
 

  
Abstract—This article proposes a finite-time control method 

that integrates sliding mode control with neural networks. The 
aim is to address the vehicle formation tracking control 
problem under performance constraints. The core advantage of 
this method lies in its ability to ensure the stability of the vehicle 
formation within a finite time. It also meets the specified 
tracking performance requirements during this process. 
Specifically, performance functions are first introduced to 
constrain the tracking performance of each vehicle. 
Transformation functions are then used to convert the system 
with these performance constraints into an unconstrained form. 
This provides a more concise framework for subsequent control 
design. Next, a sliding surface is designed within the 
transformed system. This design effectively mitigates the 
chattering phenomenon commonly observed in traditional 
sliding mode control. As a result, the robustness and stability of 
the system are enhanced. To address uncertainties in the system, 
a neural network approach is employed for system modeling 
and optimization. The powerful approximation capability of 
neural networks is utilized to handle nonlinearities and 
uncertainties in the system. Additionally, a robust term is 
introduced to counteract potential errors during neural 
network reconstruction. This further improves the precision 
and robustness of the control system. Finally, simulation 
experiments are conducted on the MATLAB platform. The 
proposed algorithm is compared in detail with existing control 
methods. The experimental results validate that the proposed 
algorithm ensures system performance and stability while 
achieving superior control effectiveness. 
 

Index Terms—finite-time; performance constraint; sliding 
mode control; vehicle formation; neural network 
 

I. INTRODUCTION 
ehicle formation cooperative control is one of the core 
technologies of Intelligent Transport Systems, highly 

valued for its potential to enhance transport efficiency, 
improve safety and reduce energy loss [1-3]. Vehicle 
formation cooperative control is used to control multiple 
vehicles, keeping multiple vehicles traveling at the same 
distance and speed, improving road operational efficiency  
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and increasing reliability [4, 5]. 

Nowadays, the main vehicle formation control methods 
are the pilot-following method [6], artificial potential field 
method [7], virtual structure method [8], etc. The 
driver-following method is a method, which controls the 
entire convoy by controlling the lead vehicle. simplifies the 
process of designing a controller, have wide-ranging 
applications. 

Currently, research for vehicle models has matured, 
Common vehicle models are second-order [9] and third-order 
models [10]. However, due to the complexity of vehicle 
systems and the diversity of roads travelled, the third-order 
dynamics model is closer to the actual vehicle. The spacing 
strategy of vehicle formations directly affects road traffic 
throughput. Common spacing strategies are constant spacing 
strategies (CS) [11] and non-linear spacing strategies (NS) 
[12]. The ideal inter-vehicle distance for CS strategy is a 
constant, and can increase road availability, but reduces road 
capacity [13]. Ideal inter-vehicle distance for NS strategy as a 
non-linear function of vehicle state, Increased road 
availability and flexibility, NS contains a quadratic spacing 
strategy and an exponential spacing strategy [14]. Literature 
[15] proposes a quadratic spacing strategy, balances the 
stability and capacity of the traffic flow, enhances the 
stability of the vehicle formations. The current control 
methods for vehicle formation control are adaptive control 
[16], consistency control [17], predictive control [18], sliding 
mode control [19] and so on. During vehicle operation, 
various uncertainties and external disturbances are often 
encountered, and sliding mode control is widely used due to 
its high immunity to disturbances. Literature [20, 21] 
proposes an integral sliding mode control method, to achieve 
formation stability. Literature [22] proposes a robust 
two-way fleet controller, can estimate the mismatch 
perturbation of adjacent vehicles, however, they are only for 
second-order systems and are only asymptotically stable. 

Finite-time control is widely used because of its 
advantages such as fast response, high disturbance immunity 
and high control accuracy. Literature [23, 24] designed 
finite-time controllers based on third-order models， to solve 
the fleet problem, but ignored the transient performance of 
the formation. Literature [25, 26] studies the problem of 
formation control with specified performance constraints. 
Literature [27] further investigated finite time formation 
control with constraints. Literature [28, 29] introduces 
performance functions, which allow the tracking error to 
converge to a specified range in finite time, but it does not 
consider the problem of strong formation stability.  

During actual formation control, there are a variety of 
unknown factors that can affect the system, neural network 
has strong learning ability and nonlinear approximation 
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ability, which can offset the negative impact of these 
uncertainties on system control, and as such it received a 
great deal of attention. 

Based on the above analysis, the main innovations of this 
paper are concluded as follows:  

(1) This paper uses performance functions to constrain the 
performance of third-order vehicular systems. This enables 
the tracking error to converge to the constraint range in finite 
time, ensuring fast convergence. 

(2) To ensure the stability of the system, this paper 
presents an improved sliding mode control method, 
eliminates vibration shaking in sliding mode, and 
incorporates a neural network, using neural networks to 
approximate complex fuzzy dynamics in control processes, 
adaptive and robust terms are used to overcome the external 
interference and the reconstruction error of the neural 
network. 

The overall structure of this paper is as follows: Section 2 
presents the system model and control objectives of the 
vehicle formation of. Section 3 designs the system controller 
and performs stability analysis. In Section 4, the controller is 
verified by simulation using real values. Section 5 concludes 
the paper. 

II. PROBLEM DESCRIPTION 

A. Vehicle mode 
Consider a formation consisting of a leader vehicle and 

several followers on a straight road, as shown in Fig.1. 
 

 
 

Fig. 1.  Vehicle formation model 
 
In the figure, ( )ix t , ( )iv t , ( )ia t represents the position, 

velocity and acceleration of the vehicle i  respectively. 
,d iP represents the required spacing between adjacent 

vehicles. ie is the error between the actual spacing and the 
ideal spacing during the driving of the fleet, which is called 
spacing error. 

A single vehicle's third-order kinematics and dynamics 
model is: 
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    (1) 
where ( )iu t  is the control input, im is the actual mass of the 
vehicle i , δ is the engine time constant in vehicle operation, 
Г is the wind resistance of the vehicle during travelling, 

α φГ=
2

iA , α  is the density of the air around the vehicle, iA  

is the cross-sectional area of the vehicle i  subjected to wind 
resistance, φ  is the coefficient of air resistance, dF  is the 
frictional resistance of the tyres when the vehicle is in motion. 
Consider road conditions, cosθ+ sin θd i i iF c m g m g= , ic is 
the rolling resistance coefficient of the tyres, θ is the slope of 
the road surface, ( )i tΔ  is the concentrated disturbance 
caused by external factors. It is assumed that all vehicles are 
produced from the same batch and that vehicle dimensions, 
engine and tyre data remain the same during vehicle 
formation travel. 

 

B. spacing strategy 
This paper gives full consideration to the various aspects 

of the vehicle in the process of travelling, proposes a 
quadratic spacing strategy, which sets the ideal inter-vehicle 
spacing as a quadratic function concerning velocity. The 
expression is: 

2

1 1, 2
β ( )( )

2
i

i i i i s i
n

v t
e x x d d t v t

a−= − − − − −            (2) 

where , 1d i i iX x x−= −  represents the actual distance between 

adjacent vehicles. 
2

, 1, 2
β ( )( )

2
i

d i i s i
n

v tP d d t v t
a

= + + +  represents 

the desired spacing between adjacent vehicles, the ideal 
distance includes the length of the vehicle as well as the 
safety distance required to start and stop the vehicle. 1,id  is 
the length of the i vehicle, 2d is the safety distance allowed 
between adjacent vehicles, st is the braking time for braking 
in an emergency, ( )s it v t denotes the stopping distance, β  
represents the safety factor in the external environment, na  
denotes the absolute value of acceleration during acceleration 
and deceleration.. 

 

C. control objective 
The requirement of this paper is to design a new finite time 

control strategy. When the leader vehicle is driving in any 
state, the following vehicle can quickly track the leader 
vehicle and achieve performance constraints in a limited time. 
Specific control objectives are as follows: 

(1) Finite-time performance constraints: The fleet is stable 
and meets the performance constraints in a finite time: 

-ξ ( ) ξ ( )i i it e t≤ ≤Q Q                               (3) 

0

0

lim ξ ( ),

( ) ( )
( ) ( )

i it T

i

i

e t

v t v t
a t a t

→
 ≤
 →
 →

Q

                                 (4) 

where ( )i tQ  is the performance function， ξ  is a constant. 

0( ) ( ) rt
i t e−

∞ ∞= − +Q Q Q Q                        (5) 
(2) Strong formation stability: the spacing error decreases 

in steps and does not propagate upstream vehicles along the 
formation, as described below: 

1 1( ) ( ) ( )i iE s E s E s−≤ ≤ ⋅⋅ ⋅ ≤                   (6) 
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the error transfer function 1( )( )
( )

i
i

i

E s
G s

E s
+=  

satisfies ( ) 1iG s ≤ , where ( )iE s denotes the Laplace 
transform of ( )ie t . 

(3) Traffic flow stability: after system stabilization, the 
derivative of traffic volume D  with respect to traffic density 
ρ  is positive. 
 

D. prerequisite knowledge 

Lemma 1[30]  For a nonlinear system ( , )x f x u=


, if there 
exists a positive definite function ( )V x  and exist parameters 

, 0a b >  and r0 < < 1  such that 

( ) ( ) ( ), 0rV x aV x bV x t≤ − − >


        (7) 
Then the system is exponentially stable and faster finite 

time stable. The convergence time depends on the initial state 
0(0)x x= , which is given by 

1
0

0
( )1( ) ln

(1 )

r

x
aV x b

T x
a r b

− +
≤

−
       (8) 

Lemma 2[15]   Equivalence of coupled sliding mode 
surfaces and each sliding mode surface: at the same time, 
when and only when is  is zero, iN  also converges to zero. 
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where   is the weighting factor and the relationship 
between iN  and is  is described as N ( ) ( )i it s t= , 

1 2[   ... ]ns s s s= , 1 2[   ... ]nN N N N= . is 

1 ... 0    0
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                (10) 

Lemma 3[28]  For a nonlinear function ( ) : nf x R R→ , 
there exists an ideal weight vector W  and an arbitrarily small 
positive constant e  enabling the neural network to 
approximate ( )f x  in the following way: 

( ) ( )Tf x W h X= + e             (11) 
where nW ∈  is the ideal weight matrix of the output layer 
of the neural network, ∈e   is the reconstruction error of 
the neural network approximation, and ( )h X  is the activation 
function. 
 

III. CONTROL METHODS 

A. system transformation 
The system (1) is a dynamic model of the vehicle, while 

the control object is the spacing error (2), to make the control 
objective (3) independent of the system (1), we choose the 
new state variable as: 

  

2
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         (12) 

Deriving it and combining it with the dynamics model of 
the vehicle (1), we can obtain the new system: 

1, 2,

2,
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δ
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where 
2

1
2
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(14) 
The performance constraint is (3), to facilitate the 

calculation, transform the objective constraints so that 
constrained become unconstrained: 

1, 1,( ξ ( ),ξ ( )) ( ) ( , )i i i iy t t Z y∈ − → ∈ −∞ +∞Q Q          (15) 
that is: 

1,

1,

  ξ ( ) 1,
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y t i
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 = −∞

Q

Q

                      (16) 

where 1,( )iZ y  is a function for 1,iy , when 1,( ) ( , )iZ y ∈ −∞ +∞ , 
get 1, ( ξ ( ),ξ ( ))i i iy t t∈ − Q Q , as long as 1,( )iZ y  is bounded, the 
performance constraints of 1,iy  can be satisfied. 

The transformation function 1,( )iZ y  is calculated as: 

1,
1,

1,

ξ ( )1( ) ln( )
2 ξ ( )

i i
i

i i

y t
Z y

t y
+

=
−
Q

Q
                       (17) 

For convenience, 1,iz  is used instead of 1,( )iZ y , and the 
second-order derivative of 1,iz  is obtained: 
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 (19) 
We can get the new system: 
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        (20) 
It can be controlled by controlling the new system (20), 

thus achieving our control goals. 
 

B. slide mode control 
Based on the converted system (20), an improved sliding 

mode surface is designed: 
2, 1,χ( )i i is z z= + l                               (21) 

where the 1,χ( )iz  function is 
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where 1
2 < g < 1 , g  is a fraction where both the numerator 

and denominator are positive odd numbers, u > 0  is a 
positive number with a small value, 1

1 (2 )l −= − gg u , 
2

2 ( )l −= gg -1 u . 
When 0is = , 2, 1,χ( )i iz z= −l , that is 
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when 1,iz < u , ( )2, 1 1, 2 1, 1,sgni i i iz l z l z z= − −
2

l l  converges 

faster than ( )2, 1, 1,sgni i iz z z= −
g

l , this indicates that the 

improved new sliding mode surface has a faster convergence 
rate.. 

The traditional sliding mode control is affected by various 
factors, which will lead to chattering on the sliding mode 
surface. Therefore we use the saturation function (24) instead 
of instead of the sign function, where h is a small positive 
number representing the thickness of the sliding mode 
boundary layer. 
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Derivative with respect to the sliding mode: 

2, 1,χ( )i i is z z= +
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l                         (25) 
Introducing a coupled slide mould surface 
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where   satisfies 0 1< ≤ . 
Recalling(26) shows that N ( )i t  and ( )is t  have the same 

convergence. 
The derivative of N ( )i t  is as follows: 
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C. neural network approximation 
Because there is some uncertainty in the system (20), 

both 1,iy and 2,iy are computable, we use the RBF neural 
network to approximate. 
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where 

2 2 2 2
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   (29) 
According to Lemma 3, when a neural network 

approximates an unknown nonlinear function, the neural 
network  ( )G Y  can be expressed as: 

( ) ( )T
i i iG Y W h Y= + e                           (30) 

where 1, 2,[ , ]i i iY y y=  is the input of the neural network, 
nW ∈  is the ideal weights of the output layer of the neural 

network, n∈e is the reconstruction error of the neural 
network, the activation function is chosen to be a Gaussian 

function 

2

2( )
2( )
i i

i

Y c

bh Y e
−

= , where 1,...,i m= , m is the number 
of nodes in the hidden layer, ic  and ib  are constants, 

( )h h< , h  is a positive number. 
Assumption 1.  assume that W and the reconstruction error 

e  are bounded, satisfied ,  m mW w≤ ≤e e . We use W  as an 

estimate of the ideal weights W , defined  W W W= − as the 
neural network weight estimation error. 
 

D. finite-time controller design 
The controller of the system(20) is designed as follows: 



2 2
1,

sgn( )δ[ ( ) sgn( )β ( ) ξ  [ ]    
(ξ )

      ( ) sgn( )]

n i m i
i i i p i

i i
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n i i

T

i i

k N k Nu m t k N
v tt
a y

W h Y N

+
= − Δ +

+
−

+ +


Q

Q

s
 (31) 

where mk , nk , pk are all positive, 0i >s is the adaptive 

variable, used 
is as the estimation of is , 

defined  
i i i= −s s s as the estimation error of the adaptive 

variable. This paper proposes a robust term sgn( )p ik N  to 
counteract the reconstruction error. 
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The weight adaptation law W  of the neural network in the 
control process is 


2 2

1,

β ( ) ξτ [ ] ( )
(ξ )

i i
i i s

n i i

v tW N t h Y
a y

= +
−

 Q
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          (32) 

The adaptive law s  in the control process is 


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1,

β ( ) ξτ [ ]
(ξ )

i i
i i s

n i i

v tN t
a y

= +
−

 Q
s -

Q
               (33) 

In order to prove that the designed control algorithm can 
meet the control requirements of the whole system, we 
analyze and verify the control algorithm by using Lyapunov 
theory. The stability analysis is performed first, followed by 
finite time analysis, and the following theorem proves the 
stability of the proposed control algorithm. 

Theorem 1. For the vehicle dynamics model (1), combined 
with the quadratic spacing strategy (2), the control algorithm 
(31) is designed using the transformed system (20), 
Combining adaptive laws (32) and (33). The control 
objectives of this paper can be achieved. 

Proof: choose the Lyapunov function. 
   221 1 1

2 2τ 2τ
T

i ii iV N W W= + + s              (34) 

Derivation of (34) yields 

   1 1
τ τ

T
i ii i iV N N W W= + +

  
ss                 (35) 
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   (36) 
Combining (28), (29) and (30) is obtained using neural 

network approximation: 
 ( ) ) ( )iG Y W W h Y= + +( e                  (37) 

Substituting (37) into (36) yields: 

( 
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2 2
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        (38) 
therefore 
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 (39) 
Substituting the controller (31) and the adaptive laws (32) 

and (33) into (39) yields: 
 

(




2 2
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2 2
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 (40) 
Simplification of (40) yields: 

 

(

 )

2
2 2

1,

ξ β ( )sgn( ) [ ]
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       sgn( ) sgn( )

i i
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 (41) 
where sgn( )pk s  is a robust term to counteract the 
reconstruction error of the neural network approximation, 
thus 

2

2

sgn( )i n i m i i

n i m i

V k N k N N
k N k N

≤ − −

≤ − −



  
                 (42) 

Thus, it can be shown that the system is uniformly 

eventually bounded, and we can know  ( ) ψ
T

W h X ≤ , ψ  as a 

small constant. Next, prove finite time stabilization. Let the 
Lyapunov function be 

21
2s iV N=                                (43) 

Deriving it and combining it with neural network yields: 
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 (44) 
Substituting (31) yields: 

 

( )

( )

2
2 2

1,

2
2 2

1,

ξsgn( ) [
(ξ )

β ( )       ] ( ) sgn( ) sgn( )

ξ β ( ) [ ] ( ) sgn( )
(ξ )

i
i n i m i i i s

i i

i
p i i

n

i i
n i i s i

ni i

V k N k N N N t
y

v t
Wh Y k N N

a
v t

k N N t Wh Y N
ay

= − − + +
−

+ − −

≤ − + + −
−






Q
Q

e s

Q
s

Q

 (45) 
Recall the equation (17) shows that there exists a positive 

number 0>f satisfy 2 2
1,

ξ 0
(ξ )

i

i iy
> >

−
Q

f
Q

， and there exists 

a small positive number & satisfy β ( )i
s

n

v t
t

a
+ > & > 0 ， it is 

known that ψs > , assuming that п ψ= s - > 0 , thus 
1

2 2п п2s n i i n s sV k N N k V V≤ − − ≤ − −


f& f&          (46) 
where 2 na k= , пb = ∂f& , it can be shown that the system 
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can reach stability in finite time and it can be shown that 1,iy is 
bounded, so we obtain 1, ( ξ ( ),ξ ( ))i i iy t t∈ − Q Q , which satisfies 
the control objective of the system. 

With the above proof it is possible to obtain that N ( )i t  
converges to a small neighbourhood near zero in finite time, 
which can be obtained according to (26): 

1( ) ( )i is t s t+≈                                (47) 

because of 0 1< ≤ , we can get 1( )0 1
( )

i

i

s t
s t

+< ≤ . 

The sign-preserving theorem of the limit yields that the 
transformed pitch tracking error 1,iz  and the sliding mode 
surface ( )is t  have the same convergence and the same sign. 
And because 1( ) ( ) 0i is t s t+ ≥ , so 1, 1, 1 0i iz z + ≥ , 

because 1( )0 1
( )

i

i

s t
s t

+< ≤ , so 1, 1

1,

0 1i

i

z
z

+< ≤ , because the 

converted spacing tracking error 1,iz and ie  have the same 

convergence, so 0 1

0

0 1
t st

i
t st

i

e e dt
e e dt

−
+

−


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
, 1( )0 1

( )
i

i

E s
E s

+< ≤ , satisfies 

strong formation stability. 
 

E. traffic flow stability 

ρ
S

N D
P V

= =                                  (48) 

Where ρ  is the traffic density, N  is the number of 
vehicles in the road section, P  is the length of the road 
section, D  is the amount of traffic on the lane (flow rate), 

SV  is the average speed of vehicles in the interval. Assuming 
that the formation system arrives at a steady state, the safety 
distance of vehicles and the average speed arrives at the same, 
take the length of the road section P  

as
2

1, 2
β
2i s

n

vP d d t v
a

= + + + , the vehicles within the road 

section N as 1， the average speed SV as v , traffic density 
as: 

2

1, 2

ρ

1 
β
2i s

n

N
P

vd d t v
a

=

=
+ + +

                      (49) 

Then 

2
1, 2
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ρ β β β
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Derivation of ρD v= : 
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From (51) it can be found that when the critical density  

1, 2
1, 2

1ρ
2( )

2( )
β

s
i n

i s

d d a
d d t

=
+

+ +
 

the derivative D


 is 0, and ρ ρs> , so 0D >


, the formation 
achieves traffic flow stability. 
 

IV. SIMULATION EXPERIMENT 
To verify the effectiveness of the proposed control 

algorithm, the vehicle formation is simulated in a MATLAB 
environment. During the simulation, the convoy consists of a 
leader vehicle and four follower vehicles travelling in a 
straight lane. Let the initial state of the leader vehicle 
be: 0 (0) 0x = , 0 (0) 0v = . The initial state of the four 
following vehicles is (0) [ 24; 48; 72; 96]ix = − − − − ，

(0) [0;0;0;0]iv = ， (0) [0;0;0;0]ia = 。 
The time of the simulation experiment is set to 80 s , 

considering the actual situation of the vehicle information, 
using the same batch of production of the same vehicle, 
assuming that the parameters of each vehicle are the same, 
where the parameters of the vehicle are set as follows: mass 
of the vehicle im =1600 kg , air resistance Г =0.414, running 
resistance of the vehicle dF =240, length of the 
vehicle 1,id =4 m , ideal safe distance 2d =7 m , safety factor of 
the external environment of the vehicle β =0.2, braking or 
acceleration reaction time st =0.12 s , maximum deceleration 
possible value of na =7, concentrated disturbance 

( ) 0.1cos( )i t tΔ = . In selecting the parameters, with due 
consideration of the control method and the control 
objectives, the parameters of the controller are shown in 
Table Ⅰ. 
 

TABLE I 
CONTROLLER PARAMETERS 

ξ  r  g  u  
0.05 0.8 7 / 9  0.1 
l  nk  mk  pk  

0.03 0.03 1 10
 

The acceleration of the leader vehicle is set to 

2

2

0 2

2

0.5  /           0 4
2  /              4 8

0.5 6 /    8 12
0 /                  12

t m s t s
t m s t s

a
t m s t s

m s t

 ≤ <


≤ <= 
− + ≤ ≤
 >

 

The acceleration of the leader vehicle increases and then 
decreases, with a steady rate of 16 m s¤ after 12 s . 

 

A. simulation results 
The simulation results of the control algorithm designed in 

this paper are shown in Fig.2-8. Fig.2 shows the displacement 
of the formation vehicle, which can be visualized that the 
displacement of the following vehicle first converges and 
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then always follows the leader vehicle. Fig.3-4 shows the 
relationship between the speed and acceleration of the 
vehicles in the formation, and the speed and acceleration can 
keep the same with the leader vehicle after stabilization. Fig.5 
reflects the workshop distance of the formation, the initial 
value is 24 m , and then it is adjusted with the speed of the 
vehicles, and finally it is kept at about 14 m, which achieves 
the ideal workshop distance. Fig.6-7 reflects the slip mode 
surface and the coupled slip mode surface information, and 
the slip mode surface converges to zero. Fig. 8 reflects the 
spacing error information of the formation, and the initial 
spacing error is 13 m , after which it converges rapidly. The 
analysis shows that the RBF neural network has good 
real-time performance, and the formation system can satisfy 
the performance constraints within 2 s . After that, the 
formation system continues to converge, and the spacing 
error can converge to zero in about 4 s , so that the spacing 
between the vehicles can maintain the ideal state, and thus the 
stability of the whole fleet of vehicles can be realized. 
 

 
 

Fig. 2.  Displacement of formation vehicles 
 

 
 

Fig.3.  Speed of formation vehicles 
 

 
 

Fig.4.  Acceleration of formation vehicles 
 

 
 

Fig.5.  Displacement error of formation vehicles 
 

 
 

Fig.6.  Surface of sliding mode 
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Fig.7.  Coupled surface of sliding mode 
 

 
 

Fig.8.  Spacing error of formation vehicles 
 

B. comparative experiment 
To further illustrate the performance advantages of the 

novel control algorithm in this paper, it's compared with the 
traditional unconstrained control algorithm in  literature[31]. 
Setting the sliding mode function as 

1
2( ) ( ( )) ( )i i i is e t csign e t e t= + . The simulation environment 

and parameters are consistent with thesis, and the simulation 
results are shown in Figs.9-15, Fig.9 shows the displacement 
of the formation vehicle, Fig.10 shows the velocity of the 
formation vehicle, Fig.11 shows the acceleration of the 
formation vehicle, and Fig.12 reflects the displacement error 
of the formation. Fig.13 shows the formation vehicle spacing 
error, and Fig.14-15 show the slip mode surface and coupled 
slip mode surface information. The analysis shows that the 
spacing error converges to 0 around 14. Comparing Figs. 2-8, 
it can be obtained that the control algorithm proposed in this 
paper converges about 10 seconds faster than the traditional 
sliding mode control, and the algorithm in this thesis has a 
better real-time performance, which is able to better realize 
the formation control requirements. 

 
 

Fig.9.  Displacement of formation vehicles 
 

 
 

Fig.10.  Speed of formation vehicles 
 

 
 

Fig.11.  Acceleration of formation vehicles 
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Fig.12.  Displacement error of formation vehicles 
 

 
 

Fig.13.  Spacing error of formation vehicles 
 

 
 

Fig.14.  Surface of sliding mode 
 

 
 

Fig.15.  Coupled surface of sliding mode 
 

V. CONCLUSION 
This paper investigates the vehicle queue control problem 

with performance constraints, performance constraints are 
implemented using performance functions, so that the 
tracking error converges to the bounded range in finite time, 
and applying neural networks to sliding mode control, using 
neural networks to overcome parameter uncertainty in 
control processes, ensure the fleet's strong formation stability. 
In urban road traffic, the horizontal relationship during 
vehicle traveling is also not to be ignored. In the future, it is 
of great significance to study the lateral structure of vehicles. 
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