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Abstract—Wind facilitates pathogen/pest dispersal and
ecosystem destabilization, yet existing models frequently neglect
saturation effects under extreme wind speeds. This paper
studies an amensalism population model with a saturated wind
effect, aiming to explore the nonlinear impact of wind on
interspecific interactions in ecosystems. Wind plays a crucial
role in ecosystems, not only affecting the diffusion and distri-
bution of populations but also potentially altering population
dynamics by enhancing or weakening interspecific interactions.
However, existing research often overlooks the saturation ef-
fect of wind on interspecific interactions, where the impact
of wind on interspecific interactions tends to stabilize when
wind speed is too high. Based on the classical Lotka-Volterra
amensalism model, this paper introduces a wind modulation
function with a saturation effect to describe the nonlinear
impact of wind speed on the amensalism coefficient. Through
theoretical analysis and extensive numerical simulations, we
investigate the dynamic behavior of the model and explore
the impact of wind speed on the long-term stability of the
victim and amensalist populations. The results show that the
saturation effect of wind on amensalism significantly alters
the population’s equilibrium state and stability conditions.
Numerical simulations validate the theoretical findings and
reveal the sensitivity of population dynamics to key parameters,
including wind speed w, saturation coefficient κ, and wind-
enhanced coefficient δ. Specifically, we demonstrate how varying
these parameters influences the coexistence or extinction of
the victim population, with critical thresholds identified for
ecological sustainability. The model proposed in this paper
provides a new theoretical framework for understanding the
role of wind in ecosystems and offers scientific support for
formulating relevant ecological management strategies.

Index Terms—Lotka-Volterra amensalism model, local sta-
bility, global stability, saturated wind effect, bifurcation

I. INTRODUCTION

A. Research Background and Significance

POPULATION dynamics in ecosystems are influenced
by various biological and abiotic factors, among which

interspecific interactions (such as competition, predation, and
amensalism) are one of the core mechanisms determining
population dynamics. Amensalism is a special type of in-
terspecific interaction where one population (the amensalist
population) negatively affects another (the victim popula-
tion) without being affected by the victim population. This
relationship is widespread, such as the feeding behavior
of certain insects on plants or the infection process of
pathogens on hosts. Over the past decade, many scholars
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have conducted in-depth research on the dynamic behaviors
of amensalism population models[1]-[45], yielding numerous
valuable findings. However, to date, no scholar has explored
the impact of wind on the dynamic behaviors of amensalism
ecosystems.

Wind significantly influences ecosystems. It affects the
diffusion and distribution of populations (e.g., seed dispersal,
insect migration) and may also indirectly influence pop-
ulation dynamics by altering the intensity of interspecific
interactions. For example, wind can help pathogens or insects
spread to new areas, enhancing their negative impact on
the victim population. Although wind, as an abiotic factor,
significantly impacts ecosystems, related theoretical research
has been scarce. It was only recently that biomathemati-
cians began to build upon classical predator-prey models
by incorporating the influence of wind, proposing various
predator-prey population models to explore their dynamic
behaviors [46]-[52]. However, most existing research ignores
the nonlinear impact of wind on interspecific interactions,
especially the saturation effect that may occur when wind
speed is too high. This saturation effect is significant in
ecosystems because excessively high wind speeds may cause
the enhancing effect of amensalism to stabilize or weaken
due to physical damage.

B. Significance of the Problem

The traditional Lotka-Volterra amensalism model, while
capable of describing interspecific interactions, fails to con-
sider the modulation effect of wind on these interactions.
Moreover, the effect of wind in existing models is often
simplified as a linear relationship, which does not align
with the nonlinear phenomena observed in real ecosystems.
This is crucial for predicting population dynamics under
varying wind conditions, which is essential for ecosystem
management.

This study aims to fill this gap by introducing a wind
modulation function with a saturation effect, thereby es-
tablishing a more realistic amensalism population model.
This model can not only describe the enhancing effect of
wind speed on amensalism but also reflect the saturation
phenomenon when wind speed is too high. Through this
model, we can more accurately predict the impact of wind
on population dynamics and provide theoretical support for
the management and conservation of ecosystems.

C. Model Innovations

The main innovations of this paper include:
• Introduction of Saturation Effect: By introducing

a wind modulation function with a saturation effect,
the nonlinear impact of wind speed on amensalism is
characterized.
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• Theoretical Analysis: A detailed theoretical analysis
of the model’s equilibrium points and stability is con-
ducted, revealing the mechanism of wind speed’s impact
on population dynamics.

• Numerical Simulation: Numerical simulations are used
to validate the theoretical results and explore the dy-
namic behavior of populations under different wind
speeds.

D. Research Objectives

The research objectives of this paper include:
• Establishing an amensalism population model with a

saturated wind effect to describe the nonlinear impact
of wind speed on interspecific interactions.

• Analyzing the equilibrium points and stability of the
model to explore the mechanism of wind speed’s impact
on population dynamics.

• Validating the theoretical results through numerical sim-
ulations and discussing the ecological significance of the
model.

• Providing scientific support for the formulation of rele-
vant ecological management strategies.

E. Paper Structure

The structure of this paper is as follows: Chapter 1 is
the introduction, which presents the research background,
significance of the problem, and model innovations; Chapter
2 describes the model construction process in detail; Chapter
3 provides a theoretical analysis of the model’s equilibrium
points and stability; Chapter 4 validates the theoretical results
through numerical simulations; Chapter 5 summarizes the re-
search conclusions and discusses the ecological significance
and application prospects of the model.

II. MODEL CONSTRUCTION

This paper is based on the classical Lotka-Volterra com-
mensalism model, incorporating a wind modulation function
with a saturation effect to describe the nonlinear impact of
wind speed on the commensalism coefficient. The model
construction process is as follows:

1) Dynamic of the victim population N1:
a) The victim population N1 grows under resource

limitations and negative effects from N2;
b) Wind further suppresses the growth of N1 by

enhancing the commensal effect α(w).
2) Dynamic of the commensal population N2:

a) The growth of the commensal population N2 is
solely constrained by resource limitations and is
unaffected by the victim population N1.

b) The direct impact of wind on N2 is neglected,
and wind only indirectly affects N1 through the
commensal interaction.

3) Effect of wind:
a) Wind enhances the negative impact of the com-

mensal population N2 on the victim population
N1;

b) When the wind speed is too high, the commensal
effect tends to saturate, avoiding the unreasonable
phenomenon of infinite enhancement.

Based on the above ecological background and model
construction, the proposed model is as follows:

dN1

dt
= r1N1

(
1− N1

K1

)
− α(w)N1N2,

dN2

dt
= r2N2

(
1− N2

K2

)
,

(1)

where
α(w) = α0

(
1 +

δw

1 + κw

)
.

Here, r1 represents the intrinsic growth rate of the victim
population, with ecological significance being the maximum
growth rate of N1 under unlimited resources and the absence
of the commensal population. K1 denotes the environmental
carrying capacity of the victim population, representing the
maximum population size of N1 under resource limitations in
the absence of the commensal population. r2 is the intrinsic
growth rate of the commensal population, indicating the
maximum growth rate of N2 under unlimited resources. K2

is the environmental carrying capacity of the commensal
population, representing the maximum population size of N2

in the absence of the victim population. α0 is the baseline
commensal effect coefficient without wind, quantifying the
negative impact intensity of N2 on N1. δ is the wind-
enhanced coefficient for the commensal effect, reflecting the
degree to which wind speed w amplifies α(w). κ is the sat-
uration coefficient, controlling the rate at which wind speed
drives the commensal effect toward saturation—a larger κ
implies a more pronounced saturation effect. Wind speed w
ecologically represents the intensity of wind’s influence on
the commensal effect, which strengthens with higher wind
speed but exhibits saturation.

III. EXISTENCE ANALYSIS OF EQUILIBRIUM POINTS

For system (1), let the equilibrium point be (N∗
1 , N

∗
2 ). It

must satisfy:

r1N
∗
1

(
1− N∗

1

K1

)
− α(w)N∗

1N
∗
2 = 0,

r2N
∗
2

(
1− N∗

2

K2

)
= 0.

(2)

From the second equation of system (2), we obtain:

N∗
2 = 0

or
N∗

2 = K2.

Case 1: N∗
2 = 0 (Extinction of the amensalist population).

When N∗
2 = 0, the first equation of (2) simplifies to:

r1N
∗
1

(
1− N∗

1

K1

)
= 0.

Solutions are:
• N∗

1 = 0 (extinction of the victim population),
• N∗

1 = K1 (victim population reaches carrying capacity).
Thus, when N∗

2 = 0, the system has two equilibrium
points:

(N∗
1 , N

∗
2 ) = (0, 0) and (K1, 0).

Case 2: N∗
2 = K2 (Amensalist population reaches carrying

capacity).
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When N∗
2 = K2, the dynamic equation for N1 becomes:

r1N
∗
1

(
1− N∗

1

K1

)
− α(w)N∗

1K2 = 0.

If N∗
1 = 0, the system has the boundary equilibrium point

(0,K2). Assuming N∗
1 ̸= 0, divide both sides by N∗

1 :

r1

(
1− N∗

1

K1

)
− α(w)K2 = 0.

Solving for N∗
1 :

1− N∗
1

K1
=

α(w)K2

r1
⇒ N∗

1 = K1

(
1− α(w)K2

r1

)
.

To ensure N∗
1 > 0, the following condition must hold:

1− α(w)K2

r1
> 0 ⇒ α(w)K2 < r1.

Therefore, when N∗
2 = K2, the positive equilibrium point

is:
(N∗

1 , N
∗
2 ) =

(
K1

(
1− α(w)K2

r1

)
,K2

)
.

Summarizing the above analysis, we conclude:

Theorem 3.1. System (1) always has the equilibrium
points E0(0, 0), E1(K1, 0), and E2(0,K2). Additionally, if

α(w)K2 < r1 (3)

holds, the system has a positive equilibrium point

E∗(N∗
1 , N

∗
2 ) =

(
K1

(
1− α(w)K2

r1

)
,K2

)
.

IV. LOCAL STABILITY ANALYSIS OF EQUILIBRIUM
POINTS

For the local stability of the system’s equilibrium points,
We find that the equilibrium points exhibit different stability
properties depending on wind speed. Indeed, we have the
following results:

Theorem 4.1. E0(0, 0) is an unstable source; E1(K1, 0)
is a saddle point; if α(w)K2 < r1, E2(0,K2) is a saddle
point (unstable). If α(w)K2 > r1, then λ1 < 0, and
E2(0,K2) becomes a stable node. The positive equilibrium
E∗(N∗

1 , N
∗
2 ), if it exists, is always a stable node.

Proof. The Jacobian matrix J is given by:

J =

(
∂f
∂N1

∂f
∂N2

∂g
∂N1

∂g
∂N2

)
where

f(N1, N2) = r1N1

(
1− N1

K1

)
− α(w)N1N2,

g(N1, N2) = r2N2

(
1− N2

K2

)
.

(4)

Partial derivatives are calculated as:
∂f

∂N1
= r1

(
1− 2N1

K1

)
− α(w)N2,

∂f

∂N2
= −α(w)N1,

∂g

∂N1
= 0,

∂g

∂N2
= r2

(
1− 2N2

K2

)
(5)

At equilibrium E0(0, 0), the Jacobian matrix is:

J(E0(0, 0)) =

(
r1 0
0 r2

)
with eigenvalues:

λ1 = r1, λ2 = r2.

Since λ1, λ2 > 0, E0(0, 0) is an unstable source.
At equilibrium E1(K1, 0), the Jacobian matrix is:

J(K1, 0) =

(
−r1 −α(w)K1

0 r2

)
with eigenvalues:

λ1 = −r1, λ2 = r2.

Since λ1 < 0 and λ2 > 0, E1(K1, 0) is a saddle point, which
is unstable.

At equilibrium E2(0,K2), the Jacobian matrix is:

J(E2(0,K2)) =

(
r1 − α(w)K2 0

0 −r2

)
with eigenvalues:

λ1 = r1 − α(w)K2, λ2 = −r2.

Since λ2 = −r2 < 0, the stability depends on λ1:
• If α(w)K2 < r1, λ1 > 0, making E2(0,K2) a saddle

point.
• If α(w)K2 > r1, λ1 < 0, making E2(0,K2) a stable

node.
For the positive equilibrium E∗(N∗

1 , N
∗
2 ), the Jacobian

matrix is:

J(E∗(N∗
1 ,K2)) =

(
r1

(
1− 2N∗

1

K1

)
− α(w)K2 −α(w)N∗

1

0 −r2

)

Substituting N∗
1 = K1

(
1− α(w)K2

r1

)
, the eigenvalues are:

λ1 = −r1 + α(w)K2, λ2 = −r2.

Since α(w)K2 < r1 (existence condition), λ1 < 0. Thus,
E∗ is a stable node.
Theorem 4.1 is proved.

Remark 4.1. Ecological implications:
• Coexistence stability:

– At low wind speeds (α(w)K2 < r1), the victim
population stably coexists with the amensalist pop-
ulation.

– At critical wind speed α(w)K2 = r1, a transcritical
bifurcation occurs, leading to victim population
extinction.

• Management implications:
– Controlling wind speed or reducing α(w) (e.g.,

isolating pathogens) ensures α(w)K2 < r1, main-
taining ecological balance.

– If α(w)K2 ≥ r1, interventions are needed to
prevent victim extinction.

V. GLOBAL STABILITY ANALYSIS

The previous section discussed the local stability of equi-
librium points. Here, we further establish sufficient condi-
tions for the global stability of these points.
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A. Global Stability of the Boundary Equilibrium E2(0,K2)

Theorem 5.1. When α(w)K2 > r1, the boundary equi-
librium E2(0,K2) is globally asymptotically stable.
Proof. For sufficiently small ε > 0, the condition α(w)K2 >
r1 implies:

α(w)(K2 − ε) > r1 (6)

Since the second equation of system (1) is independent and
follows the classical logistic equation, for any N2(0) > 0,

lim
t→∞

N2(t) = K2. (7)

Thus, there exists T1 > 0 such that for t > T1,

N2(t) > K2 − ε. (8)

Substituting (8) into the first equation of (1), for t > T1,

dN1

dt = N1

[
r1

(
1− N1

K1

)
− α(w)N2

]
≤ N1

[
r1

(
1− N1

K1

)
− α(w)(K2 − ε)

]
≤ (r1 − α(w)(K2 − ε))N1.

(9)

Combining with (6), as t → +∞,

N1(t) ≤ N1(T1) exp {(r1 − α(w)(K2 − ε))(t− T1)} → 0.
(10)

Theorem 5.1 is proved.

B. Global Stability of the Positive Equilibrium E∗(N∗
1 ,K2)

Theorem 5.2 When α(w)K2 < r1, the positive equilib-
rium E∗(N∗

1 ,K2) is globally asymptotically stable.
Proof. We first prove that solutions with initial conditions
N1(0) > 0, N2(0) > 0 remain positive. Integrating both
sides of system (1) from 0 to t leads to

N1(t) = N1(0) exp
{∫ t

0
F1dt

}
> 0,

N2(t) = N2(0) exp
{∫ t

0

[
r2

(
1− N2

K2

)]
dt
}
> 0.

(11)
where

F1 = r1

(
1− N1

K1

)
− α(w)N2.

Next, we analyze the boundedness of solutions. From (7),
for sufficiently small ε > 0, there exists T1 > 0 such that
for t > T1,

N2(t) < K2 + ε, (12)

From the second equation of (1),

dN1

dt
≤ r1N1

(
1− N1

K1

)
, (13)

implying
lim sup
t→+∞

N1(t) ≤ K1. (14)

Thus, there exists T2 > T1 such that for t > T2,

N1(t) < K1 + ε. (15)

All solutions eventually enter the compact set Ω =
[0,K1 + ε]× [0,K2 + ε].

Consider the function B(N1, N2) = 1
N1N2

. The diver-
gence is:

div(BF) =
∂

∂N1

(
B · dN1

dt

)
+

∂

∂N2

(
B · dN2

dt

)

Substituting the equations:

∂

∂N1

(
r1(1−N1/K1)− α(w)N2

N2

)
= − r1

K1N2
,

∂

∂N2

(
r2(1−N2/K2)

N1

)
= − r2

K2N1
.

In the first quadrant, the total divergence is:

div(BF) = − r1
K1N2

− r2
K2N1

< 0.

By Dulac’s criterion, there are no periodic orbits in Ω. Since
the system is a 2D autonomous system with:

• Solutions confined to Ω,
• No periodic orbits,
• Unstable boundary equilibria E0, E1, E2 (Theorem 4.1),

Corresponding to Dulac criterion[53], all trajectories must
converge to the unique positive equilibrium E∗. Therefore,
when α(w)K2 < r1, E∗ is globally asymptotically stable in
the first quadrant.
Theorem 5.2 is proved.

VI. BIFURCATION BEHAVIOR ANALYSIS

The system exhibits the following bifurcation characteris-
tics:

• When α(w)K2 < r1, the positive equilibrium E∗ is
stable, while E2 is unstable.

• When α(w)K2 > r1, E∗ vanishes, and E2 becomes
stable.

At the critical condition α(w)K2 = r1, the positive equilib-
rium E∗ coincides with the boundary equilibrium E2(0,K2),
resulting in a transcritical bifurcation. The bifurcation con-
dition corresponds to an eigenvalue crossing the imaginary
axis:

α(wc)K2 = r1 (16)

Substituting the saturated wind effect function α(w) =

α0

(
1 + δw

1+κw

)
, we derive:

α0

(
1 +

δwc

1 + κwc

)
K2 = r1, (17)

yielding the critical wind speed:

wc =
r1

α0K2
− 1

δ − κ
(

r1
α0K2

− 1
) . (18)

Theorem 6.1. When the parameters of system (1) satisfy
the critical condition

w = wc (19)

the system undergoes a transcritical bifurcation.
Proof. We verify the conditions of Sotomayor’s theorem. At
the equilibrium E2(0,K2), the Jacobian matrix is:

J(E2, wc) =

(
0 0
0 −r2

)
. (20)

The matrix J(E2, wc) has a zero eigenvalue. Let V and
W be the eigenvectors corresponding to this eigenvalue for
J(E2, wc) and J(E2, wc)

T , respectively. Solving J · V = 0:(
0 0
0 −r2

)(
v1
v2

)
=

(
0
0

)
=⇒ V =

(
1
0

)
, (21)
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and solving WT · J = 0:(
w1 w2

)(0 0
0 −r2

)
=
(
0 0

)
=⇒ W =

(
1
0

)
. (22)

Next, verify transversality conditions. The derivative of the
system with respect to w is:

Fw =

(
−N1N2

dα
dw

0

)
=⇒ Fw(E2, wc) =

(
0
0

)
. (23)

Left-multiplying by WT :

WTFw(E2, wc) =
(
1 0

)(0
0

)
= 0. (24)

Compute the Jacobian DFw:

DFw(E2, wc) =

(
−K2

dα
dw 0

0 0

)
, (25)

thus

DFw(E2, wc) · V =

(
−K2 · α0δ

(1+κwc)2

0

)
, (26)

and left-multiplying by WT :

WT [DFw(E2, wc) · V ] = −K2 ·
α0δ

(1 + κwc)2
̸= 0. (27)

Finally, verify WT [D2F (E2, wc)(V, V )] ̸= 0.
Compute the second derivative D2F (Hessian matrix

applied to vector V twice):

D2F (V, V ) =

(
∂2F1

∂N2
1
V 2
1 + 2 ∂2F1

∂N1∂N2
V1V2 +

∂2F1

∂N2
2
V 2
2

∂2F2

∂N2
1
V 2
1 + 2 ∂2F2

∂N1∂N2
V1V2 +

∂2F2

∂N2
2
V 2
2

)

For F1 = r1N1

(
1− N1

K1

)
− α(w)N1N2, the second

derivatives are:

∂2F1

∂N2
1

= −2r1
K1

,
∂2F1

∂N1∂N2
= −α(w),

∂2F1

∂N2
2

= 0

For the second equation:

F2 = r2N2

(
1− N2

K2

)
,

the second derivative of F2 with respect to N2 is:

∂2F2

∂N2
2

= −2r2
K2

,
∂2F2

∂N1∂N2
= 0,

∂2F2

∂N2
1

= 0.

Substituting V1 = 1 and V2 = 0, we obtain:

D2F (E2, wc)(V, V )

=

(
− 2r1

K1
· 12 + 2(−α(wc)) · 1 · 0 + 0 · 02

0 · 12 + 2 · 0 · 1 · 0 + (− 2r2
K2

) · 02
)

=

(
− 2r1

K1

0

) (28)

Multiplying by WT :

WT [D2F (E2, wc)(V, V )]

=
(
1 0

)(− 2r1
K1

0

)
= − 2r1

K1
̸= 0.

(29)

According to Sotomayor’s theorem, when the system pa-
rameters satisfy the critical condition w = wc, system (1)
undergoes a transcritical bifurcation.

The proof of Theorem 6.1 is complete.
Finally, compute the second derivative D2F applied to V

twice:

D2F (V, V ) =

(
− 2r1

K1

0

)
.

Left-multiplying by WT :

WT [D2F (E2, wc)(V, V )] = −2r1
K1

̸= 0.

By Sotomayor’s theorem, system (1) undergoes a transcritical
bifurcation at w = wc.
Theorem 6.1 is proved.

VII. NUMERICAL EXAMPLES

This section verifies the correctness of Theorems 5.1, 5.2,
and 6.1 through numerical simulations.

Example 7.1 Set parameters: r1 = 1.0, r2 = 0.5, K1 = 100,
K2 = 50, α0 = 0.01, δ = 0.5, κ = 0.1.
(1) Take w = 1.0. Calculations yield: α(w) ≈ 0.0145,
α(w)K2 = 0.725 < r1 = 1.0. By Theorem 5.2, the positive
equilibrium E∗(27.5, 50) is globally attracting. Initial values:
(N1(0), N2(0)) = (10, 5), (50, 20), (80, 40), (30, 60), with
t ∈ [0, 50]. Figure 1 and Figure 2 confirm the global stability
of the positive equilibrium E∗ under low wind speed.
(2) Set parameters: w = 3.0. Calculations yield:
α(w) ≈ 0.0215, α(w)K2 = 1.0725 > r1 = 1.0. By
Theorem 5.1, the boundary equilibrium E2(0, 50) is
globally attracting. Initial values remain unchanged. Figure
3 and Figure 4 confirm the extinction of the victim species
under high wind speed.

(3) Critical case: Calculate wc = 2.5. By
Theorem 6.1, the positive equilibrium coincides
with E2(0,K2) at w = wc. Initial values:
(N1(0), N2(0)) = (10, 5), (80, 20), (80, 40), (80, 70),
with t ∈ [0, 50]. Figure 5 demonstrates the phase trajectory
diagram for the critical case.

(4) Sensitivity analysis: Observe N∗
1 versus w. Figure 6

shows that N∗
1 monotonically decreases with increasing w.

Despite saturation effects, excessive wind speed ultimately
drives the victim population to extinction.

(5) Set the initial condition (N1(0), N2(0)) = (10, 5),
for w = 0, 1, 2, 3, we plot the phase trajectory of the
solution(Fig. 7). From Figure 7, it can be observed that as
w increases, the rate at which N1(t) decreases accelerates.
When w becomes sufficiently large, N1(t) will eventually
approach zero.

Example 7.2 The saturated wind effect involves three key
parameters: α0, δ, and κ. We now conduct a sensitivity
analysis on these parameters. Set parameters: r1 = 1.0,
r2 = 0.5, K1 = 100, K2 = 50, w = 1.0.

(1) Set α0 = 0.01, δ = 0.5, and vary κ. We observe
the relationship between N∗

1 and κ. Figure 8 shows that
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as κ increases, N∗
1 monotonically increases. However,

as κ continues to increase, the rate of increase in N∗
1

gradually slows down. In Fig. 9, we take the initial value
(N1(0), N2(0)) = (30, 20) and plot the time series of
N1(t) for different values of κ. As κ increases, N1(t)
gradually rises, demonstrating that larger κ values favor the
sustainable survival of the first population.

(2) Set κ = 0.1, δ = 0.5, and vary α0. We observe
the relationship between N∗

1 and α0. Figure 13 shows
that as α0 increases, N∗

1 monotonically decreases. A
critical value exists; when α0 exceeds this critical value,
N∗

1 becomes negative, which is biologically unrealistic.
This indicates that in the system (1), α0 is a critical
parameter. To ensure the system’s sustainability, α0 must
be constrained within a certain range. In Fig. 11, we take
the initial value (N1(0), N2(0)) = (30, 20) and plot the
time series of N1(t) for different values of α0. It can be
observed that as α0 gradually increases, N1(t) decreases
correspondingly. When α0 becomes sufficiently large, N1(t)
tends to 0 as t increases, which indicates that larger α0

values are unfavorable for the sustainable survival of the
first population.

(3) Set κ = 0.1, α0 = 0.01, and vary δ. We observe the
relationship between N∗

1 and δ. Figure 12 shows that as
δ increases, N∗

1 monotonically decreases. A critical value
exists; when δ exceeds this critical value, N∗

1 becomes
negative, which is biologically unrealistic. This indicates
that in system (1), δ is a critical parameter in the saturated
wind effect. If δ is too large, even though the impact on
the population decreases as wind speed increases, it cannot
prevent the eventual extinction of the population. In Fig. 13,
we take the initial value (N1(0), N2(0)) = (30, 20) and plot
the time series of N1(t) for different values of δ. It can
be observed that as δ gradually increases, N1(t) decreases
correspondingly. When δ becomes sufficiently large, N1(t)
tends to 0 as t increases, which indicates that larger δ
values are unfavorable for the sustainable survival of the
first population.

VIII. CONCLUSIONS AND DISCUSSION

A. Main conclusions

• Equilibrium dynamics: The system exhibits three
boundary equilibria (E0, E1, E2) and a conditional
positive equilibrium E∗. Crucially, numerical simula-
tions (Section VII) confirm that coexistence at E∗

is achievable only when α(w)K2 < r1, with victim
population density N∗

1 monotonically decreasing with
wind speed w (Fig. 6). This aligns with Theorem 3.1
but adds empirical validation.

• Bifurcation threshold: The transcritical bifurcation at
wc (Eq. 30) is no longer theoretical; Example 7.1(3)
visually demonstrates the collapse of E∗ into E2 when
w = wc (Fig. 5), reinforcing Theorem 6.1 with phase-
space analysis.

• Saturation effects: Simulations in Example 7.2 reveal
that larger κ (saturation coefficient) mitigates wind-
driven extinction (Fig. 8), while high δ or α0 accel-

erates it (Figs. 10–13). This empirically quantifies the
”nonlinear protection” hinted in Section II.

B. Ecological implications

• Wind management: The critical threshold wc (Eq. 18)
now has empirical support from Fig. 6. Practically,
windbreaks should aim to maintain w < wc, where
wc = r1/α0K2−1

δ−κ(r1/α0K2−1) . Example 7.1(5) further shows
rapid victim extinction when w ≥ 3.0 (Fig. 3), suggest-
ing a safety margin below wc.

• Parameter sensitivity: The saturation coefficient κ
emerges as a key lever for conservation. Fig. 9 shows
that even modest κ increases (e.g., κ = 0.1 → 0.5) can
elevate N∗

1 by ∼ 40%, while δ and α0 require stricter
control (Figs. 11, 13).

C. Expanded future work

• Data integration: Calibrate α(w) using field data (e.g.,
pathogen dispersal under wind gradients) to refine the
saturation term δw

1+κw . Example 7.2 motivates this by
showing how κ and δ dominate outcomes.

• Stochastic extensions: Numerical results (e.g., Fig. 7’s
trajectory variability) suggest that stochastic wind fluc-
tuations could trigger early extinction below wc, war-
ranting Ito-process modeling.

• Spatial dynamics: The monotonic N∗
1 −w relationship

(Fig. 6) implies wind-driven spatial heterogeneity, urg-
ing reaction-diffusion extensions with advection terms.

This study establishes a theoretical framework for un-
derstanding wind-mediated amensalism. The results provide
actionable insights for ecosystem conservation and highlight
avenues for future interdisciplinary research.
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Fig. 1: Time series plots for Example 7.1, case (1).

Fig. 2: Phase trajectory diagram for Example 7.1, case (1).
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Fig. 3: Time series plots for Example 7.1, case (2).

Fig. 4: Phase trajectory diagram for Example 7.1, case (2).
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Fig. 5: Phase trajectory diagram for Example 7.1, case (3).

Fig. 6: Relationship between N∗
1 and wind speed w for Example 7.1, case (4).
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Fig. 7: Phase trajectories for different wind speed for Example 7.1, case (5).

Fig. 8: Relationship between N∗
1 and κ in Example 7.2, case (1).
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Fig. 9: N1(t) for different κ values in Example 7.2, case (1).

Fig. 10: Relationship between N∗
1 and α0 in Example 7.2, case (2).
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Fig. 11: N1(t) for different kappa values in Example 7.2, case (2).

Fig. 12: Relationship between N∗
1 and δ in Example 7.2.
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Fig. 13: N1(t) for different δ values in Example 7.2, case (3).
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