
Abstract—Advanced Persistent Threat (APT) detection
methods often rely on labeled attack data and prior domain
knowledge; however, they frequently fail to adequately capture
the rich contextual information embedded within provenance
graphs, thereby limiting their ability to extract complex
structural patterns critical for detecting sophisticated attacks.
Moreover, many existing approaches incur significant
computational and memory overheads, rendering them
unsuitable for large-scale or real-time deployment. To
overcome these challenges, we propose GAT-AE, a novel APT
detection framework that integrates a Graph Attention
Network (GAT) with an auto-encoder to enhance deep feature
extraction and structural representation learning from
provenance graphs. By leveraging the attention mechanism,
GAT-AE dynamically models the intricate associations among
system entities and behaviors, significantly improving its
capacity to detect stealthy and evolving APT activities.
Furthermore, we introduce a dynamic masking strategy, where
the masking rate is deceptively adjusted based on node
centrality, enabling more effective and context-sensitive feature
suppression. For the anomaly detection stage, we combine the
K-Nearest Neighbors (KNN) algorithm with a K-Dimensional
Tree (K-D Tree) structure to improve retrieval efficiency and
detection accuracy. Extensive experiments conducted on the
StreamSpot, Unicorn Wget, and DARPA E3 datasets
demonstrate that GAT-AE achieves superior performance,
characterized by high precision and recall rates as well as a
significantly reduced false positive rate. Additionally, GAT-AE
exhibits notable advantages in computational efficiency and
memory utilization, highlighting its practical potential for
deployment in real-world APT detection scenarios.

Index Terms—Network Security, Advanced Persistent
Threats, Dynamic Masking, Graph Attention Network,
Auto-encoder

I. INTRODUCTION

HE network security situation worldwide has become
increasingly severe in recent years with the rapid

development of network technology and the increase of

information, especially APT attacks, which have become
one of the significant threats affecting the security of
enterprises and government organizations. However,
existing APT detection methods usually rely on attack
samples and a priori knowledge and are often ineffective
when faced with new and unknown APT attack patterns.
Therefore, designing an efficient APT detection model has
important academic value and practical significance. In the
field of APT attack detection, models based on the label
propagation mechanism have achieved remarkable results.
For instance, the Sleuth model triggers alerts and

reconstructs attack paths when behavioral violations occur,
leveraging two layers of labels, one based on trustworthiness
and the other on probability assigned to each node [1]. The
Holmes model effectively maps potential attack chains by
optimizing label aggregation and threshold computation,
seamlessly integrated within the attack framework [2].
Additionally, it mitigates the impact of false dependencies
through advanced noise reduction and pruning techniques.
The Morse model counters the label explosion issue
encountered during label propagation by implementing a
label attenuation mechanism, thus preventing excessive
label proliferation [3]. However, models reliant on label
propagation struggle with adaptability, particularly for
unknown or low-frequency attacks, and exhibit limited
scalability and flexibility in complex, dynamic environments.
To overcome these challenges, several studies have
integrated graph features with anomaly detection methods,
employing threshold-based identification of anomalous
behaviors [4]. The StreamSpot [5] and Poirot [6] models
address data complexity by employing graph partitioning
and matching techniques. In contrast, the ATLAS model, as
proposed by Alsaheel et al. [7], identifies attack behaviors
through sequence-based learning, which is combined with
causal graphs to derive attack paths. Meanwhile, the
Log2vec model by Liu et al. [8], identifies attack behaviors
through sequence-based learning, which is combined with
causal graphs to derive attack paths. However, Unicorn
incurs substantial computational and memory overheads,
and its accuracy is highly dependent on the quality of graph
summaries, which may lead to false positives or omissions
[9]. Threatrace, on the other hand, precisely identifies
anomalous behaviors using data provenance graphs in
conjunction with a graph neural network that incorporates
neighbor sampling and feature aggregation [10].
Nevertheless, Threatrace exhibits higher computational
complexity, longer processing times, and a requirement for
high-quality data provenance graphs.
To address these challenges, this paper presents an

innovative APT detection model for deep feature extraction
and structural modelling of traceability graphs in the graph
representation learning phase. In particular, a dynamic
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masking mechanism is designed that adjusts the masking
rate through the degree of centrality of nodes to optimize
feature extraction. The embedding vectors are analyzed
using an outlier detection technique combining KNN and
K-D Tree in the detection phase to identify potential APT
attacks. Experimental results demonstrate that the model
performs well on DARPA E3, StreamSpot and Unicorn
Wget datasets, with significantly improved detection
efficiency and significantly outperforms existing models
regarding computational efficiency and memory
consumption. The model not only exhibits better robustness
in handling complex APT attack detection tasks but also
shows excellent performance in computational efficiency,
making it suitable for large-scale deployment in real
applications.

II. RELATED WORK

A. Graph Attention Network
Graph representation learning aims to map graph data into

a low-dimensional vector space, where the learned node
embedding effectively preserve the graph's structural and
feature information [11]. Among various models, Graph
Neural Networks (GNN) have emerged as a powerful
approach to graph representation learning, finding
widespread applications in social networks,
recommendation systems, and knowledge graphs [12]. One
notable GNN variant is the GAT, which introduces a
self-attention mechanism to assign weights to neighboring
nodes dynamically. This allows GAT to capture
non-uniform relationships with greater flexibility [13]. By
computing attention coefficients, the self-attention
mechanism enables each node to selectively aggregate
information from its neighbors based on their relative
importance. The key idea is identifying highly correlated
features through "non-local operations" and using these to
update a node's representation. This enhances both the
accuracy of local feature representations and the integration
of contextual information [14]. The mapping relationship
between Query and Key in the self-attention mechanism is
illustrated in Fig. 1.

Fig. 1. Query-Key-Value mapping in self-attention

Self-attention formula, as shown in Equation (1).
, ,Q KQ XW K XW V XW   (1)

Where the input vector X undergoes three different sets of
linear transformations to obtain the query vector (Query, Q),
the key vector (Key, K) and the value vector (Value, V).
These linear transformations are determined by the learnable
weight matrices, QW , KW , and W . The relationship
between the features is measured by calculating the dot
product similarity between Q and K. The results are scaled,
and then the weight distribution is obtained by normalizing

the similarity scores using the Softmax function. Finally,
these weights are multiplied with V and accumulated to
generate the output representation.

B. The Auto-Encoder
Auto-encoder is a typical unsupervised deep learning

model, which is still essentially a multi-layer deep neural
network, and the auto-encoder hopes that the output of the
network can be equivalent to the input of the network, to
realize the automatic learning and representation of the
features of the input data samples [15]. Due to its simple
structure, scalability and excellent performance, the
auto-encoder is widely used in different fields such as target
recognition, fault diagnosis, anomaly detection, intrusion
detection and so on [16]. The core of the auto-encoder lies
in minimizing the reconstruction error between input and
output to learn an efficient representation of the data. The
structure of the auto-encoder is shown in Fig. 2 and consists
of two main parts: encoder and decoder. The encoder maps
the high dimensional input to the low dimensional potential
space, extracts key features, and removes redundant
information. At the same time, the decoder reconstructs the
data according to the low dimensional representation to
make it as close as possible to the original input [17]. The
whole training process minimizes the reconstruction error by
optimizing the model parameters, which are commonly
measured by a loss function such as the mean square error.

Fig. 2. Schematic diagram of the auto-encoder structure

C. Combination Mechanism of KNN and K-D Tree
Anomaly detection is widely used in several domains,

such as facial expression recognition [18], network security,
financial monitoring, healthcare [19], etc. The fundamental
goal of anomaly detection is to identify unusual data points
from a large amount of distinctive standard data that
significantly deviates from the expected pattern [20]. These
anomalies may represent potential system failures, network
attacks, abnormal user behavior, or other unusual events. In
the anomaly detection task, KNN has high computational
complexity on large scale datasets because it needs to
calculate the distance of each target point from all data
points [21]. To improve the query efficiency of KNN, the
K-D Tree is used to accelerate the distance query. K-D Tree
is a binary tree structure for multidimensional data, which
optimizes the nearest neighbour query of KNN by dividing
the data space recursively to reduce the search range. In the
K-D Tree, each node represents a region of the data space,
which accelerates finding the nearest neighbour nodes by
bisecting the search, thus significantly improving the query
efficiency [22].
To this end, an efficient detection mechanism combining

KNN and K-D Tree is proposed, which is especially suitable
for real-time large-scale data analysis. In the anomaly
detection task combining KNN and K-D Tree, the anomaly
degree of target points can be evaluated by introducing an
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anomaly scoring formula, as shown in Equation (2).

1

1 ( , )
K

i
i

p d p p
K 

 
(2)

Here, K is the number of predefined neighbors, and
( , )id p p is the distance between the target point p and

the point ip , which is usually calculated using the
Euclidean distance.

III. MODEL DESIGN

The proposed model constructs a provenance graph by
extracting system entities (such as processes, files, and
network connections) and their interaction relationships
from audit logs. To enhance the efficiency of the graph
representation, feature mapping and noise reduction
techniques simplify the graph structure, minimizing
redundant information while preserving critical semantic
features. The resulting processed provenance graph is
restructured, as illustrated in Fig. 3.
Following the graph construction, a hybrid GAT and

auto-encoder framework facilitates deep-level feature
extraction. GAT effectively captures global and local
dependencies among nodes, while the auto-encoder refines
feature representations through nonlinear transformation and
reduction. A dynamic masking mechanism is also
incorporated to adjust the node feature masking strategy
based on data characteristics. This mechanism allows the
model to intelligently emphasize critical features while
mitigating the impact of noisy or less informative attributes,
ultimately enhancing detection accuracy and robustness in
APT attack analysis.

Fig. 3. Graph representation learning phases

The mechanism of combining KNN and K-D Tree is
adopted for batch log level and entity level detection to
accurately identify APT attacks, as shown in Fig. 4.
Meanwhile, the model introduces a highly adaptive

mechanism to effectively cope with concept drift, while the
innovative feedback learning and dynamic decay
mechanism enable the model to seamlessly adjust to shifts in
system behavior, ensuring consistently efficient detection

performance. Overall, the model is not only capable of
accurately identifying APT attacks but also does so with
remarkable efficiency, offering excellent practicality and
scalability for real-world applications.

Fig. 4. Anomaly detection phases

A. Provenance Graph Construction
First, audit logs in different formats are processed using

three audit log parsers, StreamSpot, CamFlow and CDM,
from which system entities (processes, files, network
connections) and their interactions are extracted and
converted into nodes and edges to construct a provenance
graph. In simple log formats, entity and interaction labels
are extracted directly; in complex logs, attributes are
encoded as labels using a multi-label hashing technique.
Next, initial embedding is generated for the nodes and edges
in the graph, and the labels are mapped to a fixed
dimensional feature vector space. Nodes and edges with the
same label are mapped to the same feature vector, and
different labels are mapped to different feature vectors. To
simplify the graph structure and reduce redundancy,
redundant edges are removed, and multiple edges with the
same label are merged to compute the final embedding after
merging. In the construction process, practical preservation
of the original semantic key information is realized, while
the loss of information is almost negligible. Fig. 5 shows the
provenance graph of a real-world APT attack that exploits
the Pine Backdoor vulnerability. All entities and interactions
unrelated to the attack have been removed from the
provenance graph.

Fig. 5. A provenance graph of a real-world APT attack
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B. Dynamic Masking Design
The dynamic masking mechanism forces the model to

learn global and local features of the graph with incomplete
information by selecting nodes for feature masking either
randomly or based on graph context information. The
dynamic masking mechanism designed in this paper
dynamically adjusts the masking rate according to the
importance of the nodes. Nodes with a high degree of
centrality usually play a key role in the overall structure of
the graph and information dissemination, so these nodes
retain more feature information. On the contrary, nodes with
lower degree centrality tend to carry more noisy information,
and thus, their interference with model learning needs to be
reduced by a higher mask rate. This will enable the model to
focus more on the key nodes in the graph and improve the
effectiveness of feature learning. The importance of a node
is measured by its degree centrality iC as shown in
Equation (3).

deg( )
1i
iC

V



(3)

Here, deg( )i represents the degree of node i, V is the
total number of nodes in the graph.
The mask rate iM is dynamically adjusted according to

the importance of the node as shown in Equation (4).

i base iM M C   (4)
Where the base mask rate  is an adjustment factor to

control the mask dynamic range. Nodes with high centrality
retain more information and nodes with low centrality
reduce feature noise by higher mask rate.

C. GAT-AE Model Generation
We design a model that combines GAT with an

auto-encoder that contains multiple stacked layers of a
graph-annotated force-meaning network. The primary role
of GAT is to generate the final node embedding based on
the initial features of the nodes and the features of their
neighbouring nodes. Each layer of GAT receives the node
embedding generated by the previous layer as input and
propagates the feature information of the source node along
the edges of the graph to the target through a
message-passing mechanism to the target node. In this
process, the delivered message not only contains the features
of the source node but also carries information about the
relationship between the source node and the target node.
Through the self-attention mechanism, the model is able to
assign different weights to different neighbouring nodes,
thus better reflecting the influence of key neighbors and
interactions in the node embedding.
This approach makes the generated node embedding more

contextually semantic and structurally informative,
providing intense expressiveness and reliability for
subsequent tasks.
Calculate the attention coefficient between the message

source and destination, as shown in Equation (5).
( , ) ( ( , ))T

as src amsrc dst LeakyReLU W h W MSG src dst   (5)

Where ( , )src dst denotes the attention weight from

the source node to the target node, srch is the feature vector

of the source node for the attributes of the source node.
( , )MSG src dst denotes the message interaction between

source and target nodes, and T
asW and amW are trainable

weight matrices. The source node features and messaging
information are transformed and activated using LeakyReLU
to compute the initial attention scores. These scores are then
normalized using Softmax to produce a distribution
representing the final attention weights, as shown in
Equation (6). This process enables the network to
dynamically adjust the weights of the messages based on the
relationships between the nodes.

( , ) ( ( , ))a src dst Softmax src dst (6)
Then, for the target node, GAT aggregates the messages

from the incoming edges by calculating the weighted sum of
all incoming messages as shown in Equation (7).

( , ) ( , ) ( , )dst self dst
i

AGG h h W h a i dst MSG i dst


  


(7)

Where ( , )dstAGG h h is an aggregated representation of
the target node, which combines the node's own features

dsth and information about its neighbors h . selfW is a

weight matrix that adjusts the influence of the target node's
own features. ( , ) ( , )

i
a i dst MSG i dst





is an aggregation of the

neighboring nodes.
Next updating its node embedding is done continuously in

a multi layer network, updating the nodes layer by layer, as
shown in Equation (8).

1 1( , )
a

l l l l
n nh AGG h h   (8)

Where l
nh is the hidden embedding of node n in GAT

layer l, 1l
nh
 is the hidden embedding of layer l-1, and

nN is the one-hop neighborhood of node n. By stacking
multiple GAT layers, the final node embedding consists of
the original node embedding and the outputs of all GAT
layers in series, as shown in Equation (9).

1|| || || l
n n n nh emb h h  (9)

Where nh denotes the final feature embedding of the

target node n, nemb denotes the initial embedding of node

n, 1 l
n nh h denotes the feature representation of node n in

each layer of the graph neural network, and finally connects
the feature vectors of the nodes in different layers in order.
From the node embedding obtained from the graph

encoder, the decoder first re-masks these masked nodes and
uses them as inputs for the masked feature reconstruction as
shown in Equation (10).

,

,
n

n
remask

W h n N
h

W n N






  




 (10)

Where nh
 is the updated features of node n, W  is a

weight matrix used to linearly transform the features of a

node. N is a specific set of nodes that denotes nodes that

require special treatment. remask denotes the features of
a node after a particular feature has been "re-masked".
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Subsequently, the decoder reconstructs the initial
embedding of the masked node, and the current features of
the node and those of its neighbors are merged by weighting
to obtain a new node representation, which is computed as
shown in Equation (11).

( , )
nn nx AGG h h     (11)

Where nx
 denotes the final embedding (or updated

representation) of the target node. ( , )
nnAGG h h  

 denotes

the aggregation operation ， nh
 denotes the feature

representation of a node at a particular layer，
n

h denotes

the feature representation of a neighboring node, which is
usually the feature representation of the neighboring node in
the same or previous layer.
Finally, a simple multi layer perceptron (MLP) is used to

predict edge probabilities between pairs of nodes and
reconstruct the loss form. In addition, instead of forcing the
model to predict edge probabilities, we maximize the
behavioral information contained in the embedding layers of
the abstract nodes through structural reconstruction,
allowing the simple MLP to convert this information into
edge probabilities efficiently. Ultimately, the objective
function combines the masked feature reconstruction loss
and the structural reconstruction loss to help it learn the
model parameters in a self-supervised manner.

D. Abnormal Detection
The core process of the detection module includes KNN ,

similarity calculation and outlier judgment. First, the set of
neighbors of the target sample is found by the KNN
algorithm, and then the average distance to the neighbors is
calculated as shown in Equation (12).

1 || ||
| | i x

x i
xx

dist x x


  
 (12)

Where || ||ix x denotes the distance between x and each

of the neighbors of ix , and then averaged to obtain the
similarity of the sample x.
Next, the anomaly score for sample x is computed as

shown in Equation (13).

x
x

dist
score

dist
 (13)

This formula is used to calculate the anomaly score of a
sample. It measures the degree of abnormality of a sample
by dividing the average distance xdist between x and its

neighbors by the average distance dist of all samples,
with a higher score indicating a more likely abnormality,
and determines whether or not a sample is abnormal based
on the score.
Judge whether sample x is an abnormal sample based on

its abnormality . If the xscore exceeds the threshold θ, it is
judged as abnormal (the result is 1); otherwise, it is judged
as normal (the result is 0). When the target embedding is
marked as an outlier, it means that the system state may
deviate from the normal behavior and there is a risk of APT

attack, as shown in Equation (14).
1,
0,

x
x

x

score
result

score




  

(14)

In the batch log level detection, the detection module
stores the benign embedding of the system state and
determines whether there are outliers by calculating the
average distance between the system state embedding and
the stored embedding in the new provenance graph. In
detecting the system entity level, the detection module stores
the benign embedding of the system entity behaviors and
detects the anomalies of all entity embedding in the new
provenance graph. To avoid the accumulation of benign
samples leading to a decrease in detection efficiency, the
detection module introduces an adaptive mechanism; when
the storage upper limit is exceeded, the earliest embedding
is removed to make room for new samples. The method
quickly adapts to the system behaviour changes and
improves detection efficiency and precision.

IV. EXPERIMENTATION AND EVALUATION

A. Datasets
The StreamSpot dataset is generated by StreamSpot using

the SystemTap auditing system and contains 600 batches of
audited logs covering six system call scenarios, five of
which simulate normal user behavior and one of which
simulates a drive-by download attack, with detailed data
shown in TABLE Ⅰ.
The Unicorn Wget dataset is collected by Camflow and

contains 150 batches of logs, 125 batches are normal data
and 25 batches contain hidden supply chain attacks. This
dataset poses an important challenge in the experiments due
to the large amount of data and the complex structure of the
logs, and the high covert nature of the attacks. The detailed
data is shown in TABLE Ⅰ.

TABLE Ⅰ
STREAMSPOT DATASET AND.UNICORN WGET DATASET

Dataset Scenario Malicious Size(GB)

StreamSpot

CNN
Download
Gmail
VGame
YouTube
Attack √

2.8

Unicorn Wget Benign
Attack √

76.6

The DARPA Engagement and Enterprise Emulation (E3)
dataset originates from the DARPA Transparent Computing
(TC) Program, which was designed to advance network
security through transparent and comprehensive data
collection. The dataset captures detailed information
generated during controlled adversarial engagements
conducted within enterprise-scale network environments.
These simulated attack scenarios aim to mimic real-world
network threats, enabling robust research into intrusion
detection, threat analysis, and network defense mechanisms.
Within the broader DARPA E3 dataset, several key

subsets have been developed to address different aspects of
network security data. Among these, the DARPA E3 Trace,
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THEIA, and CADETS datasets are particularly significant.
The detailed data are shown in TABLE ⅠⅠ.

TABLE ⅠⅠ
DARPA E3 DATASETS

Dataset Scenario Malicious Size(GB)

DARPA E3 Trace

Benign
Extension
Backdoor

Pine Backdoor
Phishing
Executable

√
√
√

15.40

DARPA E3
THEIA

Benign
Attack √

17.91

DARPA E3
CADETS

Benign
Attack √

18.38

B. Evaluation Metrics
To evaluate the proposed model's performance in this

paper, we have chosen several key metrics, including
Precision, Recall, F1-Score, and False Positive Rate (FPR).
These metrics comprehensively measure the model's
detection ability on different datasets from different
dimensions, providing rich information for performance
evaluation. These metrics are calculated based on True
Positives (TP), the number of samples correctly predicted by
the model to be in the positive category; True Negatives
(TN), the number of samples correctly predicted by the
model to be in the harmful category; False Positives (FP),
the number of samples incorrectly predicted by the model to
be in the positive category; and False Negatives (FN), the
number of samples incorrectly predicted by the model to be
in the positive category.
Precision is the proportion of positive samples among all

samples predicted to be positive (malignant), reflecting the
accuracy of the model in predicting the upbeat category,
calculated as shown in Equation (15).

TPPrecision
TP FP




(15)

Recall measures the model's ability to cover positive
classes, i.e., how many of all samples that are actually
positive classes are correctly predicted by the model to be
positive classes, and is calculated as shown in Equation (16).

TPRecall
TP FN


 (16)

The F1-Score combines precision and recall as a
reconciled average of the two, balancing the model's
predictive accuracy and coverage ability, and is particularly
suited to the task of evaluating positive and negative sample
imbalances, as shown in Equation (17).

1 2 Precision RecallF Score
Precision Recall


  


(17)

The False Positive Rate (FPR) is the proportion of
samples that the model incorrectly predicts to be positive out
of all samples that are actually in the negative category, and
is calculated as shown in Equation (18).

FPFPR
FP TN




(18)

C. Experimental Design
In terms of experimental design, the platforms used in this

paper are Intel(R) Xeon(R) Platinum 8352V CPU @
2.10GHz, NVIDIA GeForce RTX 4090 (24GB), and the
software environments are Windows 10, Python3.8, and
Cuda11.3. At the same time, we used different data
partitioning strategies according to the characteristics of
different datasets and used only standard samples for
training. For the StreamSpot dataset, we randomly selected
400 out of 500 benign log batches for training and the
remaining 100 batches for testing to ensure a balanced test
set and used batch log-level detection due to the small
dataset and the lack of system entities and labels for log
entries. For the Unicorn Wget dataset, 100 batches of
regular logs were selected for training, and the remaining
portion was used for testing. The duplicate batch-log level
detection was used in the experiments. For the DARPA E3
dataset, we used ground-truth labels to properly classify
each network behaviour sample, such as which part is
normal traffic and which part is an attack or anomalous
traffic. The data is partitioned according to the chronological
order of log entries, and the earliest 80% of log entries are
used for training, and the remaining 20% are used as a test
set, on which entity-level detection is applied. In the
performance evaluation process, we used the average
performance based on 100 random seeds as the final result
to ensure the reliability and consistency of the experimental
results.

D. Hyper parameter Setting
In our experiments, we configured the hyper parameters

as follows: the scale factor (γ) in the feature reconstruction
loss was set to 3, the number of nearest neighbors (k) to 10,
the learning rate to 0.001, and the weight decay coefficient
to 5 × 10⁻⁴. The graph encoder, comprising three layers, was
evaluated under two distinct detection scenarios: batch
log-level detection and entity-level detection. For hyper
parameter tuning, we explored various combinations of the
embedding dimension (d∈ {16, 32, 64, 128, 256}) and the
number of GAT layers (l ∈ {1, 2, 3, 4}). The output
embedding dimension (d) was selected according to the
detection context: in batch log-level detection, d was set to
256 to maintain high feature expressiveness, while in
entity-level detection, d was set to 64 to reduce
computational overhead. The detection threshold (θ) was
determined via a linear search conducted separately on each
dataset. Furthermore, the dynamic masking rate was
deceptively adjusted based on the centrality of each node.
For batch log-level detection, θ was selected from the range
[1, 10], whereas for entity-level detection, θ was determined
based on dataset characteristics without the need for
fine-tuning.

E. Experimental Results and Analysis
This study proposes a novel APT detection model,

GAT-AE, which integrates a GAT with an auto-encoder for
deep feature extraction from attack provenance graphs. By
introducing a dynamic masking mechanism based on node
centrality, the model enhances the focus on critical nodes,
thereby improving its robustness and generalization
capability against diverse APT variants. In addition, the
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detection phase combines KNN and K-D Tree algorithms to
optimize detection accuracy through outlier analysis.
Experimental results on multiple benchmark datasets
demonstrate that the GAT-AE model achieves excellent
performance in maintaining high precision and low false
positive rates. The detailed experimental results are
presented in Table III.

TABLE ⅠⅠⅠ
DETECTION PERFORMANCE FOR EACH DATASET.

Dataset Precision F1-Score Recall FPR

Unicorn Wget 98.7% 97.1% 96.1% 1.6%

StreamSpot 98.6% 98.8% 99.3% 0.3%

DARPAR E3 Trace 99.5% 99.3% 99.6% 0.4%

DARPA E3 THEIA 98.8% 99.5% 99.4% 0.1%

DARPAR E3
CADETS 94.5% 97.2% 99.3% 0.1%

The proposed model integrates GAT with auto-encoder in
the feature extraction phase, facilitating deep feature
learning for APT attack provenance graph data. GAT
captures global and local information of key nodes along the
attack path. At the same time, the auto-encoder refines
feature representation through nonlinear transformations,
enhancing the model's ability to detect stealthy APT attacks.
This innovative architecture overcomes the limitations of
traditional feature engineering approaches in modeling APT
attacks, enabling a more precise characterization of the
complex and evolving behavioral patterns inherent in APT
threats.Furthermore, a dynamic masking mechanism is
designed into the model, which adjusts the masking rate
based on the centrality degree of nodes within the graph.
This adaptive mechanism ensures that GAT emphasizes
critical nodes more during feature learning, reducing
sensitivity to noisy information and ultimately improving
detection performance. The dynamic masking mechanism
effectively enhances precision and preserves strong
generalization capabilities when confronted with diverse
APT attack variants. By introducing this mechanism, the
GAT-AE model maintains high detection accuracy across
various APT attack scenarios, with minimal performance
degradation due to variations in data distribution.
In the detection phase, the model integrates KNN with

K-D Tree technology to optimize APT attack detection
accuracy through outlier analysis. Traditional APT detection
methods mainly rely on threshold settings or classification
models. In contrast, this study adopts an unsupervised
learning approach by measuring local density relationships
between samples to achieve precise APT attack
identification. KNN is utilized to compute local sample
similarity, while K-D Tree optimizes data retrieval,
enhancing computational efficiency. The model performs
well on several datasets with excellent precision, recall, F1
score and false alarm rate. The precision of the Unicorn
Wget and StreamSpot datasets is 98.7% and 98.6%,
respectively, and the FPR for StreamSpot is only 0.3%. On
the DARPA E3-series datasets, the model demonstrated

high precision and low FPR on the Trace and THEIA
datasets, with 99.5% precision and 0.4% FPR, and 98.8%
precision and 0.1% FPR, respectively. The model maintains
94.5% precision even on the CADETS dataset, proving its
stability and efficiency in a wide range of detection
scenarios. To validate the effectiveness of the proposed
model, this study designs a series of comparative
experiments to evaluate the performance of the GAT-AE
model in APT attack detection and to analyze the impact of
the dynamic masking mechanism on the model’s overall
performance. TABLE IV presents the results of various
models on the test datasets. The experimental results are
systematically analyzed through comparisons with
state-of-the-art models.

TABLE IV
COMPARISON BETWEEN OUR MODEL AND STATE-OF-THE-ART APT

DETECTION MODELS ON DIFFERENT DATASETS

Dataset Approach Precision F1-Score Recall FPR

Unicorn
Wget

Unicorn
(baseline)
Threatrace

Ours

86.0%
93.0%
98.7%

90.0%
95.0%
97.1%

95.0%
98.0%
96.1%

15.5%
7.4%
1.6%

Stream
Spot

Unicorn
(baseline)
Threatrace

Ours

95.0%
98.0%
98.6%

96.0%
98.0%
98.8%

93.0%
99.0%
99.3%

1.6%
0.4%
0.3%

DARPA
E3

Trace

Log2vec
(baseline)
Threatrace

Ours

54.0%
72.0%
99.5%

64.0%
83.0%
99.3%

78.0%
99.0%
99.6%

1.8%
1.1%
0.4%

DARPA
E3

THEIA

Log2vec
(baseline)
Threatrace

Ours

62.0%
87.0%
98.8%

64.0%
93.0%
99.5%

66.0%
99.0%
99.4%

0.3%
0.1%
0.1%

DARPA
E3

CADETS

Log2vec
(baseline)
Threatrace

Ours

49.0%
90.0%
94.5%

62.0%
95.0%
97.2%

85.0%
99.0%
99.3%

1.6%
0.2%
0.1%

Further experimental comparisons show that the model
far outperforms the baseline model in APT detection,
especially in reducing the FPR. Specific values are shown in
TABLE IV. For example, in the Unicorn Wget dataset, the
model's FPR is only 1.6%, much lower than Unicorn (15.5%)
and Threatrace (7.4%). In the StreamSpot dataset, the model
has a precision of 98.6% and an FPR of only 0.3%,
significantly better than Unicorn (1.6%) and Threatrace
(0.4%). In the DARPA E3 dataset, the model's FPR on the
Trace and THEIA datasets is 0.4% and 0.1%, respectively,
significantly outperforming Log2vec and Ttreatrace. The
model exhibits high precision and low FPR on multiple
datasets and good generalization ability under different APT
attack patterns. Whether in high-frequency attack scenarios
or hidden anomalous behavior detection tasks, the model
can effectively identify potential threats, significantly reduce
false alarms, and maintain stable detection performance.
In addition to improved detection precision, GAT-AE

also demonstrates superior performance in computational
efficiency and memory consumption. This is primarily
attributed to its optimized feature extraction and detection
strategies, which allow the model to operate with low
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resource usage. GAT-AE exhibits strong performance in
both batch log-level and entity-level detection scenarios,
making it well-suited for large-scale deployment in
real-world applications. Traditional APT detection methods
often suffer from high computational complexity and long
detection latency. However, this study optimizes the
computational structure, enabling GAT-AE to improve
inference speed while maintaining detection precision. As a
result, the model provides excellent practical value when
processing large-scale APT log data.

F. Ablative Experiments
In our comprehensive analysis, we examined the

challenging Unicorn Wget dataset to investigate the impact
of Feature Reconstruction (FR) and Structure
Reconstruction (SR), as illustrated in Fig. 6. Through
rigorous component-wise experiments, we found that FR
and SR provide strong supervised signals, effectively
enhancing the graph representation module.

Fig. 6. Effect of reconstruction components on performance and efficiency

Notably, our findings indicate that mask-based FR yields
a moderate improvement in detection performance while
significantly reducing training time compared to
conventional FR. Furthermore, we analyzed the differences
between full SR and its sampling-based variant,
demonstrating that the latter serves as an efficient
complexity reduction strategy, accelerating training while
maintaining performance integrity.To evaluate and
benchmark the model’s performance, we employed Area
Under Curve (AUC) as the primary metric, where a higher
AUC indicates superior discrimination between positive and
negative samples. Our results confirm that the model
optimizes training efficiency while simultaneously
improving AUC, underscoring its advantages in both
computational speed and detection accuracy.
As illustrated in Figure 7, performance steadily improves

as the embedding dimension and the number of GAT layers
increase. These refinements empower the model to extract
more informative features, leading to superior predictive
accuracy and enhanced generalization capabilities.

Fig. 7. Effect of different hyper parameters on performance and
efficiency

In our comprehensive hyper parameter analysis, we
identified two critical factors that substantially impact model
performance: the embedding dimension d and the number of
GAT layers l. Our findings indicate that increasing the
embedding dimension leads to a consistent improvement in
AUC, highlighting the model’s enhanced capacity to capture
intricate data structures. This expanded representational
capability facilitates more accurate predictions and overall
performance gains.
However, this improvement comes at the cost of

increased computational complexity. A higher embedding
dimension extends training time, necessitating a careful
balance between performance enhancement and
computational efficiency. Selecting an optimal embedding
size is thus crucial to maximizing model effectiveness while
maintaining feasible resource utilization.
Moreover, while most hyper parameters exert minimal

influence on model performance, adjustments to the
embedding dimension and the number of GAT layers
significantly enhance the model’s receptive field. Increasing
the number of GAT layers enables the model to capture
deeper relational dependencies across multiple graph levels,
thereby improving its ability to learn meaningful structural
patterns.

V. CONCLUSIONS AND FUTUREWORK

In this paper, an efficient APT detection model is
proposed, which combines graph attention network and
auto-encoder, and introduces a dynamic masking
mechanism to significantly improve the precision and
efficiency of APT attack detection. In this model, GAT is
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used to capture the complex relationships among nodes in
graph-structured data and assign higher attention weights to
important nodes, thus effectively improving the modeling
ability of attack paths. Auto-encoder, on the other hand,
helps extract potential attack features through unsupervised
feature learning and data reconstruction, and performs
conditionality reduction on the data to reduce the
interference of redundant information. The introduction of
the dynamic masking mechanism enables the model to
automatically adjust the feature weights according to the
actual distribution of the data during the training process,
which further enhances the robustness to unbalanced
datasets or scenarios with scarce labeled data. Overall, the
experimental results validate the superior performance of the
proposed model in APT detection, especially in data-scarce
or complex environments, which significantly outperforms
the baseline model. The excellent performance on all
datasets demonstrates that the model is able to balance
detection precision, resource consumption, and
environmental adaptability, showing a wide range of
application potential and practical value.
Future research can further enhance the applicability of

the model by implementing targeted optimizations for
different types of APT attack features, thereby improving its
generalization ability and real-time performance across
diverse scenarios. In addition to its current capability in
APT attack detection, the model can be further refined to
effectively address increasingly complex attack patterns,
such as industry-specific targeted attacks, zero-day exploits
leveraging emerging vulnerabilities, and sophisticated
multi-stage attack strategies. To achieve this, future studies
could explore advanced optimization techniques, including
enhancing feature extraction mechanisms, integrating more
refined graph-based network modeling approaches, and
leveraging augmented learning to enable the model to adapt
to a broader spectrum of attack characteristics.
Furthermore, as APT attack methodologies continue to

evolve and real-time detection demands become
increasingly stringent, future research should prioritize
improving the model’s responsiveness to novel attack
variants. Strengthening its capacity for rapid threat
identification and adaptive defense mechanisms will be
essential to ensuring timely and precise threat mitigation. By
continuously refining its adaptability and computational
efficiency, the model can achieve superior real-time
performance, making it a more robust solution in the
dynamic landscape .
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