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Abstract—In this research paper, we investigated the issue
of wireless sensor networks (WSNs) producing anomalous or
missing data due to a variety of factors, such as intrusion
attacks, node failures, link failures, malicious attacks, and
environmental variations. To address this problem, we proposed
a novel 2-level hierarchical LEACH protocol approach for
electing a referenced sensor with some predefined conditions.
This sensor is then tasked with detecting, flagging, and pre-
dicting outlier or missing measurements using the Gaussian
Process Regression (GPR) technique. We tested the outlier
detection, prediction, and correction framework using weather
station data. The results demonstrated that the framework is an
effective way for detecting, predicting, and correcting outlying
sensor measurements and can easily be infused into current
WSNs as middleware, as the computational overhead of our
approach is low (only simple arithmetic operations are involved)
and is purely localized and is therefore scalable to larger WSNs.

Index Terms—wireless sensor networks, leach protocol, gaus-
sian process regression, outlying detection, prediction.

I. INTRODUCTION

W IRELESS Wireless Sensor Networks (WSNs) are a
widely used technology designed to monitor and

observe physical phenomena in specific areas, delivering
accurate and real-time information even in challenging in-
dustrial environments characterized by extreme vibrations,
noise, humidity, and temperature conditions [1]–[4].

They have a wide range of applications, spanning from
healthcare to commercial sectors [5]–[7].

In all these application areas, both homogeneous and het-
erogeneous sensors are employed to record various quantities
such as sound, temperature, humidity, GPS logs, and the
occurrence of events. These sensors are either randomly or
manually distributed throughout the area, forming a self-
organized network. The sensors collect data, process or
fuse it, and transmit the information to a sink node via
single-hop or multi-hop paths through neighboring nodes.
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By fusing and transforming the data, the sink node can
present the information in a format that is easier for users to
comprehend. The transformed data can be utilized in routine
decision-making processes to enhance the quality of human
life and other physical systems. Consequently, the accuracy
of the information gathered by the sensor network is critical
to its relevance, as even a minor error could have serious
consequences for lives and other systems. This underscores
the importance of data integrity as a top priority in the design
of Wireless Sensor Networks (WSNs).

However, WSNs are susceptible to various types of fail-
ures, including intrusion attacks, node failures, link failures,
malicious attacks, environmental variations, limited resource
provisioning, and excessive burdens from redundant data pro-
cessing tasks. When these failures occur, the data generated
by the sensors may contain inaccuracies and may not be
reliable for making critical decisions. In a densely deployed
sensor architecture, data fusion methods are employed to
rectify missing information; however, this approach may not
be effective if a significant number of sensors are reporting
erroneous data.

There is a need to develop a more cost-effective method
for predicting missing, corrupt, or outlier sensor values, and
to correct these discrepancies before the data is processed
for decision-making purposes.

In the detection of outliers or anomalies in WSNs, au-
tomated analysis techniques, such as anomaly detection
algorithms, are commonly employed to identify and flag
data points that deviate significantly from expected patterns
or behaviors. These techniques are typically executed on a
centralized server or processing unit, which may be situated
far from the actual WSN monitoring site. This physical sep-
aration can result in increased network latency and reduced
reliability, as data must be transmitted from the sensors to
the centralized server for analysis.

A more effective approach is to distribute data processing,
outlier detection, and data prediction across the nodes. This
method will lead to a more efficient use of system resources
and reduce the communication overhead associated with
processing and transmitting data [8].

The main contributions of the paper are outlined below:
(i) A two-level hierarchical LEACH protocol is proposed

for selecting a reference sensor node based on prede-
fined conditions to detect missing sensor measurements.

(ii) A machine learning model is leveraged to predict out-
liers or identify missing sensor measurements.

(iii) We experimentally demonstrated the feasibility of the
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proposed localized outlier detection and correction
model using WSN data from a weather station.

The rest of the paper is organized as follows: Section II
provides comprehensive background information and related
work in wireless sensor networks. Section III discusses
the conceptual framework for cluster heads. In Section IV,
the framework for detecting and flagging outlying sensor
measurements is described. Section V, employs a Gaussian
Process Regression (GPR) approach to predict outlying sen-
sor measurements. The data used to test the framework and
the results are discussed in Section VI. The paper concludes
in Section VII.

II. BACKGROUND ON WIRELESS SENSOR NETWORKS
AND RELATED WORK

This section provides a brief overview of wireless sensor
network (WSN) systems, emphasizing the components of
WSNs and the functionality of each component. Additionally,
it discusses related research on WSNs, specifically focusing
on sensor data measurements, the detection of outlier sensors,
and the prediction of anomalous sensor measurements.

A. The Structure of a Wireless Sensor Network

A wireless sensor network (WSN) is an embedded system
that integrates micro-electronic technology, embedded com-
puting, communication technology, and sensor technology to
collaboratively monitor physical or environmental conditions,
such as temperature, sound, vibration, pressure, motion,
or pollutants across various temporal and spatial domains.
These networks can be deployed either randomly or manually
in fixed positions within a designated monitoring area. WSNs
are self-organizing networks designed primarily for sensing,
computing, and communicating data. Figure 1 illustrates a
typical architecture of a wireless sensor network, with the
various functionalities explained as follows:

The Sink Node:
(i) The sink node connects the sensor network to the

Internet and other external networks, serving as the
gateway to the sensor network when monitoring
functions are not in use.

(ii) The sink node converts between protocols and
transmits data to the external network.

(iii) The sink node can also function as an extension
of the sensor nodes, offering additional energy,
memory, and computing resources.

Management Node
(i) The management node, also known as the user

node, can be utilized to configure and manage a
wireless sensor network (WSN).

(ii) It is used to assign monitoring tasks and to collect
monitoring data.

The Power Unit
(i) The energy required to power the sensors for en-

vironmental monitoring is sourced from a power
unit, which is primarily powered by dry cells. This
energy is typically low-cost and delivered promptly.

(ii) Battery power is a critical factor in determining
the lifespan and functionality of Wireless Sen-
sor Network (WSN) sensor nodes, as it serves

as the primary energy source for their operation.
Therefore, effective management and distribution
of battery power are essential for maximizing the
efficiency and longevity of the WSN system.

The Processor Module
(i) The processor module comprises data processing

elements and memory.
(ii) It is responsible for collecting data within a node’s

monitoring environment, processing it, and storing
it in memory.

(iii) The computational power and energy consumption
rate of the WSN architecture are determined by the
central processing unit embedded in each sensor
node.

(iv) A wide variety of microcontrollers, microproces-
sors, and FPGAs are utilized to enhance the flexi-
bility of CPU implementations

The Communication Module
(i) The communication module consists of a

transceiver responsible for both transmitting
and receiving data. These two functions are
integrated into the same circuitry on a single
board.

(ii) The communication module is also capable of
receiving commands from the processing unit of
each sensor node and subsequently relaying them
to other nodes within the network. This is ac-
complished through communication channels that
adhere to a specific network protocol.

Sensing Unit
(i) The sensing unit consists of an analog-to-digital

(A/D) converter and multiple sensors.
(ii) The A/D converter is used to convert an analog

signal into a digital signal. As a result, the input
is an analog signal received from the sensor, and
the output is a digital signal. This digital signal is
then sent to the microcontroller embedded within
the sensor node for further processing.

(iii) Each sensor node in a Wireless Sensor Network
(WSN) can possess multiple sensing capabilities
simultaneously, depending on the application. For
instance, acoustic sensors, resonant temperature
sensors, and magnetic field sensors can detect a
variety of physical phenomena, including temper-
ature, sound, pressure, and gravity.

(iv) Sensing nodes also have the capability to function
as routers, forwarding data to neighboring nodes
within the WSN architecture.

The current WSN architecture can be modified to effec-
tively identify outlying neighboring sensors for each node,
facilitating the prediction of outlying sensor measurements.
We propose a localized outlier detection scheme that employs
a 2-level hierarchical LEACH protocol and the Gaussian
Process Regression method for the prediction process.

B. Related Work

In this section, we survey related works in wireless sensor
networks, with a primary focus on outlier detection and
correction.
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Fig. 1: Model of a Sensor Network

Outlier detection in sensor measurements has garnered
significant research attention across various domains [9]–
[16]. However, there have been few attempts to correct
these outlying sensor measurements using appropriate and
computationally efficient methods. The authors in [17] pro-
posed a multi-sensor information filtering framework that
enables a desired number of sensors with the most accurate
measurements to participate in information exchange while
discarding sensors with inaccurate and outlier measurements.
Shantala and Vijayakumar [18] introduced an outlier detec-
tion scheme for identifying events and attacks in wireless
sensor networks.

Wang Feng et al. [19] designed a middleware framework
for processing heterogeneous information from various de-
vices in the context of the Internet of Things (IoT) using
a service-oriented architecture. This data processing middle-
ware architecture is employed for both theoretical analysis
and experimental verification, utilizing environmental moni-
toring sensor data. The authors reported that the architecture
demonstrates superior adaptability to multi-sensor and multi-
stream application scenarios within the IoT framework, while
also enhancing the overall value of IoT by improving the
utilization of heterogeneous data. Socoró et al. [10] ooutlined
a method for detecting anomalous sensor measurements in
health monitoring systems by analyzing physiological data
from medical sensors. The research aimed to effectively
distinguish false alarms from true alarms.

In [9],], the authors proposed a segmentation algorithm
utilizing a ”one-class support vector machine approach” to

identify anomalies in turbomachines. Wu et al. [20] de-
veloped localized scalable algorithms for detecting outlying
sensors and events. Their algorithm is capable of clearly
detecting event boundaries and identifying outlying sensors.
The authors in [21] described an online anomaly detection
system that employs an ensemble of classifiers, which can
be executed on embedded systems such as wireless sensors.
Their work considers both single and multi-dimensional input
classifiers for predicting errors. The authors further tested
the framework using both synthetic and real-world data,
reporting that the use of ensemble classifiers significantly
enhances the overall detection of anomalies The authors
in [22]proposed an approach to predict critical nodes in an
opportunistic sensor network based on a multiple attribute
decision-making process. They employed the “TOPSIS al-
gorithm” to identify the ferry node with the maximum
comprehensive contribution, which is deemed a critical node.
Sundararajan and Arumugam [23] proposed “an intrusion de-
tection algorithm to mitigate sinkhole attacks on the LEACH
protocol in WSNs”. The implemented Intrusion Detection
System (IDS) utilized the number of packets transmitted
and received to compute the intrusion ratio, which indicates
normal or malicious activity. The IDS agent alerts the net-
work to cease data transmission whenever a sinkhole attack
is detected. The authors in [24] proposed a support vector
machine approach based on an improved particle swarm
optimization technique to predict dynamic errors in sensor
networks. The root mean square error and mean absolute
percentage error were used for model evaluation in terms of

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2598-2609

 
______________________________________________________________________________________ 



prediction accuracy and precision.
A K-means and neural network approach for detecting

outliers in social network analysis is proposed by [14]. The
authors in [25] introduced a multivariate spatial and temporal
correlation method aimed at enhancing prediction accuracy
and reducing data for WSN. Simulations were conducted
using simple linear regression and multiple linear regression
functions to evaluate the proposed method. They confirmed
that prediction accuracy is lower when simple linear regres-
sion is employed, while multiple linear regression yielded
the most accurate predictions. Additionally, a congestion and
traffic path prediction model is proposed by [26] to forecast
and minimize sensor data congestion. The authors evaluated
the effectiveness of the model through simulations conducted
with NS-2 and MATLAB®. They employed a network grid
representation method that preserved the fine-scale structure
of a transportation network, as described in [27]. This
method was utilized to predict road traffic by converting
static images derived from network-wide traffic speed into
a ”Spatiotemporal recurrent convolutional network (SRCN)”.
They demonstrated the effectiveness of the model using real-
world data and reported that the SRCNs outperformed “other
deep learning-based algorithms in both short-term and long-
term traffic prediction”.

Our work is distinct and innovative compared to the
approaches employed by other researchers. We propose
a scheme that incorporates the traditional LEACH proto-
col [28], [29] to elect a reference sensor at level-1 and
a cluster head sensor at level-2 during each round of the
protocol. The level-1 cluster head, referred to as the reference
sensor, is a dedicated sensor responsible for predicting and
correcting outlying or missing sensor measurements using
simple arithmetic operations integrated into the sensors as
middleware. A sensor is selected as the reference sensor
based on its residual energy and data variability index during
each round of the protocol. Subsequently, the Gaussian Pro-
cess Regression (GPR) method is utilized to predict missing
sensor values and to correct any missing or outlying sensor
measurements.

III. THE CLUSTER HEAD CONCEPTUAL FRAMEWORK

Sensor nodes are typically organized into disjoint sets
known as clusters. This grouping of sensors into clusters,
based on specific criteria, primarily aims to enhance net-
work stability through the efficient utilization of resources.
Additionally, it serves as an energy-saving mechanism for
the WSN architecture [28], [29]. Furthermore, clustering
techniques not only facilitate efficient data collection and
transmission but also optimize resource usage and enhance
overall network performance.

Clustering routing techniques utilize the data aggregation
and information processing capabilities of cluster heads to
minimize the volume of data transmitted across the network.
By aggregating and processing data at the cluster head level,
this approach decreases the amount of data that individual
nodes must transmit, thereby conserving energy and extend-
ing the network’s lifespan. This method is particularly ad-
vantageous in resource-constrained WSNs where nodes have
limited battery power and energy conservation is essential
for prolonged network operation [30]–[33].

Clustering routing techniques leverage the data aggrega-
tion and information processing capabilities of cluster heads
to reduce the amount of data transmitted throughout the
network. By aggregating and processing data at the cluster
head level, this approach reduces the amount of data that
needs to be transmitted by individual nodes, which in turn
helps conserve energy and extend the network lifetime.
This method is especially beneficial in resource-constrained
WSNs where nodes have limited battery power, and energy
conservation is crucial for prolonged network operation [30]–
[33].

The LEACH (Low Energy Adaptive Clustering Hierarchy)
protocol introduced significant advancements in clustering
techniques by considering both the minimum transmission
energy and the overall energy consumption within the net-
work. LEACH improved upon previous clustering protocols
by addressing not only the minimum transmission energy but
also the total energy consumption throughout the network.
This approach helps ensure that no single node becomes
overly burdened by managing a disproportionate share of the
network’s communication demands.

In this paper, we utilize a cluster head conceptual frame-
work based on the LEACH routing protocol to group sensors
according to their location, elevation, and homogeneity. This
approach aims to detect and correct outlier sensor measure-
ments.

A. The LEACH Protocol
The LEACH protocol is an energy-efficient, cluster-

based routing framework that incorporates media access
and application-specific data aggregation. This configuration
results in improved performance regarding system lifetime,
latency, and application-perceived quality [29], [34].

In the LEACH protocol, all nodes, except for the clus-
ter heads, transmit data to the head of their respective
clusters. The cluster heads then perform data aggregation,
compression, and onward transmission of the pre-processed
data to the base station. During each round, each node
employs a probability-based approach to determine whether
it will become a cluster head for that round. A fundamental
assumption of the LEACH protocol is that every node in the
network possesses sufficient energy to transmit data directly
to the base station or to the nearest cluster head. However,
the protocol acknowledges that continuously utilizing this
full energy capacity may not be the most efficient strategy
for extending the network’s lifespan. To address this, the
protocol implements a random rotation of cluster heads,
which helps to distribute energy consumption among various
nodes. This approach prevents the depletion of a single
node’s energy by evenly distributing energy usage across the
network.

The LEACH protocol employs a round-based approach,
with each round consisting of two phases: cluster head
selection and data transmission. During the cluster head
selection phase, each node has a probability of 1/P of being
selected as a cluster head for only one round. Once selected,
a node cannot be a cluster head again for P rounds. Any node
that was not a cluster head in the previous round selects the
nearest cluster head and joins that cluster. The cluster head
then creates a schedule for each node in its cluster to transmit
its data.

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2598-2609

 
______________________________________________________________________________________ 



Equation 1 mathematically expresses the LEACH protocol
as described above.

T (n) =

{
p

1−P∗[r mod 1
P ]

if n ∈ G

0 Otherwise
(1)

B. The 2-level Hierarchical Clustering Algorithm

The 2 -level hierarchical clustering algorithm is an exten-
sion of the LEACH protocol, allowing for multiple clustering
heads (CH) at different levels [28].

Assuming there are hi levels in the clustering hierarchy,
then h1 is designated as the level-1 cluster head, representing
the lowest level, while h2 is the highest level. Consequently,
each cluster network features 2-level hierarchical cluster
heads: the 1-level cluster head is responsible for sensor
data comparison, prediction, and correction, while the 2-
level cluster head manages data fusion, aggregation, and the
onward transmission of processed data to the base station
(sink).

Algorithm 1 illustrates the level-1 cluster head selection
process. The time and space complexity of the algorithm are
O(N2) and O(N ), respectively.

Algorithm 1: Level-1 cluster head selection Proce-
dure
Data: Sensor Nodes
Result: Level-1 cluster head selected
for Each sensor node do

Compute Sensor Data Variability Index ζ using
Equation 2;

for Each sensor node do
Choose a random node number R;
Compute a threshold value T (n) using
Equation 1;

if R < T (n) And ζ > θi then
Sensor node is selected as a Level-1 Cluster head;
Sensor node broadcast it status to the WSN.

else
Sensor node select itself as a normal node;
Decide which cluster to join in this round based
on its current residual energy and distance to
cluster head.

Then, the level-1 CHs serve as reference sensors for
calculating the distance dis, which is defined in Equation 3
in Section IV-B. These di values are then calculated and
standardized using Equation 4. Sensors with high yi values
are flagged as outliers, and their corresponding values are
predicted using a GP regression method. The corrected and
fused data are subsequently communicated to the level-2 CHs
which ultimately relay the aggregated data or estimates based
on this aggregated data to the processing center.

The level-2 cluster heads are selected during a second
round using the standard LEACH protocol selection process,
as illustrated in Equation 1. Due to the high correlation
between data signals from nearby nodes, we can implement
a clustering infrastructure to predict corrupted or missing
sensor data. This approach enables local processing of all
data within a cluster, thereby minimizing the volume of data

that must be transmitted to the end user. Additionally, data
aggregation techniques further decrease the amount of data
that needs to be sent by combining multiple data signals
into a more compact set of information that retains the same
informational content as the original signals.

Fig. 2: The Hierarchical Clustering Framework

C. Node Cluster Selection Process

Sensors are grouped into clusters based on predefined
criteria, including distance, homogeneity, and elevation. Con-
sequently, sensors within a particular cluster exhibit similar
measurements. Thus, the measured values obtained from
homogeneous data should be very similar within the same
time frame. The proposed conceptual framework of the 2-
level hierarchical clustering system is illustrated in 2.

D. Assumption on Nodes within each Cluster

The following assumptions were made when determining
the cluster heads:
(i) Nodes can communicate with one another using the

MAC layer protocol embedded within the sensors to
coordinate neighboring broadcasts, ensuring that no
collisions occur.

(ii) The WNS is homogeneous, meaning that the nodes are
measuring the same or similar sensor data within a
specific cluster at a particular time or spatial domain.

(iii) All level-2 nodes can communicate with the Base Sta-
tion (BS) while maintaining sufficient energy.

(iv) That all level-1 nodes have enough residual energy to
serve as a reference sensor for comparative analysis and
flagging outlying sensors

(v) That data receive from these sensors are subject to the
same problems

(vi) That the sensors are not separated by more than a
few tens of kilometres and hence can be expected to
experience reasonably similar weather conditions. As
such, their readings are likely to display a strong degree
of correlation

(vii) That nodes can use different power level for communi-
cation.
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The advantage of using the cluster head conceptual frame-
work are outlined below:
(i) The computational overhead is very low because one

sensor (the data head) is involved in data aggregation,
comparison, and prediction during each round.

(ii) The computational overhead is low because only the
relevant sensor values are transmitted to the sink node
or base station.

(iii) This reduces the number of transmissions in the net-
work.

(iv) Data aggregation of cluster heads from their cluster
members also reduces duplicate transmission and en-
hances the network lifetime owing to energy efficiency

E. Advantages of performing sensor data correction close to
the data site

(i) It allows data reduction while providing information
when unexpected behavior occurs.

(ii) Only relevant data/information are sent to the sink, lead-
ing to efficient use of resources in terms of bandwidth
owing to less usage of communication channels

(iii) Nodes with corrupt or missing data can be corrected
using their neighbors’ sensor data.

(iv) The cost of communication for transporting ‘raw’ data
to the sink is high.

IV. LOCALIZED OUTLYING SENSOR DETECTION
FRAMEWORK

This section defines the neighborhood of a given sensor
and outlines the procedure for detecting an outlying sensor.

Sensor Network Neighbourhood Defined

Let Φ(R, Si) be the Euclidean distance R around sensor
Si and N (Si) be the neighbors of sensor Si at a distance
R from Sensor Si. Thus, the neighborsof Si are all sensors
∈ |N (Si)| within that Euclidean space.

Outlying sensor defined

A sensor whose reading is an outlier (described as an
outlying sensor) when the observation of its readings de-
viates significantly from that of other neighboring sensor
readings [35], [36] because of either environmental factors
or system defects within the WSN. In WSNs, sensor nodes
are assigned to monitor the behavior of the physical world;
thus, the sensed data must have a pattern that represents the
true behavior of the sensed data.

However, more often than not, data obtained from WSNs
are normally unreliable because they are affected by noise
and measurement errors. To generate redundant data, low-
cost, low-quality sensors are normally distributed over a
given region. These sensors normally have low energy (bat-
tery life), memory, computational capacity, and communica-
tion bandwidth. These limitations make the data generated
by sensor nodes prone to errors and can, therefore, be
defined as outlying sensors, that is, their measured values
deviate greatly from the true values. Sensor data can also be
vulnerable to malicious attacks, such as denial of service
(DoS) attacks, black holes, and eavesdropping, in which
sensor network data are deliberately altered by an adversary.

All these factors (environmental and system defects) lead
to the generation of unreliable sensor data, which affects
the accuracy of the raw data and consequently that of the
processed or aggregate data to be used for decision-making.
Because events that occur in the physical environment or
world cannot be accurately detected using inaccurate and
incomplete data, it is important to have a high level of
assurance on the reliability and accuracy of sensor data
before using the data for decision-making.

Types of Outlying Sensor Readings:

(i) Point outlier: A sensor data reading that is different
from all other readings within a defined time frame.

(ii) Contextual outlier: A sensor reading that is anoma-
lous in a specific context or neighborhood, such as
a particular longitude, latitude, date, or time within
a month.

(iii) Collective outlier: A collection of sensor readings
that are anomalous with respect to the entire dataset
or a processed sensor data set.

In this work, we used the collective outlying sensor reading
approach in our analysis.

A. The Rate of Variability in Sensor Data Set

The rate of variability in a sensor data set is used to
measure the integrity of the sensor data. Data from neigh-
boring sensors are assumed to have approximately the same
information and should present the same rate of variability.
Otherwise, this could indicate that at least one of the data
sources is corrupted by noise. Therefore, sensor readings
with a lower rate of variability are considered to have higher
integrity and are preferred over those with a high rate of
variability. The rate of variability index, ζ is defined as [21]:

ζ =
std(x)

mean(x)
, (2)

where std(x) is the standard deviation and x is a vector of
sensor measurement. Figure 3 showed the rate of variability
index for the temperature measurements for the month of
May obtained for the Chimet sensor measurements website
1. It is observed that some measured values have very high of
ζ, signifying the possibility of noise in their measurements.

B. Procedure for Outlying Sensor Data Detection

Let Si denote a referenced sensor whose status is de-
termined stochastically using the LEACH routing protocol.
At each round, Si is selected based on its residual energy
and data variability index ζ as defined in Equation 2 (Sec-
tion IV-A). Sensors with high residual energy and a low
variability index ζ in each of the n clusters are preferred
and elected as level-1 cluster heads.

A large ζ value (due to a large standard deviation) is
indicative of corrupted sensor data, and thus, that sensor is
not qualified to be a level-1 cluster head.

Let N (Si) be the neighbors of sensor Si named
Siα1, Siα2, Siα3, . . . , Siαn within the same cluster before
Si was chosen as a level-1 cluster head.

1http://www.chimet.co.uk/
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The difference, di, between the measurement of
the reference sensor Si and the median of the set
{α(i)

1 , α
(i)
2 , α

(i)
3 , . . . , α

(i)
n }, is defined as follows:

di = xi −med α
(i)
i (3)

The set D = {d1, d2, d3, . . . , dn} contains values obtained
using Equation 3. If di is extreme in the set D, then sensor
Siαi is an outlying sensor whose measurements are likely
wrong due to factors such as intrusion attacks, node failures,
link failures, malicious attacks, environmental variations, re-
source constraints, or problems with measuring instruments.
The values in the set D can be standardized by the following
procedure:

γi =
di −mean(di)

std(di)
(4)

A decision for flagging a sensor as outlying is defined as
follows: If |γi|≥ θ or sensor data measurements fall outside
the 95% confidence level, then the sensor is flagged as
outlying. θ > 1 is a preselected value. In this work, θ is
defined as follows:

θi =
min(γi) +max(γi)

2
(5)

This approach enables the identification of outlying sensors
and can contribute to the overall reliability and security of
the WSNs.
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Fig. 3: Sensor Measurement Variability Index for the Month
of May, 2017 (The referenced Month in the work)

The algorithm for detecting and correcting outlying sensor
measurements is shown in Algorithm 2. The time and space
complexity of the algorithm are O(N2) and O(N ), respec-
tively.

V. PREDICTING OUTLYING SENSOR MEASUREMENTS

Sensor data that is corrupted due to environmental factors
and system failures can be predicted, and these predicted
values can be used to replace the corrupted values, preserving
the data structure more effectively than simply discarding the
outliers.

Gaussian Processes (GPs) are state-of-the-art tools for
modeling many machine learning tasks [37], [38]. They are a
powerful modeling framework that incorporates kernels and
Bayesian inference, offering several benefits over traditional
machine learning frameworks such as linear models and
support vector machines

Algorithm 2: Outlier Sensor Measurements Detec-
tion and Correction

Data: Sensor Measurements
Result: Outlying Sensors Detected and Corrected
while Threshold Condition T (n) and Sensor Data
Variability Index ζ > predefined value θi do

for Each Neighbouring Sensor Measurement α(i)
i

do
Calculate di using Equation 3;
Standardizes di values using Equation 4 ;

if Equation 4 value |γi|≥ θi or sensor data
measurements fall outside the 95% confidence
level then

Flag a neighbouring sensor node
measurement as outlying;

Predict the outlying sensor measurements
using GPR method
Correct the outlying sensor measurements;

else
Transmit sensor measurements to level-2
cluster heads for data aggregation and
onward processing

Transmit sensor measurements to level-2 cluster
heads for data aggregation and onward
processing

A. Gaussian Process

A Gaussian Process (GP) is formally defined as a col-
lection of a finite number of random variables indexed by
time or space (a stochastic process), such that every finite
linear combination of these variables follows a multivariate
normal distribution [37]. Formally, a function f is a GP if
a finite set of values f(x1), . . . , f(xn) follow a multivariate
normal distribution, where the inputs {xn}Nn=1 correspond
to arbitrary sized domain vectors. GPs can be viewed as a
probabilistic generalization of the notion of a multivariate
function, where the function and its derivatives are governed
by a Gaussian distribution. This property allows GPs to
capture the inherent uncertainty and noise present in real-
world data, making them well-suited for modeling many
machine learning tasks.

B. Gaussian Process Regression

Regression is a supervised machine learning problem that
aims to predict the relationship between an attribute set x
and the response variable y indexed either by time or space,
which can be continuous or discrete. Both linear and non-
linear models have been used in regression analysis. Rather
than assuming a defined function f(x), Gaussian Process
Regression (GPR) can represent f(x) blindly but rigorously,
letting the data define the underlying relationship. GPR is a
supervised learning method that provides both predictions
and the associated confidence levels. GPR modeling can
handle both linear and nonlinear functions as base functions,
making it less parametric and more nonparametric in nature.
GPR provides a flexible and natural mechanism for selecting
between simple and complex models for various inputs and
applications.
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Given a data set D of n observations, D =
(xi, yi) | i = 1, . . . , n, where xi ∈ Rd describes the attributes
and yi is the scalar output of the i-th data point, GPR finds
a function f that associates the xi to yi using appropriate
GP parameters. GPs are completely defined by specifying
two functions, the mean m(x) and covariance cov(x, x′)
functions [37], [38]. Hence, GP can be formally written as:

f(x) ∼ GP (m(x), cov(x, x′)) (6)

The covariance function is one of the most important
factors in Gaussian Process (GP) implementation. It is often
based on the Euclidean distance between two attribute sets
x and x′, as defined in Equation 7 [37], [38]:.

cov(x, x′) = k(∥x− x′∥), (7)

for a decreasing function k.
The mean function m(x) and covariance function

cov(x, x′) are typically predefined prior to GP implementa-
tion. These prior properties can be determined from sample
data [37].

One of the most commonly used covariance functions is
the squared exponential (SE) covariance function defined in
Equation 8.

cov(x, x′) = σ2
f exp(−

1

2ℓ2
∥x− x′∥2) (8)

However, a novel approach that folds noise into the co-
variance function, as shown in Equation 9, can be used
to increase flexibility and adaptability. In this work, the
SE covariance function defined in Equation 9 was used to
implement GPR for predicting outlying or missing sensor-
measured values.

cov(x, x′) = σ2
f exp(−

1

2ℓ2
∥x− x′∥2) + σ2

nδ(x, x
′), (9)

The function describes the covariance between x and x′

and the parameter ℓ controls the “influence range”, meaning
how much the data points influence each other. A larger
ℓ means a greater influence range. The Kronecker delta
function δ indicates whether two data points are the same
or different. The maximum allowable covariance is defined
as σ2

f . If x ≊ x′, then cov(x, x′) approaches this maximum,
meaning f(x) is nearly perfectly correlated with f(x′).

Therefore, for the function to be smooth, neighbours
must be alike. The influence of separation will depend on
the length parameter, ℓ, providing much flexibility in the
definition of the SE covariance function.

VI. DATA, IMPLEMENTATION AND DISCUSSION

In order to test the localized outlying detection framework
outlined in this paper, we used WSN data from a weather
station in England locate at four (4) different locations shown
at the following websites [39]–[42] Each sensor was capable
of taking readings of several variables associated with local
weather conditions, such as wind speed, tide height, and air
temperature. A new reading for these variables is recorded
every minute and stored, while every five minutes, the
reading is transmitted and uploaded to the internet. The files
from the websites, therefore, provide daily measurements
in a single file that covers a 24-hour period at 5-minute
intervals. In the cluster formation process, we assumed that
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sensor measurements within a month were a cluster, and each
of the daily measurements came from individual sensors.
And thus, in the ideal situation, these sensor measurements
should have similar values within the one-month duration.
The same scenario is applied to the remaining 3 sensor loca-
tions. The sensor measurement data are accessed from May
1–May 31, May 10th sensor measurement is not available,
as shown in Figure 3. Using the sensor measurements from
the http://www.chimet.co.uk weather station as a baseline for
the studies, thus for a month May with 30 days of sensor
measurements data, it implies that each cluster will have at
most 30 sensors and the entire monitoring area will then have
about 120 sensors in total.

In using the 2-level hierarchical clustering framework
outlined in Section III-B,two of these sensors are elected as
Level 1 and level-2 cluster heads for outlying detection, cor-
rection, and data aggregation and transmission, respectively,
based on their residual energy and their rate of variability.
The level-1 cluster head is the reference sensor selected
based on its high residual energy and low rate of data vari-
ability, and each of the remaining 28 sensor measurements
within each cluster was compared with the reference sensor’s
measurement. During the simulation process, it was real-
ized that for sensor measurements from the Chimet sensor
websitehttp://www.chimet.co.uk, the May 22 measurement
has a low variability indexγ as shown in Figure 3 aand May
22, which is taken to be a sensor node, is assumed to have the
highest residual energy during the LEACH protocol routing
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and is therefore used as the reference sensor.
The referenced sensor in each cluster, as shown in Fig-

ure 2, was used for comparison with the neighboring sensor
measurements. Sensor measurements with |γi|≥ θ (θ > 1)
or sensor data measurements that fall outside the 95% confi-
dence level are classified as outlying, and their values at that
time stamp are replaced with those of the referenced sensor
measurement at the same time stamp. In our simulation, the
value of θ is given by Equation 5 in Section IV-B.

Five sensor measurements were used to evaluate the pro-
posed model, as discussed below.

(i) Sensor Measurement of Air Temperature: Figure 4
shows the case of an outlying sensor measurement
of air temperature(◦(C)) obtained from the http://
www.chimet.co.uk where a sensor measurement is
compared with the referenced sensor measurement,
xi.
The outlying measurements are discarded (as
shown in the red line) and consequently, these
discarded values were predicted using the GPR
method, as shown in Figure 5.

(ii) Sensor Measurement of Wind Direction: Figures 6
show a similar case for sensor measurements for the
wind direction obtained from http://www.chimet.
co.uk. The outlying sensor measurements shown
in red were discarded, and their predicted values
were obtained using GPR. The result are shown
in Figure 7.

(iii) Sensor Measurement of Water Depth: Figures 8
also show the case for sensor measurements for
the Water depth obtained from http://www.chimet.
co.uk.The Sensor measurements with |γi|≥ θ (θ >
1) or sensor data measurements that fall outside the
95% confidence level are classified as outlying and
their values at that time stamp are replaced with
those of the referenced sensor measurement at that
same time stamp as shown in Figure 9.

(iv) Sensor Measurement of Wind Speed: Figures 10
show a similar case for sensor measurements for the
wind speed obtained from http://www.chimet.co.uk.
Similarly, our model was able to detect the outly-
ing sensor measurements, flag the sensor at that
time instance as an outlying sensor, and trigger
the GPR method to predict the outlying sensor
measurements.

(v) Sensor Measurement of Maximum Gust: Figures 12
shows the case for a sensor measurements for Max-
imum Gust obtained from http://www.chimet.co.uk.
Similarly, the outlying sensor measurements were
detected and flagged, and the GPR method was
used to predict them, as shown in Figure 13.

The results demonstrated that the proposed framework
will be an effective method for detecting, predicting and
correcting outlying sensor measurements when adopted as
a middleware in the WSN architecture

VII. CONCLUSION

Sensors are important tools, and their application domains
are wide and relevant. When deployed to monitor a given
area (forming a network), they provide sensitive data for
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making quality decisions that affect almost every aspect of
our lives, ranging from health and commercial to military
applications. However, sensor networks and their delivery
systems are vulnerable to several types of failure and dis-
ruption. This can include intrusion attacks, node failures,
link failures, malicious attacks, environmental variations,
limited resource provisioning, and overburdening from re-
dundant data processing tasks. Additionally, failures can
occur because of problems with the measuring instruments.
As these failures occur, the data produced by the sensors
contains inaccurate information and may not be reliable for
making critical decisions. Data fusion methods from densely
deployed sensors is an attempt, though, to compensate for
these errors, but this method may not also be able to provide
correct information if a majority of the sensors are report-
ing erroneous data. Therefore, there is a need to provide
an efficient and scalable approach for handling outlying,
missing, or anomalous sensor measurements. We proposed
a 2-level hierarchical LEACH protocol approach to elect a
referenced sensor with predefined conditions for detecting,
flagging, and predicting missing, outlying, and anomalous
sensor measurements. We then leveraged Gaussian Process
Regression (GPR) as an effective and efficient machine
learning method for predicting outlying or missing sensor
measurements. We tested the outlying detection, prediction
and correction framework by using weather station data. The
results demonstrated that the framework is an effective way
to detect, predict, and correct outlying sensor measurements.
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As a future research direction, we shall use fuzzy logic and
deep learning together with novel data fusion approaches for
the detection and prediction of outlying sensors.
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