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Abstract—We present a Sinc Collocation Method (SCM) with
Double Exponential (DE) Transformations, and compare it
with the Hybrid Sinc-Finite Difference Method by Wang, Li,
and Meng on Burgers’ equations. Sinc collocation promises
exponential order convergence for smooth problems. The DE
transformation allows this promise to be realized by mapping a
finite interval domain to the real line. It increases the density of
collocations points near the ends of the interval, which allows
it to achieve high accuracy and order both at the collocation
points and between them. In contrast, we show that the hybrid
method has much larger errors between collocation points due
to Runge’s phenomenon. For the time discretization, we use
Crank-Nicolson for the linear part and Heun’s method for the
nonlinear part and observe second-order accuracy. Comparative
analysis with the Hybrid Sinc method confirms SCM’s superior
performance across various initial conditions and discretization
settings.

Index Terms—Burgers’ Equation, Coupled Burgers’ Equation,
Exponential Transformations, Sinc Collocation, Hybrid Sinc-
Finite Difference, Runge’s Phenomenon.

I. INTRODUCTION

A. Burgers’ Equations

BURGERS’equation is a specific form of advection-
diffusion equation [1] that describes various physical

phenomena, including fluid dynamics, gas dynamics, traffic
flow [2], [3], [4], and nonlinear acoustics [5]. It was first
formulated by Harry Bateman in 1915 [6], [2] and later
extensively analyzed by Johannes Martinus Burgers in 1948
[7]. It has come to be considered as a prototype for nonlinear
parabolic equations. Coupled Burgers’ equations play a
significant role in physics, particularly in understanding fluid
dynamics and related phenomena [8], [9].

The general form of the Burgers’ equation in one dimension
is given by [10]:

ut(x, t) = Duxx(x, t)− uux(x, t), (1)

for 0 < x < L, and 0 < t < T , where D > 0 is the
diffusion coefficient. The equation models the interaction
between nonlinear convection and diffusion. We consider an
initial condition:

u(x, 0) = f(x), (2)
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with homogeneous Dirichlet boundary conditions

u(0, t) = 0, u(L, t) = 0. (3)

The coupled equations have the form [10]:

ut = D1uxx − ηuux − α(uv)x,

vt = D2vxx − ξvvx − β(uv)x,
(4)

where D1, D2, η, ξ, α, and β are constants that depend on
the system properties. The initial conditions are

u(x, 0) = f(x), v(x, 0) = g(x), (5)

and the homogeneous Dirichlet boundary conditions are

u(0, t) = u(L, t) = v(0, t) = v(L, t) = 0. (6)

B. Previous Work on Numerical Solutions of Burgers’ Equa-
tions

The numerical solution of Burgers’ equation has been
widely studied and has been important in various applied
fields. Numerous numerical techniques have been developed,
encompassing a wide range of analytical approaches and
computational strategies. For example, there are cubic B-
splines collocation methods [11], finite difference methods
[12], the fourth-order singly diagonally implicit Runge-Kutta
method [13], the Chebyshev Wavelet Method [14], finite
element methods [15], and, the Milne method [16].

For the discretization in time, the Crank-Nicolson (C-N)
method [17] is usually adequate for the linear part of the
equation, since it is second-order, unconditionally stable, and
only requires solving a linear system. One must then decide
whether to treat the non-linear part of the equation explicitly
(simple but only first order), implicitly (requiring solving a
nonlinear system), or by some other method.

For the discretization in space, one could use a Finite Differ-
ence Method (FDM) [18]. Mitchell and Griffiths [19] provided
a comprehensive review of FDMs applied to parabolic
equations. While the FDM is effective in many applications,
on a straightforward equally-spaced discretization it is limited
to second order. As an alternative, spectral methods, including
the Sinc collocation method, have gained popularity due
to their exponential convergence properties, especially for
smooth problems [20], [21].

The Sinc-Galerkin method, introduced by Stenger [21],
has been extensively studied for solving partial differential
equations and was later extended by Lund and Bowers [22]
to handle more complex boundary value problems. In recent
years, the combination of Sinc collocation methods with
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conformal mapping has further improved their accuracy and ef-
ficiency. Double exponential (DE) transformations, introduced
by Takahashi and Mori [23], have been effective in handling
boundary layers and singularly perturbed equations. Single
exponential (SE) transformations offer a simpler approach
while still achieving rapid convergence, as demonstrated by
M. Mori and M. Sugihara [24].

Recently, Wang et al. [10] used a hybrid method combining
the Sinc collocation method and central finite differences
to solve single and coupled Burgers’ equations. The Sinc
collocation method was applied at the k-th time step to
approximate the first-order spatial derivative, while central
finite difference formulas were used at the (k + 1)-st time
step for both first-order and second-order spatial derivatives.
This hybrid approach was intended to blend the accuracy
of Sinc collocation with the computational simplicity of
finite differences. They conducted extensive numerical tests to
assess the accuracy, efficiency and stability of their method on
several examples. They showed that their method is accurate
and stable. We will compare our work with [10] due to its
clarity and replicable results.

C. Summary of Our Results

In this paper we propose a new strategy. We use a
C-N scheme for the time discretization of linear terms
combined with Heun’s method (also known as Modified
Euler) discretization for the nonlinear terms. In space, we use
the Sinc collocation combined with DE conformal mappings
for the spatial discretization, including all spatial derivatives.

We demonstrate numerically that this strategy is signifi-
cantly more accurate than the Sinc-Hybrid method in Wang
[10] and greatly outperforms the C-N FDM approximation
when applied to Burgers’ equations. Specifically:

• The combination of C-N for the linear terms and Heun
for the nonlinear term achieves second order accuracy in
time with small constant, without resorting to a nonlinear
solve.

• The new method achieves high order convergence (up
to order 8) in the spatial variable.

• The Sinc-Hybrid method suffers from Runge’s phe-
nomenon with large errors between collocation points,
while the new method does not.

D. Organization of the Paper

In Section II, we present the general parabolic PDE system
in vector form. Section III details Sinc Interpolation, covering
the derivation of Sinc functions, matrix construction for
derivatives, the application of Single and Double Exponential
transformations.

Section IV outlines the time discretization using a com-
bination of the Crank-Nicolson method and Heun’s method,
resulting in a time-discretized form. Section V focuses on the
space discretization using the Sinc Collocation Method (SCM),
and includes the truncated cardinal series approximation and
matrix formulations. Section VI combines the spatial and
time discretizations to yield a fully discretized system and
then discusses its linear stability.

In Section VII, we present the numerical solutions, in-
cluding error calculations. This section applies the numerical

scheme and a few other methods to Burgers’ equations and
compares the results with [10].

Finally, Section VIII presents the conclusion, summarizing
the results and providing comparisons with [10].

II. GENERAL PARABOLIC SYSTEM OF EQUATIONS

A general system of µ coupled parabolic partial differential
equations (PDEs) on the one-dimensional spatial domain
x ∈ [a, b] can be written in vector form as

ut(x, t) = ∇2u(x, t)D+Q(x, t,u(x, t),ux(x, t)), (7)

where D is a diagonal diffusion coefficient matrix, and
Q(x, t,u(x, t),ux(x, t)) represents the nonlinear convection
and interaction terms.

We take u(x, t) and Q(x, t,u(x, t),ux(x, t)) to be row
vectors with entries ui(x, t) and Qi(x, t,u(x, t),ux(x, t))
for i = 1, . . . , µ.

The system is subject to the initial conditions:

ui(x, 0) = fi(x), i = 1, . . . , µ. (8)

In this paper, we will consider the homogeneous boundary
conditions u(a, t) = 0 and u(b, t) = 0 in order to compare
our results with [10].

A. Burgers’ Equation

For µ = 1 and setting Q(x, t,u,ux) = −uux, we obtain
the Burgers’ equation, as presented in (1).

For µ = 2, the coupled Burgers’ equations (4) are
obtained by setting u = (u, v) and Q(x, t,u,ux) =(
−η1uux − ξ1(uv)x
−η2vvx − ξ2(uv)x

)T

in (7). The initial and boundary

conditions are specified in (2) and (3), and D1, D2, η1, η2,
ξ1, and ξ2 represent system-dependent constants.

III. SINC INTERPOLATION

A. The Sinc Function

We begin by introducing the Sinc function, which forms
the foundation of our approximation procedure.

Definition 3.1 (p. 5, [22]): The Sinc function, defined for
all x ∈ R, is given by

sinc(x) =

{
sin(πx)

πx if x ̸= 0,

1 if x = 0.
(9)

For each integer j and mesh size h > 0, the Sinc basis
functions on R are defined as:

S(j, h)(x) ≡ sinc

(
x− jh

h

)
=


sin(π(x−jh)

h )
π(x−jh)

h

if x ̸= jh,

1 if x = jh.
(10)

Three representative translated Sinc functions (10) are shown
in Figure 1.

The Whittaker cardinal expansion [25] of a function f on
R is defined as follows.

Definition 3.2 (p. 22, [22]): Let f be a function defined
on R and let h > 0. Define the series

C(f, h)(x) =
∞∑

j=−∞
f(jh)S(j, h)(x), (11)
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Fig. 1: An illustration of three translated Sinc basis functions
at j = −1, 0, 1 with mesh size h = 1.

where S(j, h)(x) is given by (10). Whenever the series in
(11) converges, it is called the cardinal function of f .
For our numerical method, we will use the truncated cardinal
series which is defined as

CMx,Nx(f, h)(x) =

Nx∑
j=−Mx

f(jh)S(j, h)(x), (12)

for appropriate values of Nx and Mx.
The Sinc series converges exponentially fast for certain

analytic functions. If f is analytic and uniformly bounded on
the strip

Dd = {z ∈ C : |ℑz| < d}, (13)

then the following error bound holds [26]:

sup
x∈R

|f(x)− C(f, h)(x)| = O(e−πd/h), h → 0.

Due to its exponential convergence, the Sinc series is
potentially a powerful tool for solving PDEs.

B. Conformal Map Definitions

As noted above, the Sinc method theoretically achieves
exponential convergence on an infinite domain. For problems
defined on finite intervals, we employ a conformal mapping to
preserve this exponential error decay. Specifically, following
the approach in [26], we use a conformal transformation
that maps the finite interval to the real line, where the Sinc
basis functions are applied. To approximate a function F
over an finite interval Γ, we select a transformation ϕ that
provides a one-to-one mapping of Γ onto R. The problem
of approximating F on Γ is transformed to the task of
approximating f = F ◦ ϕ−1 on R. It is ideal to choose
transformations ϕ that can be clearly expressed, and for
which the inverse ϕ−1 can be easily calculated. Here are
two conformal mappings that we will consider.

The Single Exponential (SE) transformation (p. 63, 91,
[22]) maps the finite interval Γ = (a, b) to (−∞,∞) and is
defined as:

w = ϕSE(z) = log

(
z − a

b− z

)
. (14)

The function ϕSE provides a conformal transformation of:

D = {z ∈ C : | arg
(
z − a

b− z

)
| < d} (15)

onto the strip Dd, as in (13). The inverse transformation is
given by:

z = ϕ−1
SE(ω) =

a+ b · eω

1 + eω
.

The equally spaced nodes kh ∈ (−∞,∞) correspond to the
nodes:

xk = ϕ−1
SE(kh) =

a+ b · ekh

1 + ekh
∈ (a, b) = Γ. (16)

The Double Exponential (DE) Transformation [26], [27],
[28] is used to improve accuracy by increasing the density
of points near the boundaries. This transformation maps the
finite interval (a, b) to (−∞,∞) by

w = ϕDE(z) = arcsinh
(
2

π
arctanh

(
2z

b− a
+

a+ b

a− b

))
.

(17)
The function ϕDE provides a conformal transformation of a
(hard to describe) region D onto the strip Dd in (13). The
equally spaced nodes kh ∈ (−∞,∞) correspond to the nodes

xk = ϕ−1
DE(kh) =

(b− a)

2
· tanh

(π
2
· sinh(kh)

)
+

a+ b

2
∈ (a, b) = Γ.

(18)

This mapping clusters points near boundaries, enhancing
numerical accuracy and allowing Sinc collocation to be
applied efficiently to bounded domains.

Equally spaced nodes kh ∈ (−∞,∞) become non-
uniformly spaced in the original interval,

xk = ϕ−1(kh) ∈ (a, b),

with points clustering near the boundaries. This non-uniform
distribution improves the accuracy of the Sinc approximation,
especially for problems where boundary behavior is critical.

Fig. 2: Distribution of collocation points with different Mx =
Nx values.

In Figure 2, we illustrate the distribution of collocation
points with different Mx = Nx values. Increasing Mx = Nx

(fixed h) adds more points at the boundaries, while leaving
the interior points unchanged. Decreasing h (fixed Mx =
Nx) refines the spacing, densifying points across the entire
domain. By simultaneously adjusting Mx = Nx and h, we
can systematically increase the approximation accuracy of
the method.
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The basis functions for the Sinc method applied to the
interval (a, b) are

S(j, h) ◦ ϕ(z) = sinc

(
ϕ(z)− jh

h

)
. (19)

The truncated cardinal Sinc series as in (12) becomes the
composite truncated cardinal Sinc series

CMx,Nx(f, h, ϕ)(x) =

Nx∑
j=−Mx

f(jh)sinc

(
ϕ(x)− jh

h

)
.

(20)
To represent the function F on the interval (a, b), recall

F = f ◦ ϕ, so (20) becomes

Nx∑
j=−Mx

F (ϕ−1(jh))sinc

(
ϕ(x)− jh

h

)

=

Nx∑
j=−Mx

F (xj)sinc

(
ϕ(x)− jh

h

)
.

Additionally, it is important to note the boundary behavior
of the Sinc function. Specifically,

lim
x→a+

(
sinc

(
ϕ(x)− jh

h

))
= lim

w→−∞

(
sinc

(
w − jh

h

))
= 0,

(21)

and similarly as x → b−. This ensures that the Sinc
approximation handles zero boundary conditions naturally.

C. Sinc Derivative Approximations

The derivatives of the truncated composite Sinc function
in (20) are computed at the Sinc nodes xk = ϕ−1(kh) using
the following lemma.

Lemma 1 ([22], p. 106): Let ϕ be a conformal one-to-one
map of the simply connected domain D onto Dd. Then

δ
(0)
jk ≡ [S(j, h) ◦ ϕ(x)]

∣∣∣
x=xk

=

{
1, j = k,

0, j ̸= k,
(22)

δ
(1)
jk ≡ h

d

dϕ
[S(j, h) ◦ ϕ(x)]

∣∣∣
x=xk

=

{
0, j = k,
(−1)k−j

k−j , j ̸= k,
(23)

and

δ
(2)
jk ≡ h2 d2

dϕ2
[S(j, h) ◦ ϕ(x)]

∣∣∣
x=xk

=

{
−π2

3 , j = k,
−2(−1)k−j

(k−j)2 , j ̸= k.
(24)

In the relations (22)–(24), h is the step size and xk = ϕ−1(kh)
is the Sinc grid in the original domain.

Note that δ(0)jk = δ
(0)
kj , δ

(1)
jk = −δ

(1)
kj , and δ(2)jk = δ

(2)
kj . We

define the m×m matrices,

I
(ℓ)
m×m ≡

[
δ
(ℓ)
jk

]
, ℓ = 0, 1, 2, (25)

where δ
(ℓ)
jk denotes the (j, k)-th element of the matrix I(ℓ) and

m = Mx +Nx + 1. Note that the matrix I(0) is the identity
matrix, I(1) is skew-symmetric, and I(2) is symmetric.

IV. TIME DISCRETIZATION

To discretize the time derivative in (7), we divide the
time interval [0, T ] into N equal sub-intervals with step size
∆t = T/N . We approximate the time derivative ut as

ut ≈
un+1 − un

∆t
,

where un and un+1 represent the solution at time steps tn

and tn+1, respectively.
We approximate the linear spatial term ∇2u using a

weighted average between the current and next time steps:

∇2u ≈ θun+1
xx + (1− θ)un

xx, (26)

where 0 ≤ θ ≤ 1 controls the weighting. Setting θ = 1
2

corresponds to the standard C-N method, providing second-
order accuracy in time for the linear part of the equation
[22].

To avoid solving nonlinear equations at each time step, we
approximate the nonlinear term Q at the current time step:

Q(x, t,u,ux) ≈ Q(x, tn,un,un
x). (27)

Incorporating these discretizations, we have

un+1 − un

∆t
= θun+1

xx D+ (1− θ)un
xxD

+Q(x, tn,un,un
x) +Rn+1,

(28)

where Rn+1 is the truncation error. By omitting Rn+1, the
time discretization equation becomes

Un+1 −∆tθDUn+1
xx = Un +∆t(1− θ)DUn

xx

+∆tQ(x, tn,Un,Un
x),

(29)

where Un+1 = U(x, tn+1) is the solution of (29) at the
(n+ 1)-st time level, given Un.

If we solve for Un+1 using (29), it results in a first-
order method since the nonlinear part is treated explicitly.
We may improve upon this by introducing a predictor-
corrector approach based on Heun’s method (also known
as the modified Euler method).

The first step (Predictor) of our method is to solve for
Vn+1 in (29),

Vn+1 −∆tθDVn+1
xx = Un +∆t(1− θ)DUn

xx

+∆tQ(x, tn,Un,Un
x). (30)

Then, the second step (Corrector) is to solve for Un+1

using an improved approximation of Q(x, t,U,Ux)

Un+1 −∆tθDUn+1
xx = Un +∆t(1− θ)DUn

xx

+
∆t

2

(
Q(x, tn,Un,Un

x) +Q(x, tn+1,Vn+1,Vn+1
x )

)
.

(31)

This two-step semi-implicit method [29] combines the
Crank-Nicolson scheme for the linear diffusion term with
Heun’s method for the nonlinear reaction term. It is expected
to be second-order in time, which is confirmed by our
numerical solutions in Section VII.

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2542-2556

 
______________________________________________________________________________________ 



V. SPACE DISCRETIZATION

We will apply the Sinc Collocation Method (SCM) to (29)
and (31) in the spatial variable. To simplify the exposition,
we present the method as applied to (29), We may derive a
similar full discretization for (31) (Huen’s method applied to
the nonlinearity).

A. Truncated Cardinal Series Approximation

We approximate u(x, tn+1) using the truncated cardinal
series:

Un+1(x) =

Nx∑
j=−Mx

cj
n+1S(j, h) ◦ ϕ(x), (32)

where,

Un+1(x) =
(
Un+1
1 (x), · · · , Un+1

µ (x)
)
,

cj
n+1 =

(
cn+1
j,1 , cn+1

j,2 , · · · , cn+1
j,µ

)
.

Let Cn+1 be the matrix collecting the row vectors cj
n+1,

with entries Cn+1(j, i) = cn+1
j,i .

1) Boundary Properties and Differentiation: Due to the
properties of the Sinc function (21), the approximation
Un+1(x) satisfies:

lim
x→a+

Un+1(x) = lim
x→b−

Un+1(x) = 0. (33)

Differentiating Un+1(x) yields

Un+1
x (x) =

Nx∑
j=−Mx

cj
n+1

[
dS(j, h) ◦ ϕ(x)

dϕ(x)

dϕ(x)

dx

]
, (34)

Un+1
xx (x) =

Nx∑
j=−Mx

cj
n+1

[
d2S(j, h) ◦ ϕ(x)

dϕ(x)2

(
dϕ(x)

dx

)2

+
dS(j, h) ◦ ϕ(x)

dϕ(x)

d2ϕ(x)

dx2

]
.

(35)

B. Formulating the Discrete System

Define Ajk and Bjk as m×m matrices

Ajk =
δ
(2)
jk

h2
(ϕ′(xk))

2 +
δ
(1)
jk

h
ϕ′′(xk),

Bjk =
δ
(1)
jk

h
ϕ′(xk), and

I(0) = [δ
(0)
jk ].

(36)

Note that these may be expressed in matrix notation, using
(25), as

A =
1

h2
diag

(
(ϕ′)2

)
I
(2)
m×m +

1

h
diag (ϕ′′) I

(1)
m×m,

B =
1

h
diag(ϕ′(x))I

(1)
m×m, and

I = I
(0)
m×m.

(37)

We evaluate the discrete solution Un+1 and its derivatives
at collocation points xk for k = −Mx, . . . , Nx in the spatial
variable, to obtain

Un+1(xk) =

Nx∑
j=−Mx

cj
n+1δ

(0)
jk = (ICn+1)k, (38)

Un+1
x (xk) =

Nx∑
j=−Mx

cj
n+1

δ
(1)
jk

h
ϕ′(xk) = (BCn+1)k, (39)

Un+1
xx (xk) =

Nx∑
j=−Mx

cn+1
j

(
δ
(2)
jk

h2
(ϕ′(xk))

2 +
δ
(1)
jk

h
ϕ′′(xk)

)
= (ACn+1)k.

(40)

VI. FULLY DISCRETIZED SYSTEM

Substituting (38), (39), and (40) into (29), with I and A
as defined in (37), we obtain

(ICn+1)k −∆tθ(ACn+1)kD = (ICn)k

+∆t(1− θ)(ACn)kD+∆tQ(xk, t
n,Un,Un

x),
(41)

which can be rewritten as(
(I −∆tθAD)Cn+1

)
k
= ((I +∆t(1− θ)AD)Cn)k

+∆tQ(xk, t
n,Un,Un

x).
(42)

Equation (42) can be represented as µ different m × m
linear systems that can be solved independently,

(I −∆tθADi)C
n+1
i = (I +∆t(1− θ)ADi)C

n
i

+∆tQi(x
n, tn,Un,Un

x),
(43)

where Di is a diagonal diffusion coefficient matrix. This
formulation allows for efficient computation of each compo-
nent while retaining the coupling between different variables
through Qi.

A. Linear Stability Analysis

Ignoring the nonlinear term Qi, the iteration (43) reduces
to the repeated application of the iteration matrix

(I −∆tθADi)
−1

(I +∆t(1− θ)ADi) .

If the spectral radius of this matrix exceeds 1, then the iteration
is unstable. If A has an eigenvector with eigenvalue λ, then
this iteration matrix has the same eigenvector with eigenvalue

1 + ∆t(1− θ)Dλ

1−∆tθDλ
. (44)

For Euler’s method, which has θ = 0, the requirement for
stability becomes |1 + ∆tDλ| ≤ 1. In the classical finite-
differences case [30], the bound −∆x−2 < λ ≤ 0 leads
to the usual requirement that ∆t ≤ ∆x2/(2D). For the
Sinc differentiation matrix I(2) itself, the eigenvalues satisfy
−π2 < λ ≤ 0 [22, P.151], which would lead to a similar
requirement that ∆t ≤ 2∆x2/(π2D). However, the SE and
DE conformal maps concentrate points near the ends of the
interval, leading effectively to very small ∆x, and eigenvalues
that grow rapidly with m. Consequently, ∆t must be so small
that the approach is not worthwhile.

In contrast, if θ ∈ [1/2, 1], such as the classical C-N case of
θ = 1/2, then the expression (44) has absolute value at most
one for any λ ≤ 0. Consequently, within the C-N method, the
rapid growth of eigenvalues of A does not cause a problem.
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VII. NUMERICAL SOLUTION

A. Measures of Error

We define the metrics used to evaluate the errors of our
numerical solutions U(x, t) with respect to exact solutions
u(x, t). The pointwise absolute error at a specific grid point
xk, time step tj , and component i = 1, 2, . . . , µ is defined

e(i, k, j) = |ui(xk, tj)− Ui(xk, tj)| .

The L∞ error over all spatial grid points and at the final time
step for a single component i is defined as

E∞,i(T ) = max
−Mx≤k≤Nx

e(i, k,N). (45)

The L2 error is calculated using the trapezoidal rule to
approximate the integral of the squared error over the spatial
domain for specific time tj and component i. So, we compute
E2(i, j) =(

Nx−1∑
k=−Mx

(xk+1 − xk)
e(i, k, j)2 + e(i, k + 1, j)2

2

)1/2

.

(46)
This method accounts for uneven spacing between the
collocation points.

In [10] errors were calculated at collocation points {xk}
only. However, the Sinc series solution can be evaluated at
any x. In this paper we will not only evaluate the errors at
the collocation points, but also at “interpolation points” in
between collocation points. For each method we will place 3
interpolation points between each pair of collocation points.
For the Sinc-Hybrid method the collocation points are evenly
spaced and so we place the interpolation points with even
spacing. For our method we place interpolation points evenly
in the transformed variable, then transform them back to the
original variable by ϕ−1. That is, for SE by equation (16),
and for DE by (18). Specifically, we set x̂p = ϕ−1(ph/4),
for p = −4Mx − 3, . . . , 4Nx + 3.

B. Convergence Order

The empirical convergence order Pi for each component
of the vector U(x, t) is calculated by

Pi =
log(EUi

m /EUi
2m)

log

(
1
m

/
1

2m

) , i = 1, 2, . . . , µ,

where EUi
m represents the error for the i-th component using

m collocation points.
The transformations defined in Equations (14) and (17) are

used for all examples. In all of our examples, we will choose
a symmetric gird, so Mx = Nx. According to Theorem 3.1
from [27] or Theorem 3.4 from [22] we compute

hS =

(
πd

αNx

)1/2

,

where d is the width of the strip in (13) and α is the rate
of decay of f at ±∞. For the SE transformation and a
differentiable function f with f(a) = 0 and f ′(a) ̸= 0 one
can show directly that α = 1. Following [22], d ≤ π/2 and
so we choose d = π/2.

For the DE transformation, based on Theorem 3.2 in [27]
and [31], we set

hD =
ln(πdγNx/δ)

γNx
,

where d is the width of the strip in (13), and δ and γ depend
on the decay of f . An analysis of the parameters to use
for different examples was given in [32]. Here, after some
preliminary tests, we chose d = 1/2, δ = 2/π, and γ = 2.

The linear systems in (29) and (31) can become ill-
conditioned. Therefore, we apply left-diagonal precondition-
ing when solving them.

C. Numerical Solution of Burgers’ Equation
We will test our method on the examples found in [10]

and compare with results for the Sinc-Hybrid method as well
as a few other methods.

Example 1. We first consider the example found in [10] and
[16], which is given by

ut = Duxx − uux, 0 < x < 1, 0 < t ≤ 1,

u(x, 0) =
2Dπ sin(πx)

2 + cos(πx)
,

u(0, t) = 0, u(1, t) = 0,

for which the exact solution is given by:

u(x, t) =
2Dπe−π2Dt sin(πx)

2 + e−π2Dt cos(πx)
.

Using the numerical scheme from Section V, we set θ =
1
2 . Figure 3 plots the numerical solution using SCM-DE at
interpolation points, as described in (43).

Fig. 3: Numerical solution using SCM-DE at interpolation
points for Example 1 with parameters T = 1, m+ 1 = 80,
L = 1.00, N = 40, D = 0.01, and θ = 1/2. The exact
solution is visually indistinguishable.

To compare with [10], we set D = 0.01 and ∆t =
(m+ 1)

−2
. Maximum absolute errors E∞(T ) at T = 1

for various m+1 values were computed for both collocation
and interpolation points using Euler’s and Heun’s methods
under SE and DE transformations. Comparisons were made
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with the Hybrid method from [10], and for collocation points,
also with the standard second-order Crank–Nicolson Finite
Difference (CN-FD) method. Tables I and II illustrate SCM’s
accuracy, particularly with SCM-DE and Heun’s method.

Figures 4a and 4b compare errors for SCM-DE and Hybrid
methods at collocation and interpolation points. The SCM-
DE method achieves consistent error magnitudes, around
10−11, at both collocation and interpolation points. In contrast,
the Hybrid method shows oscillatory error behavior with
larger magnitudes, approximately 10−4, indicating Runge’s
phenomenon between collocation points.

Tables III and IV present the maximum absolute error E∞
and L2 error, respectively, at T = 1 for various m + 1

collocation points across decreasing time steps ∆t. The
observed error decay with increasing m+ 1 and decreasing
∆t confirms the SCM-DE method’s stability and convergence.

Figure 5 presents log plots of the maximum absolute errors,
E∞(T ), data from Table III, as functions of the time step
size, ∆t, and the number of intervals, m+ 1. The empirical
convergence orders P in Table V indicate that the SCM-DE
method achieves high-order spatial accuracy, approaching
order 8.63 as m + 1 increases. Table VI also shows stable
second-order time convergence across refined ∆t values,
affirming the SCM-DE method’s robustness and accuracy
in both space and time. Similar results were obtained using
the L2 norm.

TABLE I: Maximum absolute errors E∞(T ) measured at collocation points at T = 1 for Example 1 with parameters from
[10], for various number of intervals m + 1. Here, L = 1, D = 0.01, θ = 1

2 , and ∆t = ( 1
m+1 )

2. SCM-DE with Heun’s
method significantly outperforms the other methods.

SCM Hybrid [10] CN-FD

Intervals Euler’s method Heun’s method

m+ 1 DE SE DE SE

10 3.829× 10−4 7.673× 10−4 3.828× 10−4 7.675× 10−4 3.073× 10−4 2.267× 10−4

20 1.950× 10−6 1.063× 10−4 1.953× 10−6 1.063× 10−4 6.929× 10−5 5.910× 10−5

40 1.524× 10−7 6.831× 10−6 7.314× 10−9 6.831× 10−6 1.579× 10−5 1.487× 10−5

80 3.855× 10−8 1.200× 10−7 1.676× 10−11 1.200× 10−7 3.834× 10−6 3.730× 10−6

160 9.754× 10−9 9.530× 10−9 3.694× 10−14 3.727× 10−10 9.406× 10−7 9.325× 10−7

TABLE II: Maximum absolute errors E∞(T ) measured at interpolation points at T = 1 for Example 1 with parameters from
[10], for various number of intervals m+ 1. Here, L = 1, D = 0.01, θ = 1

2 , and ∆t = ( 1
m+1 )

2. Comparing with Table I,
we see that for SCM the errors at interpolation points are similar to the errors at collocation points. In contrast, for the
Sinc-Hybrid method the errors at interpolation points are significantly larger than at collocation points in Table I.

SCM Hybrid [10]

Intervals Euler’s method Heun’s method

m+ 1 DE SE DE SE

10 5.210× 10−4 8.787× 10−4 5.220× 10−4 8.788× 10−4 1.264× 10−3

20 6.492× 10−6 1.110× 10−4 6.629× 10−6 1.111× 10−4 7.055× 10−4

40 1.524× 10−7 7.550× 10−6 8.823× 10−9 7.550× 10−6 3.648× 10−4

80 3.902× 10−8 1.228× 10−7 1.683× 10−11 1.228× 10−7 1.844× 10−4

160 9.756× 10−9 9.625× 10−9 3.687× 10−14 3.742× 10−10 9.257× 10−5

TABLE III: Maximum absolute errors E∞(T ) using SCM-DE measured at collocation points at T = 1 for Example 1 with
parameters from [10]. Here, L = 1, D = 0.01, and θ = 1

2 . The number of intervals is m+ 1 = 2Nx + 2.

∆t m+ 1 = 10 m+ 1 = 20 m+ 1 = 40 m+ 1 = 80 m+ 1 = 160

10−1 2.362× 10−4 2.610× 10−6 4.287× 10−7 4.313× 10−7 4.313× 10−7

10−2 3.828× 10−4 2.274× 10−6 7.465× 10−9 4.453× 10−9 4.454× 10−9

10−3 3.828× 10−4 1.371× 10−6 7.363× 10−9 4.576× 10−11 4.468× 10−11

10−4 3.828× 10−4 1.557× 10−6 7.450× 10−9 1.711× 10−11 4.764× 10−13

10−5 3.828× 10−4 1.557× 10−6 7.621× 10−9 1.721× 10−11 2.992× 10−13

TABLE IV: Error E2(T ) at T = 1 for Example 1 using SCM-DE at collocation points with T = 1.00, L = 1.00, D = 0.01,
and θ = 1

2 .

∆t m+ 1 = 10 m+ 1 = 20 m+ 1 = 40 m+ 1 = 80 m+ 1 = 160

10−1 1.070× 10−4 6.090× 10−7 1.883× 10−7 1.881× 10−7 1.882× 10−7

10−2 1.112× 10−4 5.254× 10−7 3.012× 10−9 1.929× 10−9 1.929× 10−9

10−3 1.112× 10−4 5.244× 10−7 1.947× 10−9 2.086× 10−11 1.934× 10−11

10−4 1.112× 10−4 5.244× 10−7 1.943× 10−9 4.651× 10−12 2.087× 10−13

10−5 1.112× 10−4 5.244× 10−7 1.943× 10−9 4.647× 10−12 9.273× 10−14
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(a) SCM-DE error (b) Sinc-Hybrid error

Fig. 4: Error plots at T = 1 for Example 1 with parameters from [10], with L = 1, D = 0.01, θ = 1
2 , m + 1 = 80 and

∆t = ( 1
m+1 )

2. Markers represent collocation points and curves represent the Sinc interpolation. These figures illustrate that
the Sinc-Hybrid method suffers from Runge’s phenomenon, while the SCM-DE method does not.

(a) Error vs time step ∆t (b) Error vs number of intervals m+ 1

Fig. 5: Maximum absolute errors for Example 1 using the data from Table III. (Left) Log plot of E∞(T ) vs ∆t for different
values of m+ 1. (Right) Semi-log plot of E∞(T ) vs number of intervals m+ 1 for different ∆t. The right plot appears
linear, indicating exponential convergence.

TABLE V: Empirical convergence orders P in the spatial variable for various ∆t using the L∞ norm with SCM-DE from
Table III for Example 1. Orders up to 8.63 are observed. As one goes across a row, the time error associated with ∆t
eventually dominates, and the order with respect to m+ 1 is no longer observable.

∆t m+ 1 = 10 m+ 1 = 20 m+ 1 = 40 m+ 1 = 80 m+ 1 = 160

10−1 – 6.03 2.51 −0.01 0.00
10−2 – 6.86 7.95 0.73 0.00
10−3 – 7.54 7.27 7.20 0.03
10−4 – 7.37 7.43 8.61 5.12
10−5 – 7.37 7.40 8.63 5.79
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TABLE VI: Empirical convergence orders P in the time variable for each m+ 1 value using the L∞ norm with SCM-DE
from Table III for Example 1. Orders up to 2 are observed. As one goes down a column, the error due to m+ 1 eventually
dominates, and the order with respect to ∆t is no longer observable.

∆t m+ 1 = 10 m+ 1 = 20 m+ 1 = 40 m+ 1 = 80 m+ 1 = 160

10−1 – – – – –
10−2 −0.21 0.06 1.76 1.99 1.99
10−3 0.00 0.22 0.01 1.99 2.00
10−4 0.00 −0.06 −0.01 0.43 1.97
10−5 0.00 0.00 −0.01 0.00 0.20

Example 2. We consider the example found in [16], which
is similar to Example 1, except that the parameters A and D
will vary.

ut = Duxx − uux, 0 < x < 1, t > 0,

u(x, 0) =
2Dπ sin(πx)

A+ cos(πx)
, A > 1.

u(0, t) = 0, u(1, t) = 0,

for which the exact solution is given by:

u(x, t) =
2Dπe−π2Dt sin(πx)

A+ e−π2Dt cos(πx)
.

Using the numerical scheme from Section V, we set θ = 1
2 .

Figure 6 plots the numerical solution using SCM-DE at
collocation and interpolation points, as described in (43).

To compare with the Milne method from [16], we set L = 1,
D = 0.001, A = 1.1, and ∆t = 10−2. Since D is small, the
equation can be considered as a singular perturbation problem.
Maximum absolute errors E∞(T ) at T = 1 for various m+1
values were computed for both collocation and interpolation
points using our numerical approach. Table VII illustrates
that SCM-DE with Heun’s method has superior accuracy.

Figure 7 illustrates the final-time solution u(x, T ) obtained
using the SCM-DE method. Subfigure 7a compares the effect
of varying the diffusion coefficient D while keeping A = 1.1
fixed, showing that lower diffusion coefficients yield smoother
and more uniform solution curves. Subfigure 7b explores the

impact of different A values with fixed D = 0.001, indicating
that increasing A reduces the solution’s peak magnitude.
In both cases, the numerical solutions closely match the
exact solutions, confirming the accuracy and stability of the
proposed method.

Table VIII provides a comparison of the L2-norm errors
obtained using the proposed SCM-DE method at collocation
points and the results reported in [16]. The comparison is
conducted for various values of the nonlinearity parameter
A and diffusion coefficient µ = D, with two different
time step sizes, ∆t = 0.01 and ∆t = 0.001. The results
clearly demonstrate the improved accuracy of the SCM-DE
method across all tested configurations, especially for smaller
diffusion coefficients and coarser time steps, highlighting its
effectiveness in solving nonlinear parabolic problems.

Table IX shows the maximum absolute error E∞ at T = 1,
with A = 1.1, for various m + 1 intervals and decreasing
time steps ∆t, confirming the stability and convergence of
the SCM-DE method. Notably, SCM-DE avoids Runge’s
phenomenon for this nearly singular problem. We also
conducted tests with θ = 1, which showed slightly higher
errors compared to θ = 0.5, though the errors remained within
the same order of convergence and were still of comparable
magnitude.

In Figure 8, we plot the absolute errors at collocation
and interpolation points for the SCM-DE method, using
parameters from [16] with m + 1 = 160, L = 1.00,
D = 0.001, θ = 1

2 , A = 1.1 and ∆t = 10−3.

(a) At Collocation Points (b) At Interpolation Points

Fig. 6: Numerical solutions using SCM-DE at Collocation and Interpolation points for Example 2 with parameters from [16].
Here, m+ 1 = 40 with L = 1.00, D = 0.001, A = 1.1, θ = 1

2 , and ∆t = 0.05.
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TABLE VII: Comparison of E∞(T ) and E2(T ) errors at T = 1 for Example 2 with parameters from [16] using SCM-DE
with Heun’s method and the Milne method at different values of m + 1. Here, L = 1, D = 0.001, A = 1.1 θ = 1

2 , and
∆t = 10−2.

SCM-DE with Heun’s method Milne Method [16]

Intervals Collocation Points Interpolation Points

m+ 1 E∞(T ) E2(T ) E∞(T ) E2(T ) E∞(T ) E2(T )

10 2.2985× 10−4 3.4747× 10−5 5.7934× 10−4 2.1031× 10−4 3.7899× 10−4 3.8091× 10−4

20 1.9218× 10−5 4.1196× 10−6 3.2335× 10−5 9.0310× 10−6 1.4753× 10−4 1.8308× 10−4

40 3.5308× 10−8 1.5182× 10−8 1.3317× 10−7 6.5859× 10−8 3.8173× 10−5 6.6726× 10−5

80 8.0330× 10−10 1.9741× 10−10 8.0330× 10−10 1.9727× 10−10 9.6834× 10−6 2.3750× 10−5

160 8.0394× 10−10 1.9709× 10−10 8.0394× 10−10 1.9702× 10−10 9.6834× 10−6 2.3750× 10−5

(a) Final-time for different values of D at collocation points with
fixed A = 1.1.

(b) Final-time for different values of A at collocation points with
fixed D = 0.001.

Fig. 7: Comparison of numerical and exact solutions at final time T = 1 for Example 2 using SCM-DE for various values
of (a) D and (b) A. The numerical results are computed at collocation points using m+ 1 = 80, θ = 0.5, and ∆t = 0.01.

TABLE VIII: Comparison of L2-norm errors for different values of A and µ = D in Example 2, using SCM-DE and the
method from Milne Paper [16], with ∆t = 0.01 and ∆t = 0.001.

∆t D A = 1.1 A = 2 A = 4

SCM-DE [16] SCM-DE [16] SCM-DE [16]

0.010 0.0010 1.97× 10−10 2.38× 10−5 4.19× 10−13 2.25× 10−7 1.11× 10−13 3.03× 10−8

0.010 0.0005 1.56× 10−11 6.87× 10−6 1.24× 10−13 5.76× 10−8 4.60× 10−14 7.67× 10−9

0.010 0.0001 1.65× 10−13 3.12× 10−7 1.68× 10−14 2.35× 10−9 6.18× 10−15 3.10× 10−10

0.001 0.0010 3.35× 10−12 2.37× 10−5 2.94× 10−13 2.25× 10−7 1.09× 10−13 3.03× 10−8

0.001 0.0005 1.16× 10−12 6.87× 10−6 1.25× 10−13 5.76× 10−8 4.61× 10−14 7.67× 10−9

0.001 0.0001 1.68× 10−13 3.12× 10−7 1.68× 10−14 2.35× 10−9 6.20× 10−15 3.10× 10−10

TABLE IX: Maximum absolute errors E∞(T ) using SCM-DE with Heun’s method measured at collocation points at T = 1
for Example 2. Here, L = 1, D = 0.001, and θ = 1

2 .

∆t m+ 1 = 10 m+ 1 = 20 m+ 1 = 40 m+ 1 = 80 m+ 1 = 160

10−1 1.641× 10−4 1.324× 10−5 1.009× 10−7 7.799× 10−8 7.804× 10−8

10−2 2.298× 10−4 1.922× 10−5 3.531× 10−8 8.033× 10−10 8.039× 10−10

10−3 2.298× 10−4 2.244× 10−5 3.724× 10−8 1.788× 10−11 8.063× 10−12

10−4 2.298× 10−4 2.245× 10−5 3.972× 10−8 1.723× 10−11 6.929× 10−14

10−5 2.298× 10−4 2.245× 10−5 4.391× 10−8 1.748× 10−11 1.469× 10−13
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(a) At Collocation Points

(b) At Interpolation Points

Fig. 8: Absolute errors for SCM-DE at Collocation and Interpolation points for Example 2 with parameters from [16]. Here,
m+ 1 = 160 with L = 1.00, D = 0.001, θ = 1

2 , A = 1.1, and ∆t = 10−3. For SCM-DE applied to this nearly singular
problem, we do not observe Runge’s phenomenon.

Example 3. In this example, we consider the following
Burgers’ equation [10]:

ut + uux = uxx, 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = f(x),

u(0, t) = u(1, t) = 0.

The initial value f(x) has two cases:

f(x) = sin(πx) or f(x) = 4x(1− x).

We set intervals, m + 1 = 80, and ∆t = 10−5 for our
numerical experiments. The results, shown in Tables X and XI,
compare the exact solutions, calculated using Fourier series
[33], and numerical solutions for Example 3 with different
initial conditions. Tables X and XI present comparisons for
f(x) = sin(πx) and f(x) = 4x(1 − x), respectively. In
both cases, the Sinc-DE method with θ = 1

2 matches the
exact solution to at least 6 significant digits, significantly
outperforming the Hybrid method in [10]. Separate tests
again confirm that the C-N method θ = 1/2 is slightly more
accurate than the fully implicit method θ = 1.

TABLE X: Exact solutions and numerical solutions for Example 3 when φ(x) = sin(πx), with m+1 = 80 and ∆t = 10−5.
Note that the Sinc-DE with Crank-Nicholson method gives the exact solution (from Fourier series) to at least 6 decimal
places.

x t Sinc-DE [10] Exact solution

θ = 1
2

θ = 1 θ = 1
2

θ = 1

0.25 0.1 0.253638 0.253649 0.253665 0.253679 0.253638
0.25 0.15 0.156601 0.156612 0.156628 0.156640 0.156601
0.25 0.2 0.096442 0.096451 0.096465 0.096475 0.096442
0.25 0.25 0.059218 0.059225 0.059236 0.059243 0.059218
0.5 0.1 0.371577 0.371596 0.371625 0.371644 0.371577
0.5 0.15 0.226824 0.226840 0.226867 0.226884 0.226824
0.5 0.2 0.138473 0.138487 0.138509 0.138523 0.138473
0.5 0.25 0.084538 0.084548 0.084565 0.084575 0.084538

0.75 0.1 0.272582 0.272596 0.272623 0.272635 0.272582
0.75 0.15 0.164369 0.164382 0.164404 0.164416 0.164369
0.75 0.2 0.099435 0.099445 0.099462 0.099472 0.099435
0.75 0.25 0.060347 0.060355 0.060367 0.060375 0.060347
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TABLE XI: Exact solutions and numerical solutions for Example 3 when φ(x) = 4x(1 − x), with m + 1 = 80 and
∆t = 10−5. The Sinc-DE with C-N method matches the exact solution (from Fourier series) to at least 6 decimal places.

x t Sinc-DE [10] Exact solution

θ = 1
2

θ = 1 θ = 1
2

θ = 1

0.25 0.01 0.66006 0.66007 0.66008 0.66009 0.66006
0.25 0.05 0.42629 0.42630 0.42631 0.42632 0.42629
0.25 0.10 0.26148 0.26149 0.26151 0.26152 0.26148
0.25 0.15 0.16148 0.16149 0.16150 0.16152 0.16148
0.25 0.25 0.06109 0.06109 0.06111 0.06111 0.06109
0.5 0.01 0.91972 0.91972 0.91972 0.91972 0.91972
0.5 0.05 0.62808 0.62810 0.62812 0.62814 0.62808
0.5 0.10 0.38342 0.38344 0.38347 0.38349 0.38342
0.5 0.15 0.23406 0.23407 0.23410 0.23412 0.23406
0.5 0.25 0.08723 0.08724 0.08726 0.08727 0.08723

0.75 0.01 0.68364 0.68364 0.68365 0.68366 0.68364
0.75 0.05 0.46525 0.46526 0.46529 0.46530 0.46525
0.75 0.10 0.28157 0.28159 0.28161 0.28163 0.28157
0.75 0.15 0.16974 0.16975 0.16977 0.16979 0.16974
0.75 0.25 0.06229 0.06230 0.06231 0.06232 0.06229

Example 4. We also consider the coupled Burgers’ equation
discussed in [10]. Specifically, we consider the following cou-
pled equations along with initial and homogeneous boundary
conditions. For 0 < x < 2π, 0 < t ≤ T ,

ut = uxx + 2uux − (uv)x,

vt = vxx + 2vvx − (uv)x,

u(x, 0) = v(x, 0) = sin(x− π),

u(0, t) = u(2π, t) = v(0, t) = v(2π, t) = 0.

The exact solution is

u(x, t) = v(x, t) = e−t sin(x− π).

Figure 9 plots the numerical solution using SCM-DE at

interpolation points, as described in (43).

Fig. 9: Numerical solution using SCM-DE at interpolation
points for Example 4 with parameters T = 1, m+ 1 = 64,
L = 2π, N = 200, and θ = 1

2 . The exact solution is visually
indistinguishable.

Tables XII and XIII present maximum absolute errors for
Example 4 with N = 1000 and θ = 1

2 , comparing SCM-DE

accuracy against the method in [10] at T = 0.1 and T = 0.5
for both collocation and interpolation points.

Table XIV shows the maximum L∞(T ) errors at col-
location points for Example 4, with SCM-DE parameters
T = 0.10, L = 2π, and θ = 1

2 . We also calculated the
empirical convergence orders, which are similar to those
in Example 1. In other words, the method again achieves
exceptionally high accuracy, with 2nd order convergence in
time and higher order in space.

Figures 10a and 10b illustrate error comparisons for both
SCM-DE and Hybrid methods at collocation and interpolation
points, underscoring the accuracy of each method for solving
Example 4.

On these coupled equations, the method produces very
high order approximations and a significant increase in
accuracy over the Sinc-Hybrid method. Note that the error at
the interpolation points indicate again that the Sinc-Hybrid
method is susceptible to Runge’s phenomenon while the
SCM-DE is not.

In addition, we also investigated a variation of Example 4
that has been widely studied [34], [35], [11]. In particular,
we take

u(x, 0) =

{
sin(2πx), x ∈ [0, 0.5],

0, x ∈ (0.5, 1],
(5.9)

v(x, 0) =

{
0, x ∈ [0, 0.5],

− sin(2πx), x ∈ (0.5, 1],
(5.10)

and zero boundary conditions. This initial condition is
non-smooth. The standard theory of convergence for sinc
collocation only applies to analytic functions. We observe
that the results of the Sinc-DE method are not as accurate as
for the previous examples. We see in Figure 11 that the Sinc-
DE solution oscillates in x for t near 0. This illustrates that the
Sinc-DE method is not ideal for problems with non-smooth
initial conditions.

Tables XVI and XVII present the maximum absolute errors
for u(x, t) and v(x, t), respectively, in Example 4 at different
values of T and m+1. Since an exact solution is unavailable,
the errors are measured relative to the numerical solutions
computed with m+ 1 = 160. The results indicate that while
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the SCM-DE method is stable and fairly accurate for this non-
smooth initial condition, it does not achieve the exceptionally
high order or accuracy as for smooth problems.

Table XV shows the approximate maximum values of u

and v at different time levels for Example 4, using data
from [34]. The parameters are L = 1, m + 1 = 50, θ = 1

2 ,
∆t = 10−5, D1 = D2 = 1, η = ξ = 2, and α = β = 10,
with non-symmetric, non-smooth initial conditions.

TABLE XII: The maximum absolute error at collocation points for the coupled equations in Example 4, with L = 2π, θ = 1
2

and N = 1000.

m+ 1 T = 0.1 T = 0.5
Sinc-DE [10] Sinc-DE [10]

32 1.2071× 10−6 2.9038× 10−4 8.5108× 10−7 9.7384× 10−4

64 5.5891× 10−9 7.2655× 10−5 7.0451× 10−9 2.4354× 10−4

128 7.5220× 10−11 1.8168× 10−5 6.2965× 10−9 6.0887× 10−5

TABLE XIII: The maximum absolute error at interpolation points for Example 4, with L = 2π, θ = 1
2 and N = 1000.

Comparing with the previous table, we observed again that the Sinc-Hybrid method exhibits Runge’s phenomenon, while the
Sinc-DE method does not.

m+ 1 T = 0.1 T = 0.5
Sinc-DE [10] Sinc-DE [10]

32 1.4826× 10−6 1.6586× 10−2 1.0843× 10−6 1.1056× 10−2

64 5.6114× 10−9 8.1809× 10−3 7.0934× 10−9 5.4760× 10−3

128 7.5496× 10−11 4.0627× 10−3 6.3182× 10−9 2.7223× 10−3

TABLE XIV: Maximum error E∞(T ) at collocation points for Example 4, with T = 0.1, L = 2π, and θ = 1
2 in the

Coupled Burgers Equation using SCM-DE. From these data we again observe 2nd order convergence in ∆t and higher order
convergence in the number of spacial intervals, m+ 1.

∆t m+ 1 = 10 m+ 1 = 20 m+ 1 = 40 m+ 1 = 80 m+ 1 = 160

10−1 3.133× 10−2 2.543× 10−4 7.538× 10−5 7.549× 10−5 7.551× 10−5

10−2 6.723× 10−3 7.745× 10−5 7.532× 10−7 7.538× 10−7 7.540× 10−7

10−3 1.482× 10−2 1.035× 10−4 2.985× 10−7 7.539× 10−9 7.540× 10−9

10−4 1.482× 10−2 1.149× 10−4 2.934× 10−7 5.955× 10−10 7.536× 10−11

10−5 1.482× 10−2 1.205× 10−4 2.949× 10−7 5.955× 10−10 1.929× 10−12

(a) SCM-DE error comparison (b) Hybrid error comparison

Fig. 10: Errors for SCM-DE and Hybrid methods at collocation and interpolation points for Example 4. These figures
illustrate the accuracy of each method with parameters T = 0.1, m+ 1 = 64, L = 2π, N = 1000, and θ = 1

2 . Again, the
Sinc-Hybrid approximation exhibits Runge’s phenomenon, which the Sinc-DE method does not.
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(a) Numerical solution u(x, t) (b) Numerical solution v(x, t)

Fig. 11: Evolution of computed solutions for Example 4, where markers represent collocation points and curves represent
the Sinc interpolation. The data is based on [34] in the vicinity of t = 0. The parameters are set as L = 1, m+ 1 = 50,
θ = 1

2 , ∆t = 10−5, D1 = D2 = 1, η = ξ = 2, and α = β = 10. The example considers non-smooth initial conditions. We
observed that the sinc solution oscillates in x for t close to 0.

TABLE XV: The approximate maximum values of u and v at different time levels for Example 4, with data from [34]. That
is, with L = 1, m+ 1 = 50, θ = 1

2 and ∆t = 10−5, D1 = D2 = 1, η = ξ = 2, and α = β = 10, and a non-smooth initial
conditions.

t u(x, t) v(x, t)

Sinc-DE [34] [35] [11] At point Sinc-DE [34] [35] [11] At point

0.1 0.14309 0.144501 0.14449 0.14456 0.58 0.14172 0.143155 0.14314 0.14306 0.66
0.2 0.05192 0.052352 0.05235 0.05237 0.54 0.04660 0.047004 0.04700 0.04697 0.56
0.3 0.01917 0.019316 0.01931 0.01932 0.52 0.01712 0.017259 0.01726 0.01725 0.52
0.4 0.00713 0.007183 0.00718 0.00718 0.50 0.00637 0.006415 0.00641 0.00641 0.50

TABLE XVI: Maximum absolute error for u(x, t) in Example 4 at different values of T and m+ 1. That is, with L = 1,
m + 1 = 50, θ = 1

2 and ∆t = 10−5, D1 = D2 = 1, η = ξ = 2, and α = β = 10, and a non-symmetric, non-smooth
initial condition. An exact solution is not available, so the errors are measured in relation to the numerical solution for
m+ 1 = 160.

u(x, t)

T N m+ 1 = 10 m+ 1 = 20 m+ 1 = 40 m+ 1 = 80 Max u(x, t)

0.2 2× 104 9.923× 10−3 2.102× 10−3 4.266× 10−3 9.737× 10−4 5.237× 10−2

0.1 1× 104 3.387× 10−2 7.541× 10−3 4.343× 10−3 9.775× 10−4 1.444× 10−1

0.01 1× 103 1.450× 10−1 5.040× 10−2 1.219× 10−2 2.869× 10−3 6.810× 10−1

0.001 1× 102 1.998× 10−1 8.552× 10−2 3.530× 10−2 9.785× 10−3 9.613× 10−1

0.0001 1× 10 2.264× 10−1 9.580× 10−2 5.315× 10−2 1.918× 10−2 9.961× 10−1

TABLE XVII: Maximum absolute error for v(x, t) in Example 4 at different values of T and Nx. That is, with L = 1,
m + 1 = 50, θ = 1

2 and ∆t = 10−5, D1 = D2 = 1, η = ξ = 2, and α = β = 10, and a non-symmetric, non-smooth
initial condition. An exact solution is not available, so the errors are measured in relation to the numerical solution for
m+ 1 = 160.

v(x, t)

T N m+ 1 = 10 m+ 1 = 20 m+ 1 = 40 m+ 1 = 80 Max v(x, t)

0.2 2× 104 8.361× 10−3 1.943× 10−3 4.266× 10−3 9.737× 10−4 4.699× 10−2

0.1 1× 104 3.387× 10−2 7.178× 10−3 4.343× 10−3 9.775× 10−4 1.432× 10−1

0.01 1× 103 1.826× 10−1 4.888× 10−2 1.170× 10−2 2.749× 10−3 6.954× 10−1

0.001 1× 102 2.242× 10−1 8.503× 10−2 3.493× 10−2 9.716× 10−3 9.612× 10−1

0.0001 1× 10 2.292× 10−1 9.623× 10−2 5.310× 10−2 1.915× 10−2 9.961× 10−1
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VIII. CONCLUSIONS

This work investigated a new Sinc Collocation Method
(SCM) with Double Exponential (DE) transformations and
compared it with the Sinc-Hybrid method for solving partial
differential equations, focusing on Burgers’ equation. In the-
ory, sinc collocation methods achieve exponential convergence
on smooth problems. Other works have demonstrated high-
order convergence of sinc collocation for integral equations
[36] and boundary value problems [37]. The SCM-DE method
demonstrated high-order spatial accuracy (up to order 8) and
second-order time convergence on an evolution equation. It
proved to be robust and accurate at both collocation and
interpolation points.

Comparisons with the method in [10] highlighted SCM-
DE’s superior accuracy across various initial conditions and
discretization schemes, closely matching the exact solution.
While the Sinc-Hybrid method [10] achieved reliable re-
sults at collocation points, it exhibited discrepancies due
to oscillations at interpolation points, indicating Runge’s
phenomenon. In contrast, the SCM-DE method showed
consistent performance across all tested scenarios.

The SCM-DE method also demonstrated more accu-
rate results than the Milne method [16] and the standard
Crank–Nicolson Finite Difference method. We showed that
for a non-smooth problem (Example 4) as studied in [34],
[35],[11], performance of SCM-DE is degraded, as is expected
from the theory.

Future work could extend SCM-DE to problems with non-
homogeneous Dirichlet boundary conditions and focus on
optimizing computational efficiency.
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