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Abstract—This paper takes the hydraulic support cylinder
system (HSCS) as the research object and conducts an in-depth
discussion on it. Firstly, based on the working principle
and physical characteristics of the HSCS, a model of the
electro-hydraulic control system of the hydraulic support
under the control of a proportional valve is established.
Then, by combining reinforcement learning technology and
fixed-time algorithm theory, an adaptive fixed-time optimal
control strategy is proposed, aiming to enhance the robustness
and convergence speed of the system. Through the adoption of
a simplified optimal backstepping design method, an adaptive
fixed-time optimal controller is constructed to ensure that the
performance of each subsystem reaches the optimum and that
all signals of the closed-loop system achieve stability within
a fixed time. Finally, the effectiveness and feasibility of the
proposed method are verified through a simulation example.

Index Terms—Hydraulic support cylinder, Proportional
valve, Reinforcement learning, Fixed-time optimal control

I. INTRODUCTION

IN the intelligent transformation of coal mines, the
collaborative intelligent control system for the “three

machines” in fully mechanized mining faces has emerged as
a core technology to ensure safety and enhance efficiency.
Among its key components, the electro-hydraulic control
cylinder of the hydraulic support exhibits strong nonlinear
hysteresis characteristics and time-varying parameters,
posing challenges such as complex dynamic modeling and
insufficient servo tracking accuracy [1, 2]. The advancement
of adaptive nonlinear control theory offers an effective
solution for achieving intelligence in such industrial systems
[3].

Optimal control for nonlinear systems is one of the core
aspects of modern control theory, focusing on optimizing the
performance indicators of control systems [4]. It integrates
fundamental conditions and methods derived from practical
problems, with the research object being controlled dynamic
systems or motion processes. The goal is to identify the
best control strategy among the allowable ones, ensuring
the system achieves optimal performance when transitioning
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from the initial state to the target state [5]. With the rapid
advancement of digital technology and electronic computers,
optimal control has been extensively applied in production,
military, and economic activities, playing a crucial role in
the national economy and national defense. Theoretically,
solving the optimal control problem is equivalent to
solving the Hamilton-Jacobi-Bellman (HJB) equation [6],
but due to its strong nonlinearity and dynamic uncertainty,
direct analytical solutions are challenging. To address this
issue, reinforcement learning (RL) and adaptive dynamic
programming (ADP) have emerged as effective approaches.
Initially proposed by Werbos for discrete systems [7],
RL and ADP were later extended to continuous systems
[8, 9], though they remain limited to affine nonlinear
systems. For the control of nonlinear mismatched systems,
an optimal control method based on the backstepping
framework was proposed in [10], ensuring the optimization
of each subsystem. To reduce complexity and relax the
continuous excitation condition, the optimal backstepping
control strategy was further simplified in [11–13].

Although previous studies have made significant progress,
they primarily focused on scenarios involving infinite time
intervals. However, convergence time remains a critical
issue in controller design [14]. To improve the convergence
speed of system stability, [15] proposed a criterion for
finite-time stability and applied it to various control systems.
Nevertheless, the convergence time of finite-time control
depends on the system’s initial conditions, which are
often difficult to obtain in practical applications, making it
challenging to estimate the convergence time accurately [16,
17]. Consequently, [18] introduced the theory of fixed-time
stability and developed numerous fixed-time control methods
that do not rely on the system’s initial values [19–21].
Based on our research, there are currently limited studies
on fixed-time optimal control.

This paper considers the working principle of the
electro-hydraulic control cylinder of the hydraulic support
as the control object and integrates reinforcement learning
algorithms with adaptive control theory to optimize the
overall stability and robustness of system operation.
By conducting modeling analysis, controller design, and
simulation verification for the working process of the
electro-hydraulic control cylinder system of the hydraulic
support, an adaptive control strategy is proposed to ensure
that the system state reaches optimality.

II. MODEL DESCRIPTION AND PRELIMINARIES
Assuming that the electro-hydraulic control cylinder

system of the hydraulic support operates in the direction
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shown in Figure 1 during operation, according to the force
balance equation and the flow balance equation, its dynamic
equation can be expressed as:

MẌp = p1A1 − p2A2 −BẊp + FT (1){
2p1 = ps + pr

2p2 = ps − pr
(2)

where m is the load mass, Xp is the displacement of the
hydraulic support cylinder, B is the damping coefficient,
and FT is the external force acting on the hydraulic
support cylinder. A1 and A2 are the effective areas of the
non-symmetric cylinder’s rodless chamber and rod chamber
respectively. p1 and p2 are the pressures at the oil cylinder’s
inlet and outlet respectively. ps and pr are the supply and
return oil pressures respectively.

B

m FT
Xp

A2 P2

A1 P1

Q2

Q1

]

u

Pr
Ps

Fig. 1: Model diagram of hydraulic support cylinder.

Subsequently, by introducing a state space transformation
ξ1 = mXp, ξ2 = mẊp, and ξ3 = p1A1 − p2A2, (1) can be
transformed into a nonlinear system of the following form:

ξ̇1 = mξ2

ξ̇2 = ξ3 −
B

m
ξ2 − FT −mg

ξ̇3 = γ1u− γ2ξ2 − γ3(p1 − p2)

y = ξ1

(3)

where ξ = [ξ1, ξ2, ξ3]
T ∈ R3 denotes the state variables. u

and y are the control input and output, respectively. The u is
a voltage signal ranging from 0− 10 V , which satisfies the
linear relationship xv = kvu. In this context, xv denotes the
displacement of the spool in the proportional valve, and kv
represents a positive constant. Additionally, the parameters
γ1, γ2, and γ3 are defined as follows:

γ1 = (
A1R1

V1 +
A1

m ξ1
+

A2R2

V2 − A2

m ξ1
)βekqkv

γ2 = (
A2

1

mV1 +A1ξ1
+

A2
2

mV2 −A2ξ1
)βe

γ3 = (
A1

V1 +
A1

m ξ1
+

A2

V2 − A2

m ξ1
)βeCt

(4)

where R1 =
√
ps + sign(xv)(ps − 2p1) and R2 =√

ps + sign(xv)(2p2 − ps). βe represents the effective
volume elastic modulus of the hydraulic system, Ct is the
leakage coefficient within the hydraulic cylinder, Kq is the

flow gain of the proportional valve, and V1 and V2 are the
initial volumes of the two chambers of the hydraulic cylinder.

Definition 1 For system (3), if the control protocol u is
continuous and satisfies u(0) = 0, then u ∈ Ω constitutes an
admissible control strategy. This control protocol not only
stabilizes the controlled system but also ensures that the
performance cost function remains finite. In this context, Ω
denotes the set of all admissible controls.

Control Objective: For HSCS, a fixed-time optimal control
strategy based on reinforcement learning is proposed to
ensure that: 1) the output signal y can precisely track the
reference signal yr; 2) while conserving communication
resources, all signals in the system remain bounded within a
fixed time.

Assumption 1. The reference signal yr and its derivative
ẏr are bounded.

Lemma 1 [22] For 0 < p < 1 and q > 1, there is

−
n∑

i=1

W̃ 2
i ≤ −

(
n∑

i=1

1

2
W̃ 2

i

)p

− n1−q

(
n∑

i=1

1

2
W̃ 2

i

)q

+ϱW

(5)

where ϱW = (1 − p)p
p

1−p +
n∑

i=1

(
µ2
Wi

2

)q
, with unknown

constant µWi exists to ensure that |W̃i| < µWi.
Lemma 2 [23] Let f(x) be a continuous function defined

on a compact set Ωx. Then for ∀ε > 0, there exist the NN
WTΨ(x) such that

sup
x∈Ωx

|f(x)−WTΨ(x)| ≤ ε (6)

where W = [W1,W2, . . . ,Wm]T ∈ Rm is the weight
vector and Ψ(x) = [ψ1(x), ψ2(x), . . . , ψm(x)]T is the NN
basis function with m > 1 is the number of NN rules.
ψi(x) = exp[−∥x−ξi∥2/ϑ2i ], i = 1, 2, . . . ,m is the Gaussian
function, where ϑi and ξi = [ξi1, ξi2, . . . , ξim]T represent the
width and center, respectively. The optimal parameter vector
W ∗ of NN is defined as

W ∗ = arg min
W∈Rm

{ sup
x∈Ωx

|f(x)−WTΨ(x)|} (7)

Therefore, the continuous function f(x) can be expressed
as

f(x) =W ∗TΨ(x) + ε(x) (8)

where ε(x) is the NN approximation error, which can be
bounded by |ε(x)| ≤ ε, where ε is a positive constant. It
should be pointed out that since W ∗ is an analytical quantity,
it needs to be estimated later for practical use.

Lemma 3 [24] For the system (3), if there is a positive
definite and radially unbounded function V (ξ(t)) such that

V̇ (ξ(t)) ≤ −aV p(ξ(t))− bV q(ξ(t)) + c, t ≥ 0

σ < min{(1− ς)a, (1− ς)b}
(9)

where a > 0, b > 0, 0 < p < 1, q > 1, 0 < ς < 1 and
c > 0 are design parameters, Λ and Λ are k∞ functions, and
V (ξ(t)) satisfies condition Λ∥ξ(t)∥ ≤ V (ξ(t)) ≤ Λ∥ξ(t)∥. If
these conditions are met, it means that the nonlinear system
(3) has fixed-time stability, and the upper bound of the
convergence time Tmax can be expressed in the following
form.

T ≤ Tmax =
1

a(1− p)ς
+

1

b(q − 1)ς
(10)
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III. MAIN RESULT

In this section, we will combine reinforcement learning
algorithms and fixed-time theory to design an optimal
backstepping control strategy under the critic-actor
architecture, thereby constructing an optimal controller.

A. Fixed-time optimized backstepping controller design

The following introduces an critic-actor architecture based
on the reinforcement learning algorithm, which adopts a
simplified fixed-time optimal backstepping method design to
construct an optimal controller. First, consider the following
tracking error coordinate transformation:

z1 = ξ1 − yr

z2 = mξ2 − α̂∗
1

z3 = ξ3 − α̂∗
2

(11)

where yr is selected as the reference signal and set to
0.2 sin(t). αi−1 and α̂∗

i−1 represent the virtual control and
actual optimal virtual control correspondingly.

Step 1: From (3) and (11), the derivative of z1 can be
calculated

ż1 = mξ2 − ẏr (12)

The optimal performance index function is chosen as

J1(z1) =

∫ ∞

t

h1

(
z1(v), α1

(
z1(v)

))
dv (13)

where h1(z1, α1) = z21 +α2
1 is the cost function, and let the

optimal virtual control α∗
1 replace α1 in (13), the optimal

performance index function can be obtained

J∗
1 (z1) =

∫ ∞

t

h1(z1(v), α
∗
1(z1(v)))dv

= min
α1∈Ωz1

{
∫ ∞

t

h1

(
z1(v), α1

(
z1(v)

))
dv}

(14)

Replace ξ2 in (12) with the optimal virtual control α∗
1, and

subsequently define the HJB equation associated with (12)
and (14) as

H1(z1, α
∗
1,

dJ∗
1

dz1
) = z21 + α∗

1
2 +

dJ∗
1

dz1
(α∗

1 − ẏr) = 0 (15)

The optimal virtual control α∗
1 can be computed by solving

∂H1/∂α
∗
1 = 0 as

α∗
1 = −1

2

dJ∗
1 (z1)

dz1
(16)

Then, dJ∗
1 (z1)
dz1

is decomposed into

dJ∗
1 (z1)

dz1
= 2c1z

2p−1
1 +2k1z

2q−1
1 +

5

2
z1 + Jo

1 (ξ1, z1) (17)

where 0 < p < 1, q > 1, c1 > 0 and k1 > 0 are design
parameters. Jo

1 (ξ1, z1) = −2c1z
2p−1
1 − 2k1z

2q−1
1 − 5

2z1 +
dJ∗

1 (z1)
dz1

∈ R is a continuous function, and substituting (17)
into (16) has

α∗
1 = −c1z2p−1

1 − k1z
2q−1
1 − 5

4
z1 −

1

2
Jo
1 (ξ1, z1) (18)

Since Jo
1 (ξ1, z1) is continuous unknown function, it can

be approximated by NN as follows:

Jo
1 (ξ1, z1) =W ∗T

J1 ΨJ1(ξ1, z1) + εJ1(ξ1, z1) (19)

where W ∗
J1 represents the ideal weight vector, ΨJ1(ξ1, z1)

is the basis function vector, and εJ1(ξ1, z1) represents the
approximation error bounded by ∥εJ1(ξ1, z1)∥ ≤ εJ1 as
arbitrarily small. Then, (17) and (18) can be reorganized as

dJ∗
1 (z1)

dz1
=2c1z

2p−1
1 +2k1z

2q−1
1 +

5

2
z1

+W ∗T
J1 ΨJ1 + εJ1

(20)

α∗
1 =− c1z

2p−1
1 − k1z

2q−1
1 − 5

4
z1

− 1

2
W ∗T

J1 ΨJ1 −
1

2
εJ1

(21)

Since W ∗
J1 is unknown constant vector, the optimal virtual

control (21) is not available for the controlled system. To
derive the effective optimized virtual control, the following
RL algorithm with critic and actor is performed.

dĴ∗
1 (z1)

dz1
= 2c1z

2p−1
1 +2k1z

2q−1
1 +

5

2
z1 + ŴT

c1ΨJ1 (22)

α̂∗
1 = −c1z2p−1

1 − k1z
2q−1
1 − 5

4
z1 −

1

2
ŴT

a1ΨJ1 (23)

where dĴ∗
1 (z1)
dz1

and α̂∗
1 are the estimates of dJ∗

1 (z1)
dz1

and
α∗
1, respectively. ŴT

c1ΨJ1 and ŴT
a1ΨJ1 are the NN weight

vectors of critic and actor, respectively.
Following this, the weight vectors of the neural networks

for both the critic and actor are trained according to the
respective adaptive laws outlined below.

˙̂
Wc1 = −κc1ΨJ1(z1)Ψ

T
J1(z1)Ŵc1 (24)

˙̂
Wa1 =−ΨJ1(z1)Ψ

T
J1(z1)

(
κa1(Ŵa1

− Ŵc1) + κc1Ŵc1

) (25)

where κc1 > 0 and κa1 > 0 represent critic and actor design
parameters, while κc1 and κa1 satisfy κa1 > 1

2 , κa1 > κc1

2 .
Using (23), (12) can be rewritten as

ż1 =− c1z
2p−1
1 − k1z

2q−1
1 + z2 −

1

2
ŴT

a1ΨJ1

− 5

4
z1 − ẏr

(26)

For the first backstepping step, the Lyapunov function V1
is designed as follows:

V1 =
1

2
z21 +

1

2
W̃T

c1W̃c1 +
1

2
W̃T

a1W̃a1 (27)

where W̃c1 = W ∗
J1 − Ŵc1 and W̃a1 = W ∗

J1 − Ŵa1 are the
estimation errors of the critic and the actor, respectively.

Then, the derivative of V1 is

V̇1 =z1
(
− c1z

2p−1
1 −k1z2q−1

1 + z2 −
1

2
ŴT

a1ΨJ1 − ẏr
)

+ κc1W̃
T
c1ΨJ1Ψ

T
J1Ŵc1 + W̃T

a1ΨJ1Ψ
T
J1

(
κa1(Ŵa1

− Ŵc1) + κc1Ŵc1

)
(28)

The Young’s inequality yields the following results

z1z2 ≤ 1

2
z21 +

1

2
z22

−z1ẏr ≤ 1

2
z21 +

1

2
ẏ2r

−1

2
z1Ŵ

T
a1ΨJ1 ≤ 1

4
z21 +

1

4
ŴT

a1ΨJ1Ψ
T
J1Ŵa1

(29)
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Along with (28) and (29), we can calculate:

V̇1 ≤− c1z
2p
1 −k1z2q1 + κc1W̃

T
c1ΨJ1Ψ

T
J1Ŵc1

+ κa1W̃
T
a1ΨJ1Ψ

T
J1Ŵa1 +

1

2
z22 +

1

2
ẏ2r

+ (κc1 − κa1)W̃
T
a1ΨJ1Ψ

T
J1Ŵc1

+
1

4
ŴT

a1ΨJ1Ψ
T
J1Ŵa1

(30)

Based on W̃c1 = W ∗
J1 − Ŵc1, W̃a1 = W ∗

J1 − Ŵa1 and
Young’s inequality, we have

W̃T
c1ΨJ1Ψ

T
J1Ŵc1 =

1

2
W ∗T

J1 ΨJ1Ψ
T
J1W

∗
J1 −

1

2
W̃T

c1ΨJ1

×ΨT
J1W̃c1 −

1

2
ŴT

c1ΨJ1Ψ
T
J1Ŵc1

W̃T
a1ΨJ1Ψ

T
J1Ŵa1 =

1

2
W ∗T

J1 ΨJ1Ψ
T
J1W

∗
J1 −

1

2
W̃T

a1ΨJ1

×ΨT
J1W̃a1 −

1

2
ŴT

a1ΨJ1Ψ
T
J1Ŵa1

W̃T
a1ΨJ1Ψ

T
J1Ŵc1 ≤− 1

2
W̃T

a1ΨJ1Ψ
T
J1W̃a1

− 1

2
ŴT

c1ΨJ1Ψ
T
J1Ŵc1

(31)
Subsequently, we can acquire

V̇1 ≤− c1z
2p
1 −k1z2q1 − κc1

2
W̃T

c1ΨJ1Ψ
T
J1W̃c1

− (κa1 −
κc1
2

)W̃T
a1ΨJ1Ψ

T
J1W̃a1

− κa1
2
ŴT

c1ΨJ1Ψ
T
J1Ŵc1 − (

κa1
2

− 1

4
)

× ŴT
a1ΨJ1Ψ

T
J1Ŵa1 +

1

2
z22 +

1

2
ẏ2r

+
κc1 + κa1

2
W ∗T

J1 ΨJ1Ψ
T
J1W

∗
J1

(32)

The following inequality holds when λmin
ΨJ1

is the minimum
eigenvalue of ΨJ1Ψ

T
J1.

− W̃T
c1ΨJ1Ψ

T
J1W̃c1 ≤ −λmin

ΨJ1
W̃T

c1W̃c1

− W̃T
a1ΨJ1Ψ

T
J1W̃a1 ≤ −λmin

ΨJ1
W̃T

a1W̃a1

(33)

According to the design parameters κa1 > κc1

2 and κa1 >
1
2 , as well as (33), it can yield

V̇1 ≤− c1z
2p
1 −k1z2q1 − κc1

2
λmin
ΨJ1

W̃T
c1W̃c1

− (κa1 −
κc1
2

)λmin
ΨJ1

W̃T
a1W̃a1 +

1

2
z22 + σ1

(34)

where σ1 = 1
2 ẏ

2
r + κc1+κa1

2 W ∗T
J1 ΨJ1Ψ

T
J1W

∗
J1. Since all the

terms in σ1 are bounded, there exists a positive constant σ1

such that |σ1| ≤ σ1.
Step 2 : The derivative of z2 is calculated in a similar

manner.
ż2 = ξ̇2 − ˙̂α∗

1

= ξ3 −
B

m
ξ2 − FT −mg − ˙̂α∗

1

(35)

Among them, −B
mξ2 −FT −mg can be approximated by

NN as W ∗T
f2 Ψf2(ξ)+εf2(ξ), there exists a positive constant

εf2 such that |εf2(ξ)| ≤ εf2. Then, the selection of the most
suitable integral cost function is detailed as follows:

J∗
2 (z2) =

∫ ∞

t

h2

(
z2(v), α

∗
2

(
z2(v)

))
dv

= min
α2∈Ωz2

{
∫ ∞

t

h2

(
z2(v), α2

(
z2(v)

))
dv}

(36)

where h2(z2, α2) = z22 + α2
2 is the cost function, α∗

2

represents the optimal controller.
Based on (36), the HJB equation is constructed as

H2(z2, α
∗
2,

dJ∗
2

dz2
) =z22 + α∗2

2 +
dJ∗

2

dz2

(
α∗
2 +W ∗T

f2 Ψf2(ξ)

+ εf (ξ)− ˙̂α∗
1

)
= 0

(37)
The same as before, we can solve for ∂H2/∂α

∗
2 = 0 as

α∗
2 = −1

2

dJ∗
2 (z2)

dz2
(38)

Then, dJ∗
2 (z2)
dz2

can be factored as

dJ∗
2 (z2)

dz2
=2c2z

2p−1
2 +2k2z

2q−1
2 + 2W ∗T

f2 Ψf2 + 2εf2

+
9

2
z2 + Jo

2 (ξ2, z2)

(39)

where 0 < p < 1, q > 1, c2 > 0 and k2 > 0 are
design parameters. Jo

2 (ξ2, z2) = −2c2z
2p−1
2 − 2k2z

2q−1
2 −

2W ∗T
f2 Ψf2 − 2εf2 − 9

2z2 +
dJ∗

2 (z2)
dz2

is a continuous function,
and the α∗

2 can be expressed as

α∗
2 =− c2z

2p−1
2 − k2z

2q−1
2 −W ∗T

f2 Ψf2 − εf2

− 9

4
z2 −

1

2
Jo
2 (ξ2, z2)

(40)

Since Jo
2 (ξ2, z2) is unknown continuous term, it can also

be approximated using NN as follows:

Jo
2 (ξ2, z2) =W ∗T

J2 ΨJ2(z2) + εJ2(ξ2, z2) (41)

where W ∗
J2 is the ideal weight vector, ΨJ2(z2) is the

NN basis function vector, and the NN approximation error
εJ2(z2) is bounded.

Similarly, we can derive the following conclusion

dJ∗
2 (z2)

dz2
=2c2z

2p−1
2 +2k2z

2q−1
2 + 2W ∗T

f2 Ψf2

+
9

2
z2 +W ∗T

J2 ΨJ2 + ε2

(42)

α∗
2 =− c2z

2p−1
2 −k2z2q−1

2 −W ∗T
f2 Ψf2

− 9

4
z2 −

1

2
W ∗T

J2 ΨJ2 −
1

2
ε2

(43)

where ε2 = 2εf2 + εJ2.
The optimal control (43), however, remains unattainable,

necessitating the execution of an RL algorithm featuring both
a critic and an actor to acquire viable control signal.

dĴ∗
2 (z2)

dz2
=2c2z

2p−1
2 +2k2z

2q−1
2 + 2ŴT

f2Ψf2

+
9

2
z2 + ŴT

c2ΨJ2

(44)

α̂2
∗ =− c2z

2p−1
2 −k2z2q−1

2 − ŴT
f2ΨJ2

− 9

4
z2 −

1

2
ŴT

a2ΨJ2

(45)

where dĴ∗
2 (z2)
dz2

and α̂2
∗ are the estimate of dJ∗

2 (z2)
dz2

and
α∗
2, respectively. ŴT

c2ΨJ2 and ŴT
a2ΨJ2 are the NN weight

vectors of critic and actor, respectively.
Same as the first step, the corresponding three adaptive

update laws are designed as follows:

˙̂
Wf2 = Γf2ΨJ2 − κf2Ŵf2 (46)
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˙̂
Wc2 = −κc2ΨJ2Ψ

T
J2Ŵc2 (47)

˙̂
Wa2 = −ΨJ2Ψ

T
J2

(
κa2(Ŵa2 − Ŵc2) + κc2Ŵc2

)
(48)

where Γf2 > 0, κf2 > 0, κc2 > 0 and κa2 > 0 are design
parameters, while κc2 and κa2 satisfy κa2 > 1

2 , κa2 > κc2

2 .
According to (45), the ż2 can be expressed as follows

ż2 =− c2z
2p−1
2 − k2z

2q−1
2 + z3 −

1

2
ŴT

a2ΨJ2

+ W̃T
f2Ψf2 + εf2 −

9

4
z2 − ˙̂α∗

1

(49)

Subsequently, the Lyapunov function V2 is established as

V2 =
1

2
z22 +

1

2Γf2
W̃T

f2W̃f2 +
1

2
W̃T

c2W̃c2 +
1

2
W̃T

a2W̃a2

(50)
where W̃f2 = W ∗

f2 − Ŵf2, W̃c2 = W ∗
J2 − Ŵc2 and W̃a2 =

W ∗
J2 − Ŵa2.
Then, the V̇2 can be calculated as

V̇2 =z2(−c2z2p−1
2 −k2z2q−1

2 +z3 −
1

2
ŴT

a2ΨJ2 + W̃T
f2Ψf2

+ εf2 − ˙̂α∗
1

)
+ κf2W̃

T
f2Ŵf2 + κc2W̃

T
c2ΨJ2Ψ

T
J2Ŵc2

+ W̃T
a2ΨJ2Ψ

T
J2

(
κa2(Ŵa2 − Ŵc2) + κc2Ŵc2

)
− 9

4
z22
(51)

Using the Young’s inequality, we have

z2z3 ≤ 1

2
z22 +

1

2
z23

z2εf2 ≤ 1

2
z22 +

1

2
ε2f2

−z2 ˙̂α∗
1 ≤ 1

2
z22 +

1

2
˙̂α∗2
1

−1

2
z2Ŵ

T
a2ΨJ2 ≤ 1

4
z22 +

1

4
ŴT

a2ΨJ2Ψ
T
J2Ŵa2

(52)

Substituting (52) into (51) yields

V̇2 ≤−c2z2p2 −k2z2q2 − κf2
2
W̃T

f2W̃f2−
κc2
2
W̃T

c2ΨJ2Ψ
T
J2W̃c2

−(κa2−
κc2
2
)W̃T

a2ΨJ2Ψ
T
J2W̃a2−

κa2
2
ŴT

c2ΨJ2Ψ
T
J2Ŵc2

− (
κa2
2

− 1

4
)ŴT

a2ΨJ2Ψ
T
J2Ŵa2 +

κc2 + κa2
2

W ∗T
J2 ΨJ2

×ΨT
J2W

∗
J2 +

1

2
ε2f2 +

1

2
˙̂α∗2
1 +

κf2
2
W ∗T

f2 W
∗
f2 +

1

2
z23

≤− c2z
2p
2 −k2z2q2 − κf2

2
W̃T

f2W̃f2 −
κc2
2
λmin
ΨJ2

W̃T
c2W̃c2

− (κa2 −
κc2
2

)λmin
ΨJ2

W̃T
a2W̃a2 −

1

2
z22 +

1

2
z23 + σ2

(53)
where σ2 = 1

2ε
2
f2 + κc2+κa2

2 W ∗T
J2 ΨJ2Ψ

T
J2W

∗
J2 +

κf2

2 W ∗T
f2 W

∗
f2 +

1
2
˙̂α∗2
1 is bounded, and there exists a positive

constant σ2 that ensures the existence of |σ2| ≤ σ2.
Additionally, λmin

ΨJ2
represents the minimum eigenvalue of

ΨJ2Ψ
T
J2.

Step 3 : Similarly, the derivative of z3 is

ż3 = ξ̇3 − ˙̂α∗
2

= γ1u− γ2ξ2 − γ3(p1 − p2)− ˙̂α∗
2

(54)

where −γ2ξ2 − γ3(p1 − p2) can be approximated by NN
as W ∗T

f3 Ψf3 + εf3, there exists a positive constant εf3 such

that |εf3(ξ)| ≤ εf3. Then, the selection of the most suitable
integral cost function is detailed as follows:

J∗
3 (z3) =

∫ ∞

t

h3

(
z3(v), u

∗(z3(v)))dv
= min

u∈Ωz3

{
∫ ∞

t

h3

(
z3(v), u

(
z3(v)

))
dv}

(55)

where h3(z3, u) = z23+u
2 is the cost function, u∗ represents

the optimal controller.
Based on (54), the HJB equation is constructed as

H3(z3, u
∗,

dJ∗
3

dz3
) =z23 + u∗2 +

dJ∗
3

dz3

(
u∗ +W ∗T

f3 Ψf3

+ εf3 − ˙̂α∗
2

)
= 0

(56)

The same as before, we can solve for ∂H3/∂u
∗ = 0 as

u∗ = −1

2

dJ∗
3 (z3)

dz3
(57)

Then, dJ∗
3 (z3)
dz3

can be factored as

dJ∗
3 (z3)

dz3
=

1

γ1

(
2c3z

2p−1
3 +2k3z

2q−1
3 + 2W ∗T

f3 Ψf3 + 2εf3

+
7

2
z3 + Jo

3 (ξ3, z3)
)

(58)
where 0 < p < 1, q > 1, c3 > 0 and k3 > 0 are
design parameters. Jo

3 (ξ3, z3) = −2c3z
2p−1
3 − 2k3z

2q−1
3 −

2W ∗T
f3 Ψf3 − 2εf3 − 7

2z3 +
dJ∗

3 (z3)
dz3

is a continuous function,
and the u∗ can be expressed as

u∗ =
1

γ1

(
− c3z

2p−1
3 − k3z

2q−1
3 −W ∗T

f3 Ψf3 − εf3

− 7

4
z3 −

1

2
Jo
3 (ξ3, z3)

) (59)

Since Jo
3 (ξ3, z3) is unknown continuous term, it can also

be approximated using NN as follows:

Jo
3 (ξ3, z3) =W ∗T

J3 ΨJ3 + εJ3 (60)

where W ∗
J3 is the ideal weight vector, ΨJ3 is the NN basis

function vector, and the NN approximation error εJ3 is
bounded.

Similarly, we can derive the following conclusion

dJ∗
3 (z3)

dz3
=

1

γ1
(2c3z

2p−1
3 +2k3z

2q−1
3 + 2W ∗T

f3 Ψf3

+
7

2
z3 +W ∗T

J3 ΨJ3 + ε3)

(61)

u∗ =
1

γ1
(−c3z2p−1

3 −k3z2q−1
3 −W ∗T

f3 Ψf3

− 7

4
z3 −

1

2
W ∗T

J3 ΨJ3 −
1

2
ε3)

(62)

where ε3 = 2εf3 + εJ3. For (62), however, remains
unattainable, necessitating the execution of an RL algorithm
featuring both a critic and an actor to acquire viable control
signal.

dĴ∗
3 (z3)

dz3
=

1

γ1
(2c3z

2p−1
3 +2k3z

2q−1
3 + 2ŴT

f3Ψf3

+
7

2
z3 + ŴT

c3ΨJ3)

(63)
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û∗ =
1

γ1
(−c3z2p−1

3 −k3z2q−1
3 − ŴT

f3ΨJ3

− 7

4
z3 −

1

2
ŴT

a3ΨJ3)

(64)

where dĴ∗
3 (z3)
dz3

and û∗ are the estimate of dJ∗
3 (z3)
dz3

and
u∗, respectively. ŴT

c3ΨJ3 and ŴT
a3ΨJ3 are the NN weight

vectors of critic and actor, respectively.
Then, the corresponding three adaptive update laws are

designed as follows:

˙̂
Wf3 = Γf3ΨJ3 − κf3Ŵf3 (65)

˙̂
Wc3 = −κc3ΨJ3Ψ

T
J3Ŵc3 (66)

˙̂
Wa3 = −ΨJ3Ψ

T
J3

(
κa3(Ŵa3 − Ŵc3) + κc3Ŵc3

)
(67)

where Γf3 > 0, κf3 > 0, κc3 > 0 and κa3 > 0 are design
parameters, while κc3 and κa3 satisfy κa3 > 1

2 , κa3 > κc3

3 .
Following (54) and (64), we obtain ż3

ż3 =− c3z
2p−1
3 − k3z

2q−1
3 + z3 −

1

2
ŴT

a3ΨJ3

+ W̃T
f3Ψf3 + εf3 −

7

4
z3 − ˙̂α∗

1

(68)

Subsequently, the Lyapunov function V3 is established as

V3 =
1

2
z23 +

1

2Γf3
W̃T

f3W̃f3 +
1

2
W̃T

c3W̃c3 +
1

2
W̃T

a3W̃a3

(69)
where W̃f3 = W ∗

f3 − Ŵf3, W̃c3 = W ∗
J3 − Ŵc3 and W̃a3 =

W ∗
J3 − Ŵa3.
Then, the V̇3 can be calculated as

V̇3 =z3(−c3z2p−1
3 −k3z2q−1

3 +z3 −
1

2
ŴT

a3ΨJ3 + W̃T
f3Ψf3

+ εf3 − ˙̂α∗
2

)
+ κf3W̃

T
f3Ŵf3 + κc3W̃

T
c3ΨJ3Ψ

T
J3Ŵc3

+ W̃T
a3ΨJ3Ψ

T
J3

(
κa3(Ŵa3 − Ŵc3) + κc3Ŵc3

)
− 7

4
z23
(70)

Using the Young’s inequality, we have

z3εf3 ≤ 1

2
z23 +

1

2
ε2f3

−z3 ˙̂α∗
2 ≤ 1

2
z23 +

1

2
˙̂α∗2
2

−1

2
z3Ŵ

T
a3ΨJ3 ≤ 1

4
z23 +

1

4
ŴT

a3ΨJ3Ψ
T
J3Ŵa3

(71)

Substituting (52) into (51) yields

V̇3 ≤−c3z2p3 −k3z2q3 − κf3
2
W̃T

f3W̃f3−
κc3
2
W̃T

c3ΨJ3Ψ
T
J3W̃c3

−(κa3−
κc3
2
)W̃T

a3ΨJ3Ψ
T
J3W̃a3−

κa3
2
ŴT

c3ΨJ3Ψ
T
J3Ŵc3

− (
κa3
2

− 1

4
)ŴT

a3ΨJ3Ψ
T
J3Ŵa3 +

κc3 + κa3
2

W ∗T
J3 ΨJ3

×ΨT
J3W

∗
J3 +

1

2
ε2f3 +

1

2
˙̂α∗2
2 +

κf3
2
W ∗T

f3 W
∗
f3 +

1

2
z23

≤− c3z
2p
3 −k3z2q3 − κf3

2
W̃T

f3W̃f3 −
κc3
2
λmin
ΨJ3

W̃T
c3W̃c3

− (κa3 −
κc3
2

)λmin
ΨJ3

W̃T
a3W̃a3 −

1

2
z23 + σ3

(72)
where σ3 = 1

2ε
2
f3 + κc3+κa3

2 W ∗T
J3 ΨJ3Ψ

T
J3W

∗
J3 + 1

2
˙̂α∗2
2 +

κf3

2 W ∗T
f3 W

∗
f3 is bounded, and there exists a positive constant

σ3 that ensures the existence of |σ3| ≤ σ3. Additionally,
λmin
ΨJ3

represents the minimum eigenvalue of ΨJ3Ψ
T
J3.

B. Stability analysis

Theorem 1 The fixed-time optimal control strategy
proposed in this paper is applied to HSCS (3), where
the adaptive laws of neural parameters, critic and actor
are (46), (65) and (24), (47), (66), and (25), (48), (67),
respectively. The optimal virtual controller are (23), (45),
and the fixed-time optimal control actuator is (64). Thus,
this control strategy can ensure that all control signals in
the closed-loop system are bounded in fixed time, and
simultaneously achieve the optimization of each subsystem.

Proof: Construct a Lyapunov function V =
3∑

i=1

Vi, and

by integrating the preceding steps, we can compute

V̇ ≤−
3∑

i=1

ciz
2p
i −

3∑
i=1

kiz
2q
i −

3∑
i=2

κfi
2
W̃T

fiW̃fi −
3∑

i=1

κci
2

× λmin
ΨJi

W̃T
ciW̃ci−

3∑
i=1

(κai−
κci
2

)λmin
ΨJi

W̃T
aiW̃ai+

3∑
i=1

σi

(73)
By virtue of Lemma 1, the following operations can be

carried out

−
3∑

i=2

κfi
2
W̃T

fiW̃fi ≤− κ̆f
2

(
3∑

i=2

1

2
W̃T

fiW̃fi

)p

− κ̆f
2
31−q

×

(
3∑

i=2

1

2
W̃T

fiW̃fi

)q

+ ϱWf

(74)

−
3∑

i=1

κci
2
λmin
ΨIi

W̃T
ciW̃ci ≤− κ̆c

2

(
3∑

i=1

1

3
W̃T

ciW̃ci

)p

− κ̆c
2
31−q

×

(
3∑

i=1

1

2
W̃T

ciW̃ci

)q

+ ϱWc

(75)

−
3∑

i=1

(κai −
κci
2

)λmin
ΨIi

W̃T
aiW̃ai ≤− κ̆a

2

(
3∑

i=1

1

2
W̃T

aiW̃ai

)p

− κ̆a
2
31−q

(
3∑

i=1

1

2
W̃T

aiW̃ai

)q

+ ϱWa

(76)
where κ̆f = min{κfi, i = 2, 3}, κ̆c = min{κciλmin

ΨIi
, i =

1, 2, 3} and κ̆a = min{(2κai − κci)λ
min
ΨIi

, i = 1, 2, 3}.
Furthermore, there are three unknown constants µfi, µci and
µai, with |W̃fi| < µfi, |W̃ci| < µci and |W̃ai| < µai.

Substituting (74)-(76) into (73) yields

V̇ ≤− aV p − bV q + c (77)

where a = min{2pci, χ̆f

2 ,
χ̆c

2 ,
χ̆a

2 , i = 1, 2, 3}, b =

min{2qki, χ̆f

2 31−q, χ̆c

2 31−q, χ̆a

2 31−q, i = 1, 2, 3}, c = ϱWf
+

ϱWc + ϱWa +
3∑

i=0

σi.

The proof of Theorem 1 is completed.

IV. SIMULATION EXAMPLE

To verify the effectiveness of the control algorithm
proposed in this paper, numerical simulation verification was
carried out with the aid of MATLAB. The parameters used
in the simulation process are summarized as follows:
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Fig. 2: The trajectories of ξ1 and yr.
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Fig. 3: The trajectory of z1.
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Fig. 6: The norms of the Ŵa1, Ŵa2 and Ŵa3.
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Fig. 7: Control input u.
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The corresponding process parameters in the
electro-hydraulic control cylinder system of the hydraulic
support are m = 300 kg, B = 1000N/(m · S−1),
A1 = 1.92625 × 10−3m2, A2 = 9.4514 × 10−4m2, ps =
2× 107 Pa, pr = 0, kqkv = 8.9× 10−8m3/(s · V ·

√
Pa),

βe = 7× 108 Pa, Ct = 4× 10−13m3/(s · Pa).
The control parameters are designed as c1 = 14, c2 = 16,

c3 = 18, k1 = 20, k2 = 18, k3 = 16, κf2 = 15, κf3 = 20,
κc1 = κc2 = κc3 = 10, κa1 = κa2 = κa3 = 12, p = 99/101,
q = 102/99.

The initial values are set as ξ1(0) = ξ2(0) = ξ3(0) =
0.2, Ŵf2(0) = Ŵf3(0) = [0.2, . . . , 0.2]T ∈ R6×1,
Ŵc1(0) = Ŵa1(0) = [0.5, . . . , 0.5]T ∈ R6×1, Ŵc2(0) =
Ŵa2(0) = [0.4, . . . , 0.4]T ∈ R6×1, Ŵc3(0) = Ŵa3(0) =
[0.4, . . . , 0.4]T ∈ R6×1.

The simulation results show that the dual neural network
structure based on the actor-critic framework proposed in this
paper can quickly evaluate the value function of the current
control strategy, generate adaptive control law compensation
terms, and dynamically adjust the control gain of the system
online, while achieving fixed-time stability of the hydraulic
support cylinder system.

Figures 2 and 3 indicate that this control strategy can
ensure that the electro-hydraulic control cylinder system of
the hydraulic support has excellent tracking performance.

Figures 4-6 demonstrate that the critic adaptive law, actor
adaptive law, and optimal controller designed in this paper
can all converge rapidly and remain stable to achieve the
optimal state of the system.

V. CONCLUSION

This paper constructs the dynamic system of the
hydraulic support electro-hydraulic control cylinder,
integrates reinforcement learning technology with fixed-time
algorithm theory, and proposes an adaptive fixed-time
optimal control strategy. This strategy designs an adaptive
controller using the simplified optimal backstepping method,
ensuring performance optimization for each subsystem
while guaranteeing that all signals in the closed-loop
system stably converge within a fixed time. Simulation
results demonstrate that the proposed method significantly
enhances the robustness and convergence efficiency of the
system, thereby verifying the effectiveness and engineering
feasibility of the control strategy. This research provides
theoretical support and practical solutions for optimizing
the performance of the Hydraulic Support Control System
(HSCS) and can be further extended to application
verification in complex industrial scenarios in the future.
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