
(r − ru∗

K
).

(29)

Substitute it into the above formula and simplify:

dP
dt

= uθvη

[
ηsβϕ(ω)

αϕ(ω)u∗(βϕ(ω)u∗ + c)

(
r − ru∗

K

)
− ηsβϕ(ω)v∗ru

Kαϕ(ω)u∗(βϕ(ω)u∗ + c)

− ηsβϕ(ω)v∗αϕ(ω)v

αϕ(ω)u∗(βϕ(ω)u∗ + c)

+ηs− ηsv

βϕ(ω)u+ c

]

= uθvη

[
ηsβϕ(ω)r

αϕ(ω)u∗(βϕ(ω)u∗ + c)

− ηsβϕ(ω)ru∗

Kαϕ(ω)u∗(βϕ(ω)u∗ + c)

− ηsβϕ(ω)v∗ru
Kαϕ(ω)u∗(βϕ(ω)u∗+c)

− ηsβϕ(ω)v∗αϕ(ω)v

αϕ(ω)u∗(βϕ(ω)u∗ + c)

+ηs− ηsv

βϕ(ω)u+ c

]

(30)

Because u ∈ (0,K], so

ηsβϕ(ω)v∗ru

Kαϕ(ω)u∗(βϕ(ω)u∗ + c)
≤ ηsβϕ(ω)v∗r

αϕ(ω)u∗(βϕ(ω)u∗ + c)
.

And because v ∈ (0, βϕ(ω)K + c], then

ηsβϕ(ω)v∗αϕ(ω)v

αϕ(ω)u∗(βϕ(ω)u∗ + c)
≤ ηsβϕ(ω)v∗αϕ(ω)(βϕ(ω)K + c)

αϕ(ω)u∗(βϕ(ω)u∗ + c)

and
ηsv

βϕ(ω)u+ c
≤ ηs(βϕ(ω)K + c)

βϕ(ω)u+ c
.

One can observe that
dP
dt

≥ uθvη
[ ηsβϕ(ω)r

αϕ(ω)u∗(βϕ(ω)u∗ + c)

− ηsβϕ(ω)ru∗

Kαϕ(ω)u∗(βϕ(ω)u∗ + c)

− ηsβϕ(ω)v∗r

αϕ(ω)u∗(βϕ(ω)u∗ + c)

−ηsβϕ(ω)v∗αϕ(ω)(βϕ(ω)K + c)

αϕ(ω)u∗(βϕ(ω)u∗ + c)

+ηs− ηs(βϕ(ω)K + c)

βϕ(ω)u+ c

]

≥ uθvη

[
ηs− ηsβϕ(ω)ru∗

Kαϕ(ω)u∗(βϕ(ω)u∗ + c)

−ηsβϕ(ω)v∗αϕ(ω)(βϕ(ω)K + c)

αϕ(ω)u∗(βϕ(ω)u∗ + c)

−ηs(βϕ(ω)K + c)

βϕ(ω)u+ c

]
.

(31)

Given that u∗ = r−αϕ(ω)c
r
K +αβϕ2(ω) > 0 and r > αϕ(ω)c, we

can conclude that

βϕ(ω)u∗ + c < βϕ(ω)K + c.

So
1− βϕ(ω)K + c

βϕ(ω)u∗ + c
> 0.

Let
M = ηs

(
1− βϕ(ω)K + c

βϕ(ω)u∗ + c

)
.

Because η > 0, s > 0, and 1 − βϕ(ω)K+c
βϕ(ω)u∗+c > 0, then

M > 0. Then when t is large enough, dP
dt ≥ Muθvη > 0

(because uθvη > 0, u > 0, v > 0). This indicates that
as time t increases, P (u, v) will not approach 0. Since
P (u, v) = uθvη , both u and v will not approach 0.

According to the definition of persistence, for any initial
conditions (u(0), v(0)) ∈ R+×R+, to prove that system (3)
is persistent, there needs to exist a constant δ > 0 such that
lim inft→+∞ u(t) ≥ δ and lim inft→+∞ v(t) ≥ δ.

Since it has been proven that when t is large enough,
dP
dt ≥ Muθvη > 0, this shows that P (u, v) = uθvη will not

approach 0 as time t increases.
Next, choose δ such that 0 < δθ+η < M

2 . Suppose there
exists a time T such that when t > T , uθvη < δθ+η . Because
dP
dt ≥ Muθvη , at this time dP

dt > 0, which means that
P (u, v) = uθvη is monotonically increasing when t > T .
So uθvη will not continuously be less than δθ+η , that is,
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uθvη will necessarily be greater than or equal to δθ+η . And
because θ > 0, η > 0, according to the properties of
exponential functions, it can be obtained that u ≥ δ and
v ≥ δ. So lim inft→+∞ u(t) ≥ δ and lim inft→+∞ v(t) ≥ δ,
which satisfies the definition of the persistence of system (3).
Thus, system (3) is persistent

The proof of Theorem 7.1 is complete.

VIII. TRANSCRITICAL BIFURCATION

This section explores the bifurcation behavior of the
system. We have the following result.
Theorem 8.1 Consider system (3) with the saturation
function ϕ(ω) = 1 + ω

k+ω . Under the parameter constraint:

αc < r < 2αc,

the system undergoes a transcritical bifurcation at the bound-
ary equilibrium E1(0, c) when the wind speed reaches the
critical value:

ωc =
k(r − αc)

2αc− r
.

The bifurcation exhibits the following properties:
1) For ω < ωc, the positive equilibrium E∗ exists and is

globally asymptotically stable.
2) For ω > ωc, E∗ vanishes, and the boundary equilib-

rium E1(0, c) becomes stable.
3) At ω = ωc, E∗ collides with E1(0, c), exchanging

stability.
Proof. We divide the proof of this theorem into four steps.
Step 1: Derivation of Critical Wind Speed
The existence condition for the positive equilibrium E∗ is:

r > αϕ(ω)c.

At bifurcation, E∗ coincides with E1(0, c), implying:

r = αϕ(ωc)c.

Substituting ϕ(ωc) = 1 + ωc

k+ωc
:

r = αc

(
1 +

ωc

k + ωc

)
.

Solving for ωc:

ωc =
k(r − αc)

2αc− r
.

The physical constraint ωc > 0 requires αc < r < 2αc.
Step 2: Jacobian Matrix and Eigenvalue Analysis The
Jacobian matrix at E1(0, c) is:

J(E1) =

(
r − αϕ(ω)c 0

sβϕ(ω) −s

)
.

At ω = ωc, substituting r = αϕ(ωc)c:

J(E1, ωc) =

(
0 0

sβϕ(ωc) −s

)
.

The eigenvalues are λ1 = 0 and λ2 = −s < 0, confirming
the necessary condition for bifurcation.
Step 3: Right and Left Eigenvectors

From J(E1, ωc)V = 0, we have:

0 · V1 + 0 · V2 = 0,
sβϕ(ωc)V1 − sV2 = 0.

Let V1 = 1, then V2 = βϕ(ωc). Therefore:

V =

(
1

βϕ(ωc)

)
.

From WJ(E1, ωc) = 0, we have:

W1 · 0 +W2 · sβϕ(ωc) = 0,
W1 · 0 +W2 · (−s) = 0.

Let W1 = 1, then W2 = 0. Therefore:

W = (1, 0).

Step 4: Verification of Transversality (Sotomayor’s The-
orem)
The system’s equations are:

du
dt = ru

(
1− u

K

)
− αϕ(ω)uv

def
= f1(u, v),

dv
dt = sv

(
1− v

βϕ(ω)u+c

)
def
= f2(u, v).

The partial derivative of f with respect to ω at E1(0, c)
is:

∂f

∂ω

∣∣∣∣
(E1,ωc)

=

(
−α ∂ϕ

∂ω · uv
sβ ∂ϕ

∂ω · v2

βϕ(ω)u+c

)∣∣∣∣
(0,c)

.

Substituting ϕ(ω) = 1 + ω
k+ω and ∂ϕ

∂ω = k
(k+ω)2 :

∂f
∂ω

∣∣∣∣
(E1,ωc)

=

(
−αc · k

(k+ωc)2
· 0

sβ · k
(k+ωc)2

· c2

c

)

=

(
0

sβ kc
(k+ωc)2

)
.

Left-multiplying by W = (1, 0):

WT · ∂f
∂ω

∣∣∣∣
(E1,ωc)

= 0.

The parameter derivative matrix D
(

∂f
∂ω

)
is computed as:

D
(

∂f
∂ω

)
=

(
−α k

(k+ω)2 v −α k
(k+ω)2u

sβ k
(k+ω)2 · 2v

βϕ(ω)u+c sβ k
(k+ω)2 · u2

(βϕ(ω)u+c)2

)
.

At the boundary equilibrium E1(0, c), substituting u = 0 and
v = c:

D

(
∂f

∂ω

) ∣∣∣∣
(E1,ωc)

=

(
−α kc

(k+ωc)2
0

2sβ k
(k+ωc)2

0

)
.

Multiplying by the right eigenvector V =

(
1

βϕ(ωc)

)
:

D

(
∂f

∂ω

)
V =

(
−α kc

(k+ωc)2

2sβ k
(k+ωc)2

)
.

Left-multiplying by the left eigenvector W = (1, 0):

WT ·D
(
∂f

∂ω

)
V = −α

kc

(k + ωc)2
̸= 0.

The second derivative D2f(V, V ) is computed as:

D2f(V, V ) =

( ∑
i,j

∂2f1
∂ui∂uj

ViVj∑
i,j

∂2f2
∂ui∂uj

ViVj

)
.
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For f1:

∂2f1
∂u2

= −2r

K
,

∂2f1
∂u∂v

= −αϕ(ω),
∂2f1
∂v2

= 0.

For f2:
∂2f2
∂u2

=
2sβ2ϕ2v2

(βϕu+ c)3
,

∂2f2
∂u∂v

= − 2sβϕv

(βϕu+ c)2
,

∂2f2
∂v2

= − 2s

βϕu+ c
.

At E1(0, c), substituting V =

(
1

βϕ(ωc)

)
:

D2f(V, V ) =

(
− 2r

K − 2αβϕ2(ωc)

− 2sβ2ϕ2(ωc)
c

)
.

Left-multiplying by the left eigenvector W = (1, 0):

WT ·D2f(V, V ) = −2r

K
− 2αβϕ2(ωc) ̸= 0.

According to Sotomayor’s theorem, the system satisfies
all conditions for a transcritical bifurcation at ω = ωc.
When ω < ωc, the positive equilibrium point E∗ exists and
is stable; when ω > ωc, E∗ disappears, and the boundary
equilibrium point E1(0, c) becomes stable. The system
undergoes a transcritical bifurcation, and the equilibrium
points exchange stability.

This ends the proof of Theorem 8.1.

Remark 8.1. Ecological Significance:
The critical wind speed ωc reflects the regulatory effect of
wind speed on the predator-prey system:

• Low Wind Speed (ω < ωc): Predation pressure in-
creases with wind speed, but the system maintains a
coexistence state.

• High Wind Speed (ω > ωc): Predation pressure satu-
rates, leading to the extinction of the prey population,
and the system tends toward a stable state where the
predator relies on external resources c.

Theorem 8.1 provides a theoretical basis for predicting state
transitions in ecosystems under climate change.

IX. DYNAMICAL ANALYSIS OF SATURATION WIND
EFFECTS

In this section, we conduct a theoretical analysis to sys-
tematically explore the impact of saturation wind effects on
the system’s dynamical behavior. Specifically, we investigate
the mathematical properties of the saturation function ϕ(ω),
the influence of wind speed on predation rate and predator
carrying capacity, and the existence of a critical wind speed
ωc along with its ecological implications.

A. Properties of the Saturation Function ϕ(ω)

The saturation function ϕ(ω) = 1 + ω
k+ω is central to our

model, describing the nonlinear impact of wind speed ω on
predation rate and predator carrying capacity. This function
exhibits the following key properties:

• Low Wind Speed Behavior: As ω → 0, ϕ(ω) ≈ 1+ ω
k ,

indicating that the effect of wind speed on the system is

approximately linear. In this regime, an increase in wind
speed significantly enhances predation rate and predator
carrying capacity.

• High Wind Speed Saturation: As ω → ∞, ϕ(ω) → 2,
indicating that the effect of wind speed saturates. In
this regime, further increases in wind speed do not
significantly affect predation rate or predator carrying
capacity.

• Role of the Parameter k: The parameter k is the
half-saturation constant, representing the wind speed at
which the effect reaches half of its maximum. A smaller
k implies that the system reaches saturation at lower
wind speeds, while a larger k implies a slower response
to changes in wind speed.

B. Effect of Wind Speed on Predation Rate

The predation rate αϕ(ω)u is a key mechanism through
which wind speed influences the system dynamics. By an-
alyzing the properties of ϕ(ω), we derive the following
conclusions:

• At Low Wind Speeds: When ω ≪ k, the predation
rate αϕ(ω)u ≈ α

(
1 + ω

k

)
u, indicating that predation

rate increases approximately linearly with wind speed.
• At High Wind Speeds: When ω ≫ k, the predation rate

αϕ(ω)u ≈ 2αu, indicating that predation rate saturates
and no longer increases significantly with wind speed.

This saturation effect reflects the adaptive strategies of
organisms to extreme environmental conditions. An increase
in wind speed enhances predator efficiency at low wind
speeds, while at high wind speeds, physical limitations
prevent further increases in predation efficiency.

C. Effect of Wind Speed on Predator Carrying Capacity

The predator carrying capacity βϕ(ω)u + c is also influ-
enced by wind speed. By analyzing the properties of ϕ(ω),
we derive the following conclusions:

• At Low Wind Speeds: When ω ≪ k, the predator car-
rying capacity βϕ(ω)u+c ≈ β

(
1 + ω

k

)
u+c, indicating

that carrying capacity increases approximately linearly
with wind speed.

• At High Wind Speeds: When ω ≫ k, the predator
carrying capacity βϕ(ω)u+c ≈ 2βu+c, indicating that
carrying capacity saturates and is primarily determined
by prey resources u.

This saturation effect suggests that predator carrying ca-
pacity no longer increases significantly at high wind speeds,
and predator population size is primarily dependent on prey
resources.

D. Existence of Critical Wind Speed ωc

Through theoretical analysis, we derive the expression for
the critical wind speed ωc:

ωc =
k(r − αc)

2αc− r

The critical wind speed ωc is the threshold at which the
system transitions from a coexistence state (positive equilib-
rium E∗) to a prey extinction state (boundary equilibrium
E1(0, c)). The existence condition for ωc is:
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αc < r < 2αc

• When ω < ωc: The system has a unique positive
equilibrium E∗, which is locally asymptotically stable,
indicating that predators and prey can coexist.

• When ω > ωc: The positive equilibrium E∗ disap-
pears, and the system tends toward prey extinction, with
predators relying on external resources c to sustain their
population.

The discovery of ωc reveals the critical role of wind speed
in ecosystem state transitions. When wind speed exceeds the
critical value, predation pressure saturates, leading to prey
extinction and a new stable state for the system.

E. Regulatory Role of the Parameter k

The parameter k, as the half-saturation constant, plays a
crucial role in regulating the system’s sensitivity to wind
speed:

• Small k: The system reaches saturation at lower wind
speeds, indicating higher sensitivity to wind speed
changes. This property is suitable for fragile ecosystems
(e.g., grasslands) easily disturbed by wind.

• Large k: The system responds more slowly to wind
speed changes, requiring higher wind speeds to reach
saturation. This property is suitable for stable ecosys-
tems (e.g., forests) less sensitive to wind speed varia-
tions.

Adjusting the parameter k can optimize ecological man-
agement strategies. For example, increasing vegetation den-
sity in agricultural ecosystems can reduce local wind speed,
thereby enhancing predator efficiency and controlling pest
populations.

X. NUMERICAL SIMULATIONS

Example 10.1 Take the following model into considera-
tion:

du

dt
= 8u

(
1− u

10

)
− 0.5×

(
1 +

2

1 + 2

)
uv,

dv

dt
= v

(
1− v

3u× (1 + 2
1+2 ) + 1

)
,

(32)

where, corresponding to system (3), we set r = 8, K = 10,
α = 0.5, s = 1, β = 3, c = 1, and ω = 2. Here, ϕ(ω) =
ω

1+ω . Calculations show that:

r = 8 >
5

6
= αcϕ(ω), (33)

and by Theorem 6.1 and Theorem 7.1, the positive equi-
librium point E∗(u∗, v∗) ≈ (1.442953020, 8.214765100) is
globally asymptotically stable, and the system demonstrates
persistence. The numerical simulation presented in Figure 1
validates this finding.

Example 10.2 Take into account the following model:
du

dt
= u

(
1− u

10

)
− 2×

(
1 +

3

1 + 3

)
uv,

dv

dt
= v

(
1− v

3u
(
1 +

3

1 + 3

)
+ 1

)
,

(34)

where, corresponding to the system (3), we set r = 1,
K = 10, α = 2, β = 3, c = 1, ω = 3, and k = 1. Note that
r = 1 < 7

2 = αcϕ(ω), satisfying the condition of Theorem
5.1. According to Theorem 5.1, the boundary equilibrium
point E2(0, 1) is globally asymptotically stable. Numerical
simulation (Figure 2) supports this conclusion.

Example 10.3 Give thought to the following model:

du

dt
= 2u

(
1− u

100

)
− 0.5×

(
1 +

ω

k + ω

)
uv,

dv

dt
= v

(
1− v

0.1× u×
(
1 +

ω

k + ω

)
+ 3

)
,

(35)

where, corresponding to system (3), we set r = 2, K = 100,
α = 0.5, s = 1, β = 0.1, and c = 3.
(1) Corresponding to Theorem 8.1, one could see that
wc = 1 by simple computation. one could see that wc = 1.
We vary ω = 0, 0.1, 0.5, 1, 2, then, from Theorem 8.1,
for ω = 0, 0.1, 0.5, u(t) → u∗

ω, and for ω ≥ 1(where
1 is the critical value), u(t) → 0 as t → +∞. Take
initial conditions (u(0), v(0)) = (5, 3). Figure 3 shows the
behavior of the first component u(t) for different ω values.
As ω increases, u∗ gradually decreases, and when ω is
sufficiently large, u(t) → 0. That is, when wind speed is
high enough, the prey population tends to extinction, and
v(t) → c. This is consistent with the theoretical analysis in
Sections 8. Additionally, Figure 4 shows that as ω increases,
the predator population density v(t) tends to c. Figure 5
shows the bifurcation diagram of u∗ with respect to ω.
From the diagram, it can be observed that as ω increases,
u∗ gradually decreases. Eventually, when the wind speed
crosses the critical value, u∗ becomes zero. Figure 6 shows
the bifurcation diagram of v∗ with respect to ω. From the
diagram, it can be observed that as ω increases, v∗ gradually
decreases. Eventually, when the wind speed crosses the
critical value, v∗ = c.
(2) In this case, we take w = 0.5 and vary k. Figure 7
and 8 show the bifurcation diagram of u∗(k) and v∗(k),
respectively. From the diagram, it can be observed that as
k increases, u∗ gradually decreases, and if k is very small,
u(t) is very sensitive to k, and finally, u(t) → 0. However,
we could not find the similar phenomenon for v∗(k).
(3) In this case, we vary both k and ω, Figure 9 and 10
show the bifurcation diagram of u∗(k, ω) and v∗(k, ω),
respectively. From Figure 9, it can be observed that as k
increases, the u population can tolerate the effects of wind
over a wider range and ultimately sustain its survival. This
situation similarly holds for v∗(k).

Sensitivity analysis of parameter k (Fig. 7-10) reveals
that smaller k accelerates the transition to prey extinction,
suggesting ecosystems with low saturation thresholds are
more vulnerable to wind-driven collapse.

Example 10.4 Give thought to the following model:

du

dt
= 5u

(
1− u

10

)
− 0.5× ϕ(k, ω)uv,

dv

dt
= v

(
1− v

0.1× u× ϕ(k, ω) + 3

)
,

(36)
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where, corresponding to the system (3), we set r = 5,
K = 10, α = 0.5, s = 1, β = 0.1, and c = 3.
(1) In this case, we take ϕ(k, ω) = 1 + ω, then it follows
from Theorem 4.1, 5.1, and 6.1 of Huang et al.[18] that there
exists a ωc = 3, and for ω > wc, the prey species will be
driven to extinction. the predator species will approach to 3.
Fig. 11 and 12 also confirm this assertion.
(2) In this case, we take ϕ(k, ω) =

(
1 +

ω

k + ω

)
, then one

could easily verify that r = 6 > 2αc = 3 > 2αϕ(k, ω)c,
hence, the system has positive equilibrium E∗(u∗.v∗) for all
k and ω. it follows from Theorem 4.1, 5.1, and 6.1 of Huang
et al.[18] that there exists a ωc = 3, and for ω > wc,, the
prey species will be driven to extinction. The predator species
will approach 3. Fig. 13 and 14 also confirm this assertion.

This example vividly illustrates the stark contrast between
the results of our study and those of reference [18]. In
reference [18], due to the linear effect of wind speed on
the interaction between the two populations, as wind speed
increases, the impact of predators on the prey population
becomes increasingly significant, ultimately leading to the
extinction of the prey population. In contrast, in our study,
because of the saturation effect of wind speed, as long
as the interspecies coefficients satisfy certain conditions,
both populations will coexist regardless of how large the
wind speed becomes. Although wind speed affects the final
equilibrium densities of the populations, the relationship is
highly complex, as evidenced by Figures 13 and 14.

XI. CONCLUSION AND DISCUSSION

Recently, Jawad et al.[17] and Huang et al.[18] stud-
ied the influence of wind effect on predator prey system.
Although the linear wind effect model (ϕ(ω) = 1 + ω)
proposed by Huang et al. [18] can explain the decline
in prey population density with increasing wind speed, its
assumption of unlimited growth in predation rate contradicts
ecological reality. The model by Jawad et al.[17] even yields
a counterintuitive conclusion that “increasing wind speed
enhances the densities of both species," which conflicts
with field observations[16]. Moreover, these models fail
to account for organisms’ adaptive strategies to extreme
wind conditions (e.g., sheltering behavior or saturation of
predation efficiency).

In this paper, we have proposed a modified Leslie-Gower
predator-prey model incorporating saturation wind effects
to explore the nonlinear impact of wind speed on ecosystem
dynamics. Our study systematically reveals the multi-scale
effects of wind speed on predation rate, predator carrying ca-
pacity, and ecosystem state transitions. Below, we summarize
the key findings, ecological implications, and future research
directions. Unlike Jawad et al. [17] where both populations
grow with ω, our saturation effect explains why prey decline
dominates at high winds – reconciling field observations [16].

Key Contributions:

1) Saturation Wind Effects: By introducing the satura-
tion function ϕ(ω) = 1+ ω

k+ω , our model captures the
nonlinear relationship between wind speed and preda-
tion rate. At low wind speeds, predation rate increases
approximately linearly with wind speed, but saturates

at high wind speeds, reflecting the adaptive strategies
of organisms to extreme environmental conditions.

2) Critical Wind Speed (ωc): We derived the critical
wind speed ωc =

k(r−αc)
2αc−r , which serves as a threshold

for ecosystem state transitions. When wind speed ex-
ceeds ωc, the system transitions from a coexistence
state to prey extinction, with predators relying on
external resources c to sustain their population.

3) Regulatory Role of k: The half-saturation constant
k plays a crucial role in regulating the system’s sen-
sitivity to wind speed. Smaller k values make the
system more sensitive to wind speed changes, while
larger k values result in a slower response. This finding
provides a theoretical basis for optimizing ecological
management strategies, such as increasing vegetation
density to reduce local wind speed and enhance preda-
tor efficiency.

Ecological Implications:

• Wind Speed as a Key Factor: Our results highlight the
critical role of wind speed in predator-prey dynamics.
The saturation effect reflects the adaptive behaviors of
organisms to extreme environmental conditions, where
predation pressure and predator carrying capacity no
longer increase significantly at high wind speeds.

• State Transitions in Ecosystems: The critical wind
speed ωc provides a theoretical boundary for predicting
ecosystem state transitions. When wind speed exceeds
ωc, the system transitions from coexistence to prey ex-
tinction, aligning with ecological observations in natural
systems.

• Applications in Ecological Management: By adjusting
habitat structures (e.g., vegetation density) to modify
the local k value, ecological management strategies can
be optimized. For example, increasing windbreaks in
agricultural fields can enhance the predation efficiency
of natural enemies, thereby improving pest control.

Limitations and Future Research:
While our model provides valuable insights into the impact

of wind speed on predator-prey dynamics, several limitations
and future research directions remain:

1) Model Limitations:Our model assumes that wind
speed uniformly affects predation rate and predator
carrying capacity. However, in reality, different species
may respond differently to wind speed. Future work
could incorporate species-specific responses to wind
speed or extend the model to include multiple prey
and predator species.

2) Multi-Factor Coupling: Future research could explore
the combined effects of multiple environmental fac-
tors, such as temperature, humidity, and wind speed,
on ecosystem dynamics. This would provide a more
comprehensive understanding of how climate change
influences species interactions.

3) Spatial Heterogeneity: Incorporating spatial hetero-
geneity into the model could reveal how wind speed
variations across habitats affect predator-prey interac-
tions. This would be particularly relevant for large-
scale ecosystems with diverse environmental condi-
tions.
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4) Experimental Validation: Empirical studies are
needed to validate the theoretical predictions of this
model. Experimental data from field observations or
controlled environments could help refine the model
parameters and improve its applicability to real-world
ecosystems.

Concluding Remarks:

In conclusion, this study offers a novel modeling frame-
work for understanding the complex relationship between
wind speed and predator-prey dynamics.We have demon-
strated how wind speed influences predation rate, predator
carrying capacity, and ecosystem state transitions by intro-
ducing saturation wind effects. The discovery of the critical
wind speed ωc and the regulatory role of the parameter k
provide new tools for predicting and managing the impacts of
wind speed on ecosystems. These findings have broad appli-
cations in ecological conservation, agricultural pest control,
and climate change research, offering a foundation for future
studies on the interplay between environmental factors and
species interactions.
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Fig. 1. Dynamic behaviors of the system (32), the initial condition (u(0), v(0)) =
(0.1, 0.1), (1, 1), (2, 2), (0.5, 0.5) and (5, 5), respectively.

Fig. 2. Dynamic behaviors of the system (34), the initial condition (u(0), v(0)) =
(5, 0.1), (5, 0.5), (5, 1), (5, 2) and (5, 5), respectively.
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Fig. 3. The time series solution u(t) corresponding to different ω values in system
(35), where ω = 0, 0.1, 0.5, 1, 2 and (u(0), v(0)) = (20, 30). respectively.

Fig. 4. The time series solution v(t) corresponding to different ω values in system (35),
where ω = 0, 1, 2, 3, 4 and (u(0), v(0)) = (20, 30). respectively.
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Fig. 5. Bifurcation Diagram of u∗(ω).

Fig. 6. Bifurcation Diagram of v∗(ω).

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2524-2541

 
______________________________________________________________________________________ 



Fig. 7. Bifurcation Diagram of u∗(k).

Fig. 8. Bifurcation Diagram of v∗(k).
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Fig. 9. Bifurcation Diagram of u∗(k, ω).

Fig. 10. Bifurcation Diagram of v∗(k, ω).
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Fig. 11. Bifurcation Diagram of u∗(ω) of Case (1) in Example 10.4.

Fig. 12. Bifurcation Diagram of v∗(ω) of Case (1) in Example 10.4.
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Fig. 13. Bifurcation Diagram of u∗(k, ω) of Case (2) in Example 10.4.

Fig. 14. Bifurcation Diagram of v∗(k, ω) of Case (2) in Example 10.4.
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