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Abstract—Adenocarcinoma, a malignant tumor derived from
glandular epithelial cells, is the most prevalent subtype of non-
small cell lung cancer (NSCLC). Although it is commonly
observed in smokers, it also occurs with notable frequency
in non-smoking females and younger individuals. Typically,
adenocarcinoma originates in the glandular cells of the small
alveoli and is predominantly located in the peripheral regions
of the lungs. Early diagnosis is crucial for improving treat-
ment outcomes, and chest CT scans play a pivotal role in
facilitating early detection. This paper presents an optimized
multi-model fusion framework for the efficient classification of
adenocarcinoma. The framework first employs weighted feature
fusion to extract three-dimensional CT image features, followed
by an enhanced Firefly Algorithm (FFA) to select the most
discriminative features. Classification is then performed using
the optimized feature set. Experimental results on the pub-
licly available TCIA dataset demonstrate that the framework
achieves an impressive accuracy (ACC) of 0.99, highlighting
its exceptional performance in adenocarcinoma classification.
Furthermore, the proposed approach holds significant potential
for integration into computer-aided diagnostic systems, offering
state-of-the-art capabilities for clinical applications.

Index Terms—Adenocarcinoma; Image Classification; CT
Images; Convolutional Neural Networks; Deep Learning; Model
Fusion

I. INTRODUCTION

ACCORDING to data from the World Health Organiza-
tion (WHO), lung cancer is the leading cause of cancer-

related deaths worldwide, with the highest mortality rates
among both men and women. Lung adenocarcinoma, a major
subtype of non-small cell lung cancer (NSCLC), accounts for
40%-50% of lung cancer cases and is particularly prevalent
among individuals exposed to long-term air pollution or
second-hand smoke [1]. Treatment options for advanced lung
adenocarcinoma are limited, making early detection crucial
for improving survival rates. Adenocarcinoma typically orig-
inates from bronchial epithelial cells in the distal lung and
is characterized by glandular structures or mucin secretion.
Early detection is critical for initiating treatment and pre-
venting tumor progression [2]. CT scans are widely used
to identify tumor-affected regions, not only for direct visual
assessment but also for semi-quantitative analysis. In addition
to providing basic imaging information, CT scans contain nu-
merous features associated with lesions [3]. However, these
features are often challenging to quantify or assess directly
[4], requiring extraction and analysis for effective utilization.
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Although advancements in technology have improved lung
cancer treatments, early detection remains a key strategy for
reducing lung cancer mortality. Studies have shown that low-
dose CT screening can effectively detect lung cancer at an
early stage [5].

In recent years, advancements in artificial intelligence
(AI) and deep learning have significantly enhanced chest
imaging analysis, making it a rapidly evolving field [6].
These technologies can extract critical features from images
that are imperceptible to the human eye, such as histogram
features, texture features, and shape features. However, the
large number of extractable features often results in high-
dimensional data challenges [7]. To address this, researchers
frequently employ machine learning techniques for dimen-
sionality reduction, focusing on the most relevant features.

To overcome some limitations of traditional convolutional
neural networks (CNNs), several novel network architectures
have been introduced in recent years. These architectures,
including ResNet, Inception networks [8], and DenseNet,
have demonstrated effectiveness in learning target features
from CT images with varying parameters. Nevertheless,
existing methods still face challenges that limit their clin-
ical application and require significant involvement from
medical professionals [9]. Currently, lung cancer datasets
are derived from various imaging techniques, including CT,
positron emission tomography (PET), and X-rays. Among
these, PET/CT is widely regarded as the standard imaging
technology for evaluating lung cancer patients [10].

Lung cancer is broadly classified into two types: non-
small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC) [11]. Adenocarcinoma, a major subtype of NSCLC,
is characterized by various molecular mutations, some of
which have significant clinical implications [12]. Figure 1
compares adenocarcinoma slices with other types of lung
cancer [13]. Medical experts believe that regular examination
of a large number of CT images from patients can effectively
reduce the risk of disease [14]. However, the complex nodule
information contained in CT scans makes accurate diagnosis
increasingly difficult for doctors as the volume of images
grows [15].

Zhao et al. [16] provided a comprehensive review of
the application of two-dimensional convolutional neural net-
works (2D-CNNs), three-dimensional convolutional neural
networks (3D-CNNs), and Faster Region-Based Convolu-
tional Neural Networks (Faster R-CNNs) in lung nodule de-
tection, emphasizing the immense potential of deep learning
techniques in enhancing diagnostic accuracy.

Tan et al. [17] analyzed the characteristics of CT imag-
ing and lung nodules, discussing the challenges and re-
cent advancements in deep learning-based detection models.
They highlighted the strengths and weaknesses of prominent
achievements and proposed future directions for application
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and improvement.
Ilse [18] introduced an enhanced ResNeXt network, in-

corporating novel convolutional structures to improve the
classification accuracy of pathological lung cancer images,
achieving an overall accuracy of 99.47

Chi [19] proposed a lung nodule detection and classifica-
tion method based on convolutional neural networks (CNNs).
By optimizing the Faster R-CNN model, they significantly
improved detection accuracy and developed a malignancy
classification model using a Dual Path Network (DPN) with
multi-scale decision fusion, achieving exceptional perfor-
mance on the LIDC-IDRI dataset.

Shu et al. [20] proposed a malignancy classification net-
work that integrates multi-scale feature extraction with global
and local attention mechanisms, effectively improving clas-
sification accuracy through the incorporation of multi-scale
features and attention mechanisms. Although these methods
perform exceptionally well in cancer image processing ap-
plications, they also have some drawbacks. Many models
lack sufficient feature processing capabilities, resulting in
suboptimal quality of critical information in the images.

Based on the current state of research, we propose a
learning framework that optimizes feature extraction through
a multi-model fusion algorithm. The aim of this study
is to develop a deep learning framework that leverages
chest CT scan data for the classification of lung cancer
subtypes. Each patient’s 3D CT volume is regarded as an
integrated whole composed of multiple slices. The model
extracts instance-level features enriched with deep spatial
information from individual slices and consolidates them into
a unified representation. Additionally, an attention mecha-
nism is employed to capture inter-slice correlations, further
enhancing the robustness of feature learning and enabling
accurate adenocarcinoma classification. Experimental results
on publicly available datasets demonstrate that the proposed
model outperforms existing cancer classification approaches,
exhibiting superior accuracy and reliability.

The proposed framework integrates state-of-the-art neu-
ral networks, including MobileNetV2, EfficientNet-B3, and
ResNeXt50, to extract complementary features from CT
slices, capturing both global structural insights and fine-
grained details. Attention-driven feature optimization is
achieved through the Convolutional Block Attention Module
(CBAM), refining the extracted features to ensure the model
prioritizes the most informative regions. Simultaneously, a
weighted feature fusion mechanism effectively combines
features from multiple networks, enhancing robustness while
mitigating the risk of overfitting.

The proposed model framework is adaptable to 3D CT
scans with varying slice counts. Extensive experimental val-
idation on lung CT images from the Cancer Imaging Archive
(TCIA) public dataset confirms the effectiveness of the
proposed method, achieving exceptional performance across
metrics such as accuracy, thus demonstrating its superiority
and reliability.

II. RELATED WORKS

In recent years, deep neural networks have achieved re-
markable success in various computer vision tasks, demon-
strating significant potential in image feature learning. By
increasing the depth and width of networks, researchers

aim to capture more complex and abstract feature rep-
resentations, thereby enhancing task performance through
the preservation of relevant information. To address diverse
task requirements and objectives, researchers continuously
refine network architectures and develop classification algo-
rithms that offer improved performance and generalization
capabilities, thereby aiding medical professionals in making
accurate diagnoses. Aligned with the goals of this study,
this section provides an overview of related work on lung
cancer classification and summarizes the design approaches
employed in previous research. Figure 1 shows an image of
lung cancer subtypes.

A. Dataset preprocessing

This study included 347 lung cancer patients (191A, 29B,
34G), with imaging data obtained from the TCIA database.
Each case consisted of a CT volume, a PET volume, and
fused PET/CT images. The CT images had a resolution of
512 × 512 pixels with a voxel size of 1 mm × 1 mm, while
the PET images had a resolution of 200 × 200 pixels with
a voxel size of 4.07 mm × 4.07 mm. Both modalities had
a slice thickness and spacing of 1 mm, and the volumes
were reconstructed using the same number of slices. Three-
dimensional emission and transmission scans were acquired
from the skull base to the mid-thigh. PET images were
reconstructed using the TrueX TOF method, ensuring a
consistent slice thickness of 1 mm.

The original CT images consisted of anisotropic voxels
with varying in-plane resolutions. Due to differences in
scanners and acquisition protocols, the voxel spacing of the
resulting CT dataset varied. To facilitate training, all medical
images were resampled based on the voxel spacing provided
in the DICOM files, and the resolution was standardized.
Slice thickness ranged from 0.625 mm to 5 mm, with
scan modes including plain, contrast, and 3D reconstruction.
Images were analyzed using a window width of 1050 HU and
a window level of -475 HU. Reconstructions were performed
in a lung window with a slice thickness of 2 mm.

The location of each tumor was annotated by five academic
chest radiologists specializing in lung cancer, making the
dataset a valuable resource for developing medical diagnostic
algorithms. Two radiologists had over 15 years of experience,
while the others had over 5 years. After one radiologist anno-
tated each subject, the remaining four radiologists performed
verification, ensuring that all annotations in the dataset were
reviewed. Annotations were captured using LabelImg and
saved in PASCAL VOC format as XML files.

B. Image Feature Extraction

The evolution of image feature extraction techniques has
progressed from traditional hand-crafted methods to deep
learning-driven automated approaches. Traditional methods,
such as edge detection, texture analysis, and scale-invariant
feature extraction, have proven effective in simpler sce-
narios but exhibit limitations when dealing with complex
datasets. With the advent of deep learning, convolutional
neural networks (CNNs) and their derivatives (e.g., In-
ception and ResNet) have significantly enhanced feature
representation through multi-layered and multi-scale feature
extraction. The integration of attention mechanisms, such

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2643-2653

 
______________________________________________________________________________________ 



Fig. 1 Lung cancer subtypes image

as the Convolutional Block Attention Module (CBAM) and
the Squeeze-and-Excitation (SE) block, alongside feature
fusion strategies, allows models to focus more effectively
on critical regions, thus strengthening feature representation.
Furthermore, the introduction of self-attention mechanisms
and Transformer-based architectures, such as the Vision
Transformer (ViT) and Swin Transformer, has enabled global
dependency modeling, further optimizing feature extraction
capabilities. In medical image analysis, the application of 3D
feature extraction, attention mechanisms, and multi-model
fusion has significantly enhanced the analytical precision
of high-dimensional data, such as lung CT scans. Shallow
neural networks often struggle to handle complex image
features, even with sufficient data, as they are unable to
effectively focus on the distribution of key features. To
address this, the present study employs a hybrid deep feature
extraction model, composed of fine-tuned MobileNetV2,
EfficientNet-B3, and ResNeXt50 networks, where the final
fully connected layers output the extracted features. Multi-
model fusion represents an advanced methodological frame-
work designed to integrate the feature extraction capabilities
of multiple models, effectively addressing complex learn-
ing tasks and high-dimensional data challenges. This study
proposes a multi-model fusion framework that leverages
the complementary strengths of pre-trained models such as
MobileNetV2, EfficientNet-B3, and ResNeXt50. Through
three distinct stages, the framework achieves precise feature
extraction and optimized classification.

C. Multi-Model Feature Extraction and Fusion

This study employs three advanced deep learning architec-
tures—MobileNetV2, EfficientNet-B3, and ResNeXt50—to

extract multi-scale and multi-dimensional features. Mo-
bileNetV2 focuses on capturing global structural information
with its lightweight and efficient design, enabling the rapid
processing of large-scale medical images. EfficientNet-B3
excels in extracting fine-grained texture and morphological
features, making it particularly adept at identifying subtle
tumor characteristics with exceptional precision. ResNeXt50,
utilizing grouped convolutions, enhances the extraction of
critical regional features and effectively processes high-
resolution input data. These models are integrated through
a dynamic weighted fusion strategy, where adaptive weights
are assigned to each model’s contribution, optimized based
on the specific task requirements. The fused features are then
mapped into a tensor representation, ensuring seamless in-
tegration and consistency. This multi-model fusion approach
balances local feature sensitivity with global contextual un-
derstanding, effectively combining global insights and local
precision to enhance the robustness and comprehensiveness
of feature representation.

D. Feature Optimization and Selection

Swarm intelligence optimization algorithms, inspired by
the collective behavior observed in nature, represent a class
of intelligent optimization techniques widely used in fea-
ture selection, particularly in high-dimensional and complex
datasets. These algorithms encode feature subsets as indi-
viduals or particles and iteratively optimize them within the
search space to identify the optimal feature combination,
thereby reducing redundancy and improving model perfor-
mance. Notable swarm intelligence algorithms include Parti-
cle Swarm Optimization (PSO), Ant Colony Optimization
(ACO), Firefly Algorithm (FA), Genetic Algorithm (GA),
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and Bat Algorithm (BA). For example, PSO performs rapid
global searches through iterative updates of individual ve-
locity and position; ACO evaluates feature importance us-
ing pheromone-guided search; FA optimizes feature subsets
based on light intensity; GA evolves feature subsets through
genetic operations; and BA balances search efficiency and
accuracy by integrating local and global search strategies.
These algorithms exhibit strong global search capabilities,
high flexibility, and compatibility with various classifiers,
effectively eliminating irrelevant or redundant features while
enhancing model accuracy and computational efficiency.

In this study, an enhanced Firefly Algorithm (FA) is
employed to refine the extracted features. The algorithm
uses a fitness function to balance classification accuracy and
feature sparsity, ensuring effective feature selection while
minimizing redundancy. Additionally, an improved search
strategy is incorporated, integrating LSAMV flight dynamics
into the FA for a more refined optimization process. This
enhancement ensures an effective balance between global
exploration and local exploitation, leading to superior feature
optimization performance.

E. Attention Mechanism for Classification

In this study, the model utilizes an attention mechanism
to aggregate the optimized features, assigning dynamic im-
portance to key slices for bag-level prediction. The Convo-
lutional Block Attention Module (CBAM) enhances feature
relevance through both channel and spatial attention mecha-
nisms, allowing the model to focus on high-information re-
gions and amplify the influence of critical instances, thereby
improving classification accuracy and interpretability. Si-
multaneously, the attention mechanism preserves the spatial
correlations between CT slices during feature aggregation,
ensuring the integrity and fidelity of the bag-level represen-
tation. This effectively filters and emphasizes key features,
providing strong support for bag-level classification.

III. METHODS

In the field of medical image classification, feature extrac-
tion and selection are pivotal components that significantly
impact the overall performance of a model. Multi-model
fusion frameworks leverage outputs from multiple models or
feature spaces, integrating the unique structures and mecha-
nisms of each model to extract complementary features. This
approach effectively addresses the challenges posed by multi-
scale and multi-dimensional features in complex datasets.
However, the feature fusion process is often hindered by
redundant or conflicting information, which increases the
complexity of optimization and selection. Furthermore, ex-
isting methods generally lack the ability to dynamically
evaluate feature importance across models, leading to the
selection of features that may not meet the specific re-
quirements of the task at hand. Additionally, the stochastic
nature of cross-model feature extraction further exacerbates
challenges related to global optimization and local refine-
ment. Therefore, optimizing strategies for selecting fused
features is critical for improving classification performance.
This section outlines the overall workflow of the proposed
framework for multi-model fusion and feature optimization,
with subsequent sections providing a detailed design and

development of each module and model. Figure 2 presents
the architecture diagram of the model.

A. Overall Network Architecture

This paper proposes an image classification framework
based on multi-model fusion and algorithmic optimiza-
tion, designed to efficiently extract multi-scale and multi-
dimensional features, thereby achieving high-precision clas-
sification. The process begins with preprocessing raw CT
images, including resolution adjustment, voxel spacing stan-
dardization, and resampling, to ensure data quality and
consistency that meet the model’s training requirements. Sub-
sequently, a dynamic weighted fusion mechanism integrates
feature outputs from multiple deep learning networks by
assigning adaptive weights to the feature vectors of each
model and mapping the fused features into a unified high-
dimensional tensor representation.

In the feature optimization stage, an improved Firefly
Algorithm (FFA) is employed, which combines global search
and local refinement strategies. This effectively reduces re-
dundant features while preserving spatial correlations be-
tween CT slices, ensuring the integrity and fidelity of the
feature representations. Additionally, channel and spatial
attention mechanisms are incorporated to dynamically ag-
gregate the optimized features, focusing on high-information
regions and further enhancing the semantic representation of
critical features.

Finally, the aggregated features are fed into the classifier
for prediction. By synergistically combining multi-model
fusion, algorithmic optimization, and attention mechanisms,
the proposed framework achieves a balance between global
semantic understanding and local detail sensitivity. This
provides an efficient and robust solution for precise lung
cancer subtype classification and offers a broadly applicable
paradigm for high-resolution medical image classification
tasks.

B. Optimization of Image Features Using the FFA

The Improved Firefly Algorithm (FFA) is a swarm
intelligence-based optimization method specifically designed
to address the problem of feature selection in image classi-
fication. This algorithm incorporates multiple enhancements
over the classical Firefly Algorithm, including the introduc-
tion of the Lévy flight mechanism to enhance global search
capabilities, as well as dynamic attractiveness adjustment
and feature sparsity constraints to effectively extract key
features while eliminating redundancies, thereby significantly
improving classification performance. Compared to the orig-
inal algorithm, the proposed improvements focus on three
critical aspects: Prioritizing features that make substantial
contributions to classification accuracy; Introducing sparsity
constraints to reduce redundant features, thereby lowering
computational complexity and enhancing model general-
ization; Leveraging the Lévy flight mechanism to avoid
local optima while dynamically adjusting attractiveness to
strengthen local search capabilities.

Furthermore, the classical Firefly Algorithm simulates the
attraction between fireflies to identify the global optimum.
In the improved version, additional optimizations are imple-
mented in the initialization phase. Each firefly is initialized
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Fig. 2 Overview of the framework

as a binary feature selection vector (e.g., [1, 0, 1, ...],
where 1 denotes selected features and 0 denotes excluded
ones), ensuring that the initial population comprehensively
covers the solution space. This enhancement strengthens the
algorithm’s global search ability and improves optimization
efficiency. These advancements make the proposed algorithm
highly effective and broadly applicable for feature selection
tasks in complex, high-dimensional datasets.

Generate a random population, where each individual (fire-
fly) is represented by a position vector xi = [x1, x2, . . . , xn],
with each element xj ∈ [0, 1]. Ensure the population is
well-distributed across the solution space to enhance global
exploration capability.

The fitness function balances classification accuracy and
the number of features. It is defined as follows:

F (X) = F (X · Ex
(∑

Sq(X)
)
) (1)

Calculated using a simple classifier such as KNN on
training and validation data. Represents the proportion of
unselected features:

FeatureFactor =
TotalFeatures− SelectedFeatures

TotalFeatures
(2)

Equation 3 updates the position of firefly i by utilizing the
position difference between fireflies j and i (Xj − Xi) and
the random jumps of Levy flight. Equation 4 calculates the
Euclidean distance between two fireflies in a d-dimensional
space.

Xi = Xi + β · (Xj −Xi) + α · LevyFlight (3)

rij =

√√√√ d∑
k=1

(xj,k − xi,k)2 (4)

Where Xi, Xj represent the positions of firefly individuals
(feature selection vectors). β represents the attractiveness
factor. r represents the distance between two fireflies, where
xi and xj are the position vectors of the two fireflies in a

d-dimensional space. Equation 5 represents the relationship
between the attraction β of fireflies and the distance r
between them:

β = β0 · e−γr2 (5)

Where γ represents the controls the decay rate of attrac-
tion. r represents the distance between firefly individuals.
Lévy flight is a form of random walk characterized by
step lengths that follow a power-law distribution, seamlessly
integrating local exploitation with long-range exploration.
This behavior makes it a core mechanism in numerous op-
timization algorithms and search strategies. Its mathematical
representation is as follows:

LevyFlight ∼ u

|ν|1/λ
(6)

Here, u and ν are random variables sampled from specific
distributions, such as Gaussian or uniform distributions,
while λ lambda serves as the scaling exponent of the power-
law distribution, governing the step-length characteristics.
By balancing fine-grained local search with broad global
exploration, Lévy flight significantly enhances the efficiency
of global optimization. Feature Optimization Process.

In conclusion, the Firefly Algorithm (FFA) is an efficient
feature selection optimization technique that enhances global
search capabilities through dynamic attractiveness adjust-
ment and Lévy flight, while incorporating feature sparsity
constraints to extract critical features and eliminate redun-
dant ones. This approach not only improves classification
performance but also significantly reduces computational
complexity.

The algorithm represents feature selection vectors using
the positions of firefly individuals and initializes the popula-
tion to ensure comprehensive coverage of the global solution
space. A fitness function is used to balance classification
accuracy with the minimization of the number of selected
features. During each iteration, the algorithm evaluates the
fitness of each individual, updates the positions of weaker
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Algorithm 1 Firefly Optimization Process
Input: n: Population size (number of fireflies), d: Dimen-
sionality of the solution space (number of features), α: Ran-
domization parameter, β0: Maximum attractiveness, γ: Light
absorption coefficient, λ: Lévy flight distribution parameter,
f(x) :Fitness function, max iter:Maximum number of iter-
ations.
Output: x∗: Best solution found.

1: for t = 1 to max iter do
2: for i = 1 to n do
3: for j = 1 to n do
4: if Li > Lj then
5: rj ← eq. (4) ▷ Equation (4) for rj
6: Bj ← eq. (5) ▷ Equation (5) for Bj

7: step← arrow ▷ Use arrow-based update
step

8: λi ← λi + step ▷ Update λi

9: xi ← clip(xi, 0, 1) ▷ Clip to valid
bounds

10: end if
11: end for
12: end for
13: Li ← f(λi), i = 1, 2, . . . , n
14: if max(Li) > f(x∗) then
15: x∗ ← argmaxi(Li), f(x

∗) = max(Li)
16: end if
17: end for

individuals using a dynamic attractiveness mechanism, and
employs random Lévy flights to explore a broader solution
space, effectively avoiding local optima. The continuous
position vectors are then binarized to generate the final
feature selection vectors.

By incorporating feature sparsity constraints, the algorithm
prioritizes the enhancement of classification performance,
ensuring that the selected feature subset demonstrates strong
discriminative power and robust generalization capabilities.
The IFA strikes a delicate balance between global exploration
and local exploitation during the feature selection process,
with convergence curves documenting the optimization tra-
jectory. Ultimately, the algorithm outputs the globally op-
timal feature selection vector along with its corresponding
fitness value, providing a robust and efficient solution to
high-dimensional feature extraction challenges.

C. Multi-Model Fusion

This section presents an improved deep learning frame-
work based on multi-model feature fusion, referred to as
HybridMode-J. The framework leverages the feature extrac-
tion capabilities of advanced pre-trained models, namely Mo-
bileNetV2, EfficientNet-B3, and ResNeXt-50. By harnessing
the strengths of these models in capturing diverse feature
representations across various task scenarios, HybridMode-J
achieves collaborative feature fusion across multiple archi-
tectures.

To address the limitations of fixed-weight designs, the
framework incorporates a dynamic weight adjustment strat-
egy, allowing the model to adaptively balance the contri-
butions of each pre-trained model during feature fusion.

Furthermore, to resolve the issue of inconsistent feature
dimensions produced by different pre-trained models, a uni-
fied dimensionality reduction method is introduced. This
method maps the outputs of multiple models into a consistent
feature space, reducing the computational complexity of
feature fusion, enhancing the efficiency of the process, and
improving the model’s overall stability.

HybridMode-J demonstrates advanced capabilities for
multi-model feature extraction by leveraging the pre-
trained feature representations of MobileNetV2, EfficientNet-
B3, and ResNeXt-50. Specifically, MobileNetV2 offers
lightweight, high-resolution feature representations, mak-
ing it ideal for efficiently capturing key spatial features.
EfficientNet-B3 employs compound scaling to achieve an
optimal balance between precision and computational ef-
ficiency, excelling at extracting fine-grained details. Mean-
while, ResNeXt-50 capitalizes on its multi-path feature ag-
gregation architecture, providing robust and diverse high-
level semantic representations.

By integrating the outputs from these three models into
a unified representation, the framework effectively captures
a rich spectrum of semantic information, combining the
strengths of multiple architectures to deliver enhanced feature
expressiveness and task performance.

To achieve adaptive multi-model feature fusion,
HybridMode-J incorporates a learnable dynamic weighting
mechanism. Through weight optimization during training,
the model dynamically adjusts the contribution of
MobileNetV2, EfficientNet-B3, and ResNeXt-50 to the
feature fusion process based on the input data distribution.
Specifically, the framework ensures that the sum of the
weights is constrained to 1 via a normalization operation and
optimizes the weight parameters through a regularization
term embedded in the loss function. This design allows
the model to flexibly adapt the feature contributions of
different architectures across varying scenarios, significantly
enhancing its adaptability and generalization capability.

The varying feature dimensions generated by different
models pose challenges for direct fusion, leading to po-
tential dimensional mismatches or excessive computational
complexity. To mitigate this, HybridMode-J employs an
independent linear dimensionality reduction strategy, trans-
forming the feature outputs of each model into a unified
512-dimensional space. This approach ensures the retention
of the original semantic richness while substantially reducing
computational overhead, establishing a more efficient and
scalable foundation for feature fusion.

In summary, HybridMode-J seamlessly integrates the fea-
ture extraction capabilities of multiple pre-trained models,
utilizing a dynamic weighting mechanism and a dimen-
sionality reduction-based fusion strategy to achieve highly
compact and efficient feature representation learning. The
model exhibits exceptional performance across diverse tasks,
providing a novel and robust solution for high-dimensional
feature fusion in complex and challenging scenarios.

D. Integrating the FFA with classifiers

The Improved Firefly Optimization Algorithm (FFA) em-
ploys a global search strategy based on the LSAMV flight
mechanism, enabling dynamic and efficient optimization of
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the feature selection process while effectively avoiding local
optima. This approach excels at identifying the features
most relevant to the classification task, substantially reducing
feature redundancy and mitigating the influence of noise,
thereby enhancing the classifier’s overall performance.

To further refine classification accuracy, the classifier is
designed to focus on identifying key features while minimiz-
ing the impact of irrelevant or noisy inputs. To address the
challenge of label imbalance within datasets, the fitness func-
tion incorporates a compactness evaluation metric, allowing
the algorithm to prioritize fewer but more discriminative
features. This not only reduces computational complexity
but also enhances the model’s generalization capabilities.
Additionally, the classifier integrates global pooling and
attention mechanisms, enabling it to capture complex interre-
lationships between features. When paired with the optimized
feature set, this approach significantly improves classification
outcomes.

By combining the global optimization capabilities of the
improved FFA with the deep embedding and representation
learning strengths of the classifier, the proposed framework
adapts seamlessly to high-dimensional feature spaces and
complex data distributions, such as those encountered in CT
slice analysis. The enhanced attraction formula and feature
sparsity constraints in the improved FFA ensure rapid conver-
gence while minimizing the effects of noise and redundant
features, resulting in a highly robust and efficient model.

The integration of the improved FFA with the classifier
fully harnesses the optimization algorithm’s ability for pre-
cise and efficient feature selection and the classifier’s su-
perior feature representation and classification performance.
This synergistic framework not only enhances the accuracy
and efficiency of feature selection but also significantly
improves classification performance on complex and chal-
lenging datasets. The approach is particularly suited for real-
world applications involving high-dimensional and imbal-
anced data, such as the classification of adenocarcinoma CT
images.

E. Attention-Based Multi-Model Fusion

This study proposes an attention-based multi-model fu-
sion approach to address the complex feature distributions
and sequential relationships within CT slices.This method
effectively integrates features from multiple models and
optimizes them using the Convolutional Block Attention
Module (CBAM), improving the model’s focus on critical
features and enhancing classification performance.

Multi-model feature extraction preprocessed CT images
are input into three deep learning models: MobileNetV2,
EfficientNet-B3, and ResNeXt50. Each model extracts fea-
tures at different levels, capturing both global structural
information and fine-grained details. The outputs from these
models are unified into low-dimensional embeddings through
a dimensionality reduction layer:

Featurei = Reduce(fi(x)) (7)

Where fi(x) denotes the output of the i-th model for
input x, and Reduce is the dimensionality reduction oper-
ation mapping high-dimensional outputs to low-dimensional
feature embeddings.

Dynamic attention-weighted fusion to dynamically adjust
each model’s contribution to feature fusion, an attention
mechanism assigns weights to the extracted features. These
weights are generated by a multi-layer perceptron (MLP) and
normalized using a Softmax operation:

ωi = softmax(MLP(Featurei)) (8)

The features from each model are then weighted and fused
as follows:

Fusioni = ωi · Featurei (9)

Finally, the weighted features from all models are summed
to produce a unified fusion representation:

Fusion =
N∑
i=1

Fusioni (10)

Where N is the number of models being fused.
Channel and spatial attention optimization the fused fea-

tures are further optimized using the Convolutional Block
Attention Module (CBAM), which enhances features along
both the channel and spatial dimensions. The CBAM opera-
tions are defined as follows.

Channel Attention:

Mc(F ) = σ (MLP (AvgPool(F )) + MLP (MaxPool(F )))
(11)

Spatial Attention:

Ms(F ) = σ (Conv2D ([AvgPool(F )],MaxPool(F ))) (12)

Here, Mc(F )and Ms(F ) represent the channel and spatial
attention maps, respectively, F is the input feature, and
σ sigma is the Sigmoid activation function. The CBAM-
generated attention maps adjust feature weights, enhancing
the model’s focus on critical regions.

The attention mechanism dynamically integrates the fea-
tures of three models, effectively combining multi-level
feature information. Simultaneously, CBAM optimizes the
fused features, enabling the model to focus on critical re-
gions and information within CT images, thereby enhancing
robustness and accuracy. This attention-based multi-model
fusion approach strengthens the model’s ability to extract key
features from CT images, achieving efficient and accurate
classification in lung cancer detection tasks.

TABLE I
A DESCRIPTION OF THE LUNG CT IMAGE DATASET

Datasets Classes Train Test

TCIA

A 8844 3791

B 151 65

E 141 60

G 3597 1542

Total 14034 6015
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TABLE II
THE DIFFERENT HYPERPARAMETER SETS OF VARIOUS OPTIMIZATION

Optimization Algorithm Parameter Value

Crow Search Algorithm (CSA) Awareness Prob 0.1

Flight Length 1.0

Particle Swarm Optimization (PSO) W 0.7

C1 1.5

C2 1.5

Atom Search Optimization (ASO) Alpha 50

Beta 0.2

Mass Min 1.0

Mass Max 10.0

Obj Function Compute Fitness

Mayfly Algorithm (MA) Alpha 0.7

Beta 1.5

Gamma 0.2

Mutation Rate 0.1

Ant Lion Optimizer (ALO) Pop Size 20

Max Iter 50

Obj Function Compute Fitness

Generalized Normal DistributionOptimization (GNDO) Num Agents 20

Max Iterations 50

IV. EXPERIMENTS

A. Datasets

In this study, the publicly available lung CT dataset TCIA
was selected for experimentation and used to evaluate the
proposed model. This section provides a detailed description
of the dataset, as outlined in Table 1. The TCIA dataset
consists of four categories: ”A” for adenocarcinoma, ”B”
for small-cell carcinoma, ”E” for large-cell carcinoma, and
”G” for squamous cell carcinoma, totaling 20,049 slices. The
ratio for training and validation was set at 4:1.

For this experiment, all images in the dataset were stored
in tensor format, with each slice resized to a resolution of
256 × 256. Compared to the original slices, this downscaling
reduces the size to a quarter of the original, significantly
minimizing the overall dataset file size. Additionally, this
approach substantially accelerates training time and reduces
the demands on GPU memory. After testing, it was observed
that the resized data exhibited negligible differences from the

original data.

B. Experimental Details

All experiments were conducted on a local workstation
equipped with an Intel(R) Core(TM) i7-12700H processor
and an NVIDIA GeForce RTX 3090 Laptop GPU. Extensive
experiments were then carried out to evaluate the model
parameters. Specifically, based on empirical experience, the
model’s initial learning rate was set to 0.0005, and the
maximum number of iterations (Tmax) was configured to
60. The model was trained using the Adam optimization
algorithm, with the number of epochs set to 64. The proposed
model integrates deep learning methodologies, offering ad-
vantages that are applicable to both small and large datasets.
Compared to similar approaches, this method demonstrates
strengths such as weak supervision, eliminating the need for
lesion segmentation.
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Fig. 3 Confusion matrix for the proposed and comparable models

Standard classification performance metrics, namely ac-
curacy (ACC) and the F1 score, were used to evaluate the
model’s performance. In this context, 0 and 1 represent
adenocarcinoma and non-adenocarcinoma, respectively. Ad-
ditionally, recall corresponds to sensitivity (SEN). The F1
score helps mitigate the impact of imbalanced data. Ablation
experiments were then conducted to validate each module
within the model. This study integrates the FFA module
and the HybridModel-J module. The performance of the
two modules will be assessed based on their respective
metrics and significance. Tables 2 and 3 present the detailed
evaluation criteria for these two modules.

C. Comparison with Other Feature Selection Algorithms

We evaluated the proposed enhanced Firefly Algorithm
(FFA) against 11 widely recognized metaheuristic-based fea-
ture selection techniques. These methods include the Mayfly
Algorithm (MA), Particle Swarm Optimization (PSO), Atom
Search Optimization (ASO), Ant Lion Optimizer (ALO), and
the Crow Search Algorithm (CSA). The comparative results
demonstrate that FFA outperforms these approaches in both
the quality and quantity of the selected features.

The significant performance enhancement of FFA can be
primarily attributed to the incorporation of the random flight
variable mechanism. This innovative mechanism substan-
tially improves the algorithm’s learning capability, increases
the exploration potential of the search space, and establishes
a balanced trade-off between exploration and exploitation
through a systematic fitness evaluation and position update
strategy.

We also analyzed the convergence characteristics of these
algorithms. Based on the convergence results, FFA exhibited
exceptional robustness, accelerated convergence rates, and
superior optimization efficacy.

Through this comprehensive comparative analysis, it can
be concluded that FFA demonstrates outstanding perfor-
mance across datasets. As a result, FFA excels in performing

feature selection tasks with remarkable consistency and reli-
ably achieves its intended objectives.

TABLE III
THE DIFFERENT HYPERPARAMETER SETS OF VARIOUS OPTIMIZATION

Method Acc

CSA 98.79

PSO 99.01

ASO 98.85

MA 98.55

ALO 99.15

GNDO 98.11

FFA 99.99

D. Experimnts Based on the HybridModel—J Module

In this section, the experiments are divided into four
fundamental models based on the proposed architecture,
as outlined in Table 4. The primary feature extraction
modules utilized are EfficientNet-B3t, MobileNetV2t, and
ResNeXt50, upon which the CBAM module is incrementally
integrated to evaluate performance enhancements. As shown
in Figure 4, the left side displays the change in training and
validation loss over the training epochs, while the right side
illustrates the change in training and validation accuracy over
the training epochs.

As depicted in Table 4, the configuration of HybridModel-
J + CBAM (attention) demonstrates superior performance at
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TABLE IV
COMPARISON OF MODEL PERFORMANCE FOR SEVERAL DIFFERENT MODULE COMBINATIONS

Model ACC F1 score Precision

MobileNetV2 0.57 0.47 0.77

EfficientNet-B3 0.61 0.61 0.62

ResNeXt50 0.62 0.62 0.62

MobileNetV2+EfficientNet-B3+ResNeXt50 0.92 0.92 0.93

MobileNetV2+attention 0.81 0.81 0.81

HybridModel-J+attention 0.99 0.99 0.99

Fig.4 Training and validation results

the patient level, achieving an accuracy (ACC) of 0.99 and
an F1 score of 0.99. The corresponding confusion matrix is
shown in Figure 3.

V. CONCLUSION

This paper proposes a multi-model fusion-based approach
for extracting and characterizing deep features of lung cancer
lesions in CT images. In this approach, deep learning is
utilized as a feature extractor, and a hybrid model, created
by fusing multiple models, is employed for feature extrac-
tion. After feature optimization using the FFA algorithm, a
classifier is applied for classification. The model is capa-
ble of learning and fusing 2D and 3D feature maps from
an arbitrary number of CT images. Experimental results
demonstrate that the proposed method effectively aggregates
features by leveraging both explicit diagnostic characteristics
and latent deep information, significantly improving classi-
fication accuracy. Given the validated effectiveness of this
approach in the domain of lung cancer, it is expected to
perform exceptionally well in other medical image analysis
tasks as well.
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