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Abstract—Steel surface defect detection is of significant
importance for ensuring the quality of steel production, and it
requires high-precision real-time detection capabilities. Based
on this, this paper proposes an improved model based on
YOLOv10. First, we innovate the C2f module of YOLOv10
by introducing the Star network and EMA attention mecha-
nism, resulting in the C3_Star_EMA module. This module
aims to map the input into a high-dimensional nonlinear
feature space through star operations (element-wise multi-
plication), thereby enhancing the model’s expressive power
and performance. Meanwhile, the MobileOneBlock module is
incorporated into the backbone network. This module reduces
the parameters and computational complexity significantly
through a multi-branch convolution design and parameter
reorganization. Finally, the C2fAFF module is introduced,
which innovates the C2f module by using the AFF atten-
tion mechanism. Through multiple iterations, the feature
fusion process is gradually optimized, assigning appropriate
weights between features of different scales, thus improving
the model’s detection ability for multi-scale objects. The
improved model achieves a mean average precision (mAP)
of 79.2% on the NEU-DET dataset, which is 4.9% higher
than the baseline YOLOv10n, with a 16.7% reduction in pa-
rameters and an 18.3% reduction in GFLOPs. The improved
model effectively enhances the accuracy and speed of real-
time steel surface defect detection.

Index Terms—Steel surface defect detection, feature fusion,
YOLO, object detection

I. Introduction

STEEL production is an important indicator of the
industrial capacity of modern society. Steel is widely

used in various industries and is an indispensable ma-
terial in modern society. Therefore, the speed and
accuracy of steel surface defect detection are of high
importance. Due to manufacturing processes and equip-
ment limitations, steel surfaces often exhibit various
defects, including but not limited to cracks, inclusions,
spots, pitting, and other imperfections [1]. These defects
can affect the service life of steel materials and even
lead to significant engineering accidents. Therefore, steel
surface defect detection plays a critical role in the steel
production process.

Traditional defect detection methods are influenced
by human factors and suffer from issues such as low
efficiency, missed detections, and false positives. The tra-
ditional methods include Acoustic Emission (AE) testing
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[2], Laser Scanning Technology (LST) [3], Ultrasonic
Testing (UT) [4], and Computed Tomography (CT) [5].

Acoustic Emission (AE) testing technology identifies
potential defects by monitoring high-frequency acoustic
signals on the surface or inside steel materials (such
as those generated during crack propagation or plastic
deformation). These acoustic signals are received and
processed by sensors to determine the location and type
of the defects. This method is particularly suitable for
monitoring the dynamic behavior of metallic materials
and can achieve real-time monitoring, making it ideal for
stress testing and structural health monitoring.

Laser Scanning Technology (LST) captures changes
in surface morphology by scanning the steel surface and
analyzing the variation in the reflected signal of the laser
beam. This method is particularly effective for detecting
tiny defects, enabling efficient and precise capture of the
3D morphology of steel surfaces, which is advantageous
for detecting defects at the microscopic scale.

Ultrasonic Testing (UT) leverages the propagation
characteristics of ultrasound through materials. By de-
tecting the reflected ultrasound signals, it can identify
defects. Since ultrasound can penetrate deep into the
material, this method not only effectively detects surface
defects but also uncovers hidden internal defects like
cracks and voids.

Computed Tomography (CT) is a non-destructive
testing method based on X-rays. It scans the sample
from multiple angles and reconstructs a 3D image using
a computer. Compared to traditional X-ray testing, CT
provides more detailed and clearer internal structural
images, making it more accurate and effective for de-
tecting internal defects in steel, such as porosity, cracks,
and inclusions.

Compared to traditional defect detection methods,
deep learning has shown significant advantages in steel
surface defect detection, particularly in areas such as
automation, accuracy, robustness, big data processing,
real-time feedback, and multi-modal data fusion. Deep
learning methods offer higher efficiency and flexibility
compared to traditional methods. With the continuous
development of deep learning technology, it is poised
to become an essential tool in the field of steel qual-
ity inspection, driving detection systems toward higher
efficiency and intelligence.

Defect detection methods using deep learning in-
clude CNN [6], Faster R-CNN [7], Swin Transformer
[8], ResNet-50[9], and GAN [10]. Convolutional Neural
Networks (CNN) are deep learning models specifically
designed for image data. Through multiple layers of
convolution, pooling, and fully connected layers, CNNs
can automatically extract features from raw images
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and detect defects on steel surfaces or other products.
Faster R-CNN is a deep learning-based object detection
model aimed at improving the efficiency and accuracy
of object detection while significantly accelerating the
detection process. The Swin Transformer is a novel
visual model based on the Transformer architecture,
specifically designed for visual tasks. By introducing local
windows and shifted windows in the Transformer, it
enhances computational efficiency and reduces spatial
complexity. ResNet-50 is a deep convolutional neural
network architecture, a variant of ResNet, where ”50”
indicates the number of layers in the network. This
architecture effectively addresses the training challenges
in deep networks, making it easier to train very deep
networks. GAN (Generative Adversarial Networks) is
a deep learning model composed of a generator and
a discriminator. Through adversarial training, the gen-
erator learns to generate realistic data samples, while
the discriminator learns to differentiate between real
and generated data. The generator and discriminator
continually optimize their respective capabilities through
their adversarial relationship, ultimately enabling the
generator to produce highly realistic samples.

II. Related work
In recent years, many researchers have made progress

in steel surface defect detection using traditional defect
detection methods. Boudiaf A et al. [11] proposed an
improved AlexNet model, which was obtained using
transfer learning techniques and replaced the classifier
part with one or more new fully connected layers. At
the same time, the AlexNet model, transfer learning,
and various machine learning algorithms were combined
to create a hybrid model. Zheng X et al. [12] proposed a
feature extraction method based on the combination of
Legendre Wavelet Transform and Autoencoder Network
(LWT-AE). This method first uses LWT to extract defect
features and removes redundant components through
statistical and texture parameters. Then, an AE network
is used to reduce the dimensionality of the features.
Finally, two classifiers, SVM and BPNN, are used to
improve the generalization ability of the method. Za-
ghdoudi R et al. [13] improved the recognition rate
of steel surface defect classification by introducing a
new classifier combination method. This method uses
LCCMSP and DCP, balancing accuracy and time con-
sumption. These features were then fed into SVM and
RF classifiers, generating four basic classifiers. Finally,
Bayesian fusion rules were applied to integrate the
outputs of these classifiers, ultimately producing the
classification decision.

Compared to traditional defect detection methods,
deep learning has several advantages in steel surface
defect detection, including automation, efficiency, strong
data adaptability, and robustness. It can handle complex
and large-scale data and can automatically learn and
extract efficient features. Traditional methods, on the
other hand, require extensive manual design and adjust-
ment, and they perform less well when facing complex,
dynamic defect patterns. As a result, deep learning has
become increasingly widespread in steel surface defect

detection in recent years. Jiyang Q et al. [14] proposed an
improved Faster R-CNN algorithm for strip steel surface
defect detection, which enhanced the network’s feature
extraction ability using a differential convolution module
and Swin Transformer. The CBAM-BiFPN module was
used to improve the network’s attention to defects.
RoI alignment layers replaced RoI pooling layers to
improve defect localization accuracy, and Soft NMS was
used to optimize non-maximum suppression and remove
redundant boxes. Overall, this algorithm significantly
improved the accuracy and efficiency of strip steel surface
defect detection. Liang C et al. [15] proposed a high-
precision industrial defect detection network that uses
the CEM module for multi-scale fusion to enhance se-
mantic representation. Then, the FEM module optimizes
feature information at the end of the backbone network,
combined with the HAM module to extract important
features. Finally, the DFPN network was proposed to
significantly enhance the detection ability of the target.
Ibrahim A A M S et al. [16] used a new method to
improve defect detection and classification accuracy. This
method used part of the pre-trained VGG16 model
as a feature extractor and a new convolutional neural
network (CNN) as a classifier to classify six types
of defects occurring on steel surfaces. Dong X et al.
[17] proposed the EAIRNet network to improve steel
surface defect detection accuracy. EAIRNet consists
of three core modules: a multi-scale feature extractor,
SEIM module, and RAGM module. First, the network
uses ResNet to extract multi-scale features from the
steel surface environment, then integrates features from
the encoder stage to extract edge features. The SEIM
module facilitates the interaction between significant
features and edge features, enhancing detection accuracy.
Additionally, the RAGM module strengthens the shallow
decoder layers’ attention to defective regions. He Y et
al. [18] proposed a sample generation method based
on Generative Adversarial Networks (GAN) to improve
the accuracy of steel plate surface defect detection
models. To improve the quality of generated samples, this
method proposed a two-stage sample generation process:
the production phase generates defects on defect-free
background samples, and the elimination phase learns
to remove defects from defective samples. By minimizing
the differences between the two-stage generated samples,
the model can generate background samples close to real
samples while ensuring that the defect samples are more
realistic.

Although the above defect detection methods have
achieved innovation and progress in many areas, they
still have certain drawbacks and limitations. Traditional
defect detection methods cannot escape the interference
of human factors, are inefficient, and struggle to handle
complex defects. They are also costly and not adaptable
to dynamic environments. Manual detection is influenced
by the operator’s experience, leading to inconsistent re-
sults, and accuracy is limited in large-scale data or com-
plex defect detection. The investment and maintenance
costs of traditional sensors and detection equipment
are high, and they cannot provide sufficient stability
and adaptability.While Convolutional Neural Networks
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(CNNs) have eliminated the need for human intervention
in feature extraction, they come with several drawbacks.
These include high demands for computational resources
and memory, the need for large amounts of labeled data
to prevent overfitting, complex model structures, poor
interpretability, long training times, limited invariance to
translation and rotation in input data, and the necessity
for extensive hyperparameter tuning. These limitations
hinder their application in complex industrial scenarios
that require real-time processing with small data vol-
umes. To address these challenges, this paper proposes an
improved lightweight YOLOv10 algorithm. The goal is to
reduce the total number of parameters while maintaining
the original model’s accuracy in detecting steel surface
defects. The specific improvements include:

1. In the head part, the C3_Star_EMA module is used
to replace the original C2f module, enabling the model
to exchange information between the core layers and
peripheral nodes of the network. The aggregation effect
of the central node reduces redundant and unnecessary
complexity in information flow while ensuring efficient
information transfer between nodes and maintaining the
model’s generalization ability. This improvement reduces
parameters by approximately 9.3% compared to the
original model and increases accuracy by 1.4

2. In the head part, the C2fAFF module is used to
replace the original C2f module. By combining local and
global attention mechanisms, the model’s attention to
key information is enhanced, improving feature expres-
sion ability. This improvement reduces parameters by
approximately 11.1% compared to the original model and
increases accuracy by 2.1%.

3. In the backbone part, the MobileOneBlock mod-
ule is used to replace the original C2f module. This
modification reduces computational overhead through
efficient convolution operations and network design while
maintaining high model performance. This improvement
reduces parameters by approximately 16.7% compared
to the original model and increases accuracy by 4.9%.

III. Method Introduction
SSD, Fast R-CNN, DETR, and YOLO are classic

defect detection algorithms. SSD (Single Shot Multi-
Box Detector) can perform both object localization
and classification tasks simultaneously and has high
detection speed. SSD can detect objects at different
feature layers, allowing it to handle objects of different
scales. It completes the object detection task in one shot,
unlike two-stage detection methods that first generate
candidate boxes. However, SSD has lower accuracy
and poor detection capability for small objects. DETR
generates target bounding boxes and class labels directly
through the Transformer model. Unlike traditional Con-
volutional Neural Network (CNN) methods, DETR uses
the Transformer structure, which has stronger global con-
text modeling capabilities, enabling it to capture object
information over a wider range in the image. However,
DETR requires longer training times, high computa-
tional power, and more data for effective training. It also
has weak detection capabilities for small objects and is
not suitable for real-time detection in complex industrial

environments. YOLOv10, compared to its previous ver-
sions, introduces a consistent dual assignment strategy,
using one-to-many label assignments during training to
provide rich supervision signals, and one-to-one matching
during inference. This improvement reduces inference
latency and computational complexity while maintaining
high accuracy. YOLOv10 currently has versions such
as YOLOv10n, YOLOv10s, YOLOv10m, YOLOv10l,
YOLOv10x, and others, each suited for detection in
different environments. Depending on available resources
and detection requirements, different versions can be
selected. YOLOv10n has lower parameters and com-
putational complexity while achieving high inference
speed and detection accuracy, making it more suitable
for steel surface defect detection in complex industrial
environments.

The network architecture of YOLOv10 is shown in
Figure 1.

Like traditional YOLO series, YOLOv10 consists of
four main parts: Input, Backbone, Neck, and Head.
The Input part is responsible for receiving the input
image and preprocessing it to enable the model to
better extract image features. The input part resizes the
received image and normalizes it to reduce the dynamic
range of the data, improving computational stability.
Finally, SCDown is used to separate spatial information
and channel information, enhancing feature extraction
capability while reducing computational load.

The Backbone part employs a series of lightweight
optimization strategies to significantly reduce computa-
tional costs while maintaining strong feature extraction
capabilities, making it more suitable for real-time de-
tection tasks. The Backbone separates spatial informa-
tion and channel information using Spatial Decoupled
Convolution (SDC) and Channel Decoupled Convolution
(CDC), improving computational efficiency. Depthwise
Separable Convolution is used to reduce parameters and
computation, while large Kernel Convolution increases
the model’s receptive field, making it easier to capture
large target features. Finally, Partial Self-Attention is
used to enhance target features and improve detection
performance in complex scenes, enhancing model practi-
cality. The above parts form the Backbone’s Lightweight
Backbone Network, designed to enhance feature ex-
traction ability. The Lightweight Residual Block uses
a lightweight Residual Block to reduce the gradient
vanishing problem and enhance feature representation. It
uses 1×1 convolution for channel fusion, reducing com-
putational overhead while maintaining effective feature
representation. The Lightweight Residual Block ensures
the stability of Backbone training. Lastly, the Backbone
utilizes the Global Feature Extraction Layer to further
extract important information from higher-level feature
maps and optimize multi-scale feature representation,
while reducing computational redundancy to further
improve inference speed.

The Neck is the key part connecting the Backbone
and Head, mainly responsible for integrating multi-
layer features, enhancing multi-scale detection capability
while maintaining computational efficiency. YOLOv10
does not use the traditional YOLO series’ FPN and
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Fig. 1: YOLOv10 network architecture

PAN structures but instead introduces its self-developed
LG Block (Level-Guided Block). This module is used
to optimize the fusion of features at different scales,
addressing the information imbalance problem in tra-
ditional FPN (Feature Pyramid Networks) and PAN
(Path Aggregation Networks), making the feature flow
more reasonable and improving small object detection
capability.

YOLOv10’s Head still uses the Anchor-based mecha-
nism. Anchor boxes are pre-defined rectangular boxes of
multiple sizes at each position of the feature map. Each
position on the feature map generates multiple different-
sized anchor boxes to detect objects of various sizes. The
Head part matches these anchor boxes with the predicted
boxes output by the network, and adjusts the predicted
box parameters to fit the real targets.

The structure diagram of the improved model is shown
in Figure 2. First, the MobileOneBlock is used to reduce
computational redundancy, improving training stability
and information flow. Next, the C3_Star_EMA is used

to replace the original C2f module, enhancing the model’s
generalization ability and feature extraction capability,
while reducing model complexity. Finally, the C2fAFF
module is introduced to improve the model’s accuracy
and robustness, while also reducing computational load.

A. MobileOneBlock

The structure of MobileOne is shown in Figure 3.
MobileOne is a lightweight network architecture in-

spired by efficient network designs such as MobileNet
and EfficientNet, aiming to achieve higher computational
efficiency and lower inference latency. MobileOneBlock
[19] is the core module of this architecture, balancing
accuracy and computational efficiency, allowing the net-
work to operate efficiently with limited computational
resources. By adopting techniques such as depthwise
separable convolution, bottleneck structures, residual
connections, and optimized activation functions, Mo-
bileOneBlock enables the network to perform efficiently

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2673-2685

 
______________________________________________________________________________________ 



Conv

Conv

Conv

MobileOne
Block

MobileOne
Block

SCDown

SCDown

C3_Star_
EMA

SPPF

PSA

Concat

Upsample

C3_Star_
EMA

Concat

Upsample

C2fAFF

Conv

Concat

C3_Star_
EMA

SCDown

Concat

C2f/CIB

One-to-one Head

One-to-many Head

One-to-one Head

One-to-many Head

One-to-many Head

One-to-one Head

backbone neck head

MobileOne
Block

Fig. 2: Improved YOLOv10 network architecture

on low-power hardware. In particular, depthwise sep-
arable convolution, as one of the key components of
MobileOneBlock, decomposes the standard convolution
operation into depthwise convolution and pointwise con-
volution, effectively reducing computational load and
thus improving overall computational efficiency. The
core idea of depthwise separable convolution is to de-
compose the traditional convolution operation into two
steps: Depthwise Convolution and Pointwise Convolu-
tion. Depthwise Convolution applies convolution only
to each input channel.Assume the input feature map
has Cin channels,The size of the convolution kernel is
K × K.Then, for each input channel, an independent
K × K convolution kernel is used. Each convolution
kernel convolves with the corresponding input channel,
producing a single-channel feature map.Each convolution
kernel convolves with the corresponding input channel,
producing a single-channel feature map. The computa-

tional cost is Cin × K × K × H × W .After depthwise
convolution, pointwise convolution fuses all output chan-
nels using a 1×1 convolution. The role of this convolution
kernel is to combine the outputs of the depthwise convo-
lution across channels to generate the final output feature
map. Assume the number of channels in the output
feature map is Cout ,then the computational cost of the
pointwise convolution is Cin×Cout×H×W .Compared to
traditional convolution, depthwise separable convolution
significantly reduces computational cost and parameter
count. The computational cost of traditional convolution
is Cin×Cout×K×K×H×W ,The computational cost of
depthwise separable convolution is the sum of the com-
putational costs of depthwise convolution and pointwise
convolution, that is Cin×K×K×H×W+Cin×Cout×H×
W ,through this decomposition, the computational cost of
depthwise separable convolution is greatly reduced com-
pared to traditional convolution.Especially when both
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Fig. 3: MobileOneBlock Structure Diagram.

the number of input channels Cin and output channels
Cout are large, depthwise separable convolution can
greatly reduce the computational cost.MobileOneBlock
uses the ReLU function as the activation function. ReLU
is a simple and efficient activation function, and due
to its superior computational efficiency and gradient
propagation performance, it has become a commonly
used activation function in deep neural networks. Its
formula is as follows:

ReLU(x) = max(0, x) (1)

In traditional activation functions (such as Sigmoid
and Tanh), especially in deep networks, the vanishing
gradient problem is common, making the training process
difficult. However, ReLU has a gradient of 1 in the
positive range, which prevents the vanishing gradient
issue, thus accelerating training.

B. C3_Star_EMA
StarNet [20] is a neural network architecture designed

based on a ’star-shaped’ information transmission mech-
anism. By introducing efficient interaction between the
central node and peripheral nodes, it combines global
information capture with local detail representation,
significantly reducing the computational complexity of
traditional fully connected networks, making it more ef-
ficient when processing long sequences or high-resolution
data. The StarNet structure is shown in Figure 4.

The C3 module is a key component in YOLO for
efficient feature extraction and fusion, designed to en-
hance the performance of the model in object detec-
tion tasks. It combines multiple Bottleneck layers to
strengthen feature representation while maintaining a
lightweight computational load. Comprising three con-
volutional layers and several Bottleneck modules, the

first convolutional layer has a stride of 2, which halves
the feature map size to increase the receptive field
and reduce computational costs. Additionally, the C3
module optimizes feature propagation and information
flow through residual connections and multi-scale infor-
mation fusion. This structural design not only improves
the efficiency of feature extraction but also reduces
the number of parameters through lightweight design,
thereby accelerating the inference process.

StarNet adopts a four-stage hierarchical structure,
performs downsampling through convolutional layers,
and uses an improved demonstration block for feature
extraction. To enhance computational efficiency, StarNet
replaces the original layer normalization with batch nor-
malization and places it after the depthwise convolution.
Drawing on the design of MobileNeXt [21], StarNet adds
depthwise convolution at the end of each block, with a
fixed channel expansion factor of 4, doubling the network
width at each stage. In addition, StarNet replaces the
GELU activation function with the ReLU6 function
and flexibly adjusts the network scale by modifying the
number of blocks and input embedding channels.

The workflow of StarNet is divided into two stages:
the information aggregation stage and the information
distribution stage. The information aggregation stage
involves passing the local features of each peripheral
node to the central node. The central node uses weighted
summation, attention mechanisms, or other aggregation
methods to integrate the local features into a global
representation. Mathematically, this can be expressed
as:

h =
n∑

i=1

αixi (2)

Where,
αi =

exp(φ(xi))∑n
j=1 exp(φ(xj))

(3)

Here, xi represents the features of the i-th peripheral
node.Function φ(·) for calculating similarity or impor-
tance scores.The information distribution stage refers to
the process where, after obtaining the global representa-
tion h, the central node feeds it back to each peripheral
node. The peripheral nodes use this global information to
update their own features, allowing the local features to
incorporate global context. The update formula can be a
simple summation or involve a nonlinear transformation:

x′
i = f(xi, h) (4)

Here, f is typically implemented as a concatenation fol-
lowed by a multilayer perceptron (MLP) or convolutional
layers, etc.

EMA [22] is an efficient multi-scale attention module
that reshapes part of the channels to serve as the
batch dimension and divides the channel dimension
into multiple sub-feature groups, thereby optimizing the
distribution of spatial semantic features within each
feature group. This strategy not only retains key channel
information but also significantly reduces computational
overhead, enhancing the model’s efficiency. EMA uses
a 1×1 convolution shared component of the Coordinate
Attention (CA) module, which is placed in parallel with
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another 3×3 convolution to improve the model’s response
speed. This parallel substructure effectively aggregates
multi-scale spatial information, allowing the model to
accelerate inference speed while more accurately ex-
tracting and expressing features. Compared to tradi-
tional serial computation methods, the parallel design of
EMA effectively avoids lengthy sequential processing and
excessively deep network structures, thereby reducing
computational burdens while maintaining excellent fea-
ture expression ability. In terms of feature fusion, EMA
further introduces a cross-dimensional interaction mech-
anism to ensure that channel information and spatial
information can fully complement each other, thereby
enhancing the completeness of feature representation.
This innovative design not only strengthens the model’s
ability to capture local details but also improves its
ability to model global structures, making EMA perform
better in computer vision tasks such as classification,
object detection, and semantic segmentation. The EMA
structure is shown in Figure 5.

This paper integrates the STAR and EMA mod-
ules into the C3 structure, innovatively proposing the
C3_Star_EMA module. This module combines the ad-
vantages of the above components, not only enhancing
the diversity of feature flow but also strengthening gradi-
ent propagation through a more efficient skip connection
mechanism, reducing information loss. At the same time,
the introduction of EMA further strengthens the inter-
action between channels and spatial information, making
the model more accurate in small object detection and
boundary area recognition.

Furthermore, the parallel substructure design of EMA
ensures that C3_Star_EMA significantly reduces com-
putational costs while enhancing feature extraction ca-
pabilities. This allows the module to perform better
in object detection and semantic segmentation tasks,

enabling it to more effectively distinguish between fore-
ground and background, thus improving detection accu-
racy. Additionally, thanks to its efficient computational
characteristics, C3_Star_EMA is also highly suitable for
lightweight model deployment, demonstrating excellent
performance in efficient object detection tasks.

C. C2FAFF
In computer vision tasks (such as object detection,

semantic segmentation, and image classification), multi-
level feature fusion is crucial for improving model perfor-
mance. Deep neural networks typically extract features
at different levels, where shallow features contain rich
local detail information (such as textures and edges),
while deep features carry high-level semantic informa-
tion, but often lack spatial details. However, traditional
feature fusion methods have certain limitations: fixed-
weight fusion is difficult to adapt to changes in input data
and can lead to information loss. While concatenation
fusion can integrate multi-level information, it increases
computational costs and may introduce feature redun-
dancy. Traditional attention mechanisms focus only on
channel or spatial information, making it difficult to
flexibly adjust the weights of cross-scale features, limiting
the effectiveness of fusion.

To address the above issues, this paper introduces
the AFF [23] (Adaptive Feature Fusion) module, the
structure of which is shown in Figure 6.

AFF dynamically computes the importance of features
at different levels through an attention mechanism and
implements adaptive fusion, ensuring the effectiveness of
information interaction.

Overall, AFF uses the Channel Attention (CA) mech-
anism to calculate the fusion ratio of different fea-
tures, which is equivalent to ”extracting global semantic
features” and retaining important information in the

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2673-2685

 
______________________________________________________________________________________ 



input

h
c w

h w
c//g

g

h w
c//g

h w
c//g

...

h w
c//g g

X Avg Pool
Y Avg Pool

Concat + 1X1

Sigm
oid

Sigm
oid

*

Group N
om

X Avg Pool
Y Avg Pool

M
a tum

l

Concat + 1X1

+ * h
c w

output

X Avg Pool
Y Avg Pool

M
a tum

l
c//g x h x w

c//g x 1 x 1

c//g x h x w

c//g x 1 x 1

1 x h x w

1 x h x w

Sigmoid

X

X

g * batch size

g * batch size

Fig. 5: EMA network architecture

Fig. 6: AFF Structure Diagram.

channel dimension. By normalizing the weight values
using a Sigmoid activation function, AFF can precisely
adjust feature contributions, making fusion smarter
and more efficient, thereby significantly improving the
model’s performance in various computer vision tasks.
The formula for AFF is as follows:

Z = M(X ⊕ Y )⊙X + (1−M(X ⊕ Y ))⊙ Y, (5)

⊕epresents pixel-wise summation as the initial feature.
Z represents the fused feature. X and Y are the input
features.

IV. Experimental Design and Implementation
A. Dataset Introduction

NEU-DET is a standard dataset for metal surface de-
fect detection created by Northeastern University, widely
used in deep learning, computer vision, and industrial

automation fields, particularly for object detection tasks,
helping to improve the accuracy and efficiency of quality
inspection in smart manufacturing. The dataset contains
1,800 high-quality images (200 × 200 pixel resolution)
and is divided into training (1,440 images), testing (180
images), and validation (180 images) sets in an 8:1:1 ratio
to ensure the model’s generalization capability.

The NEU-DET dataset covers six typical metal surface
defects that are extremely common in metal processing
and production, and they have a significant impact on
product quality and safety. These defects include rolled-
in scale, which is caused by the oxidation layer or impuri-
ties on the material surface being pressed into the metal
surface during processing, resulting in scaly or uneven
textures that can affect the aesthetic appearance of the
metal and lead to cracks or spalling in subsequent steps;
scratches, which are linear marks caused by mechanical
friction from equipment wear, workpiece collisions, or
transportation friction, reducing product appearance
quality and potentially becoming stress concentration
points that affect mechanical properties; patches, which
are uneven areas caused by oxidation or material ad-
hesion, often appearing in localized positions on the
metal surface due to improper heat treatment, chemical
reactions, or material contamination, and can affect
corrosion resistance and coating adhesion; inclusions,
which are material overlaps caused by impurities in the
metal material or welding defects, such as oxides, sulfides,
or other non-metallic substances, reducing the strength
and toughness of the metal and potentially leading
to crack initiation and propagation; cracks, which are
serious defects in the metal surface or interior caused by
uneven cooling, material fatigue, or stress concentration,
severely affecting the integrity and safety of the metal
structure and leading to early failure; and pitted surface,
characterized by depressed areas caused by corrosion,
oxidation, or bubble ruptures, appearing as irregular pits
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or cavities that reduce the metal’s corrosion resistance
and fatigue strength.

B. Evaluation Metrics

To demonstrate the effectiveness of the proposed
improved model, the following metrics will be used for
evaluation:

Precision (P): Precision is an important metric for
measuring the accuracy of a classification model’s pre-
dictions, especially for binary classification problems. It
describes the proportion of true positive samples among
those predicted as positive by the model. Specifically,
precision reflects the accuracy of the model when pre-
dicting positive cases, and its formula is as follows:

P =
TP

TP + FP
(6)

TP (True Positive): The number of samples correctly
predicted as positive by the model. FP (False Positive):
The number of samples incorrectly predicted as positive,
but actually negative.

Recall (R): Recall is used to measure the performance
of a classification model when handling imbalanced
datasets, particularly its ability to identify actual pos-
itive samples. Unlike precision, which focuses on the
accuracy of the model when predicting positive cases,
recall focuses on how many of the actual positive samples
are correctly predicted as positive. Its formula is as
follows:

R =
TP

TP + FN
(7)

TP (True Positive): The number of samples correctly
predicted as positive by the model. FN (False Negative):
The number of samples incorrectly predicted as negative,
but actually positive.

Params (Parameters): In machine learning or deep
learning models, parameters refer to the adjustable
variables within the model that define its structure and
behavior. The types and number of parameters may
vary across different types of models. By adjusting these
parameters, the model can learn and optimize during
the training process, thereby improving its predictive
performance.

GFLOPS (Giga Floating Point Operations Per Sec-
ond): GFLOPS is a unit for measuring the speed at which
a computer or computing hardware (such as CPU, GPU,
etc.) processes floating-point operations, representing
the number of floating-point operations the hardware
can execute per second. It is commonly used to assess
the computational capability of processors, especially in
applications that require a large amount of floating-point
calculations, such as deep learning, scientific computing,
etc.

Through the comprehensive evaluation of the above
metrics, this paper aims to demonstrate the advantages
of the proposed improved model in various aspects of
performance, further validating its effectiveness.

Fig. 7: FP-R curve of YOLOv10 Algorithm.

Fig. 8: FP-R Curve of the Improved YOLOv10
Algorithm.

C. Comparative Experiment
Figures 7 and 8 show the PR curves of the model

before and after improvement, reflecting the performance
of the original YOLOv10 and the improved YOLOv10
under the same experimental conditions. The curves
display the detection accuracy for each type of defect
as well as the average detection accuracy for all defects.
As shown in Figures 6 and 7, despite the lightweight
modification to the original model, the improved model
still maintains a high detection accuracy across various
defects, with even significant improvements. Specifically,
the overall detection accuracy of the improved model
increased from 74.3% to 79.2%, an improvement of 4.9
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percentage points. Additionally, the improved model
showed significant improvements in detecting specific
defects, exhibiting stronger precision. For example, the
detection accuracy for crazing increased from 31.9% to
48.8%, a 16.9% improvement; for patches, it increased
from 90.0% to 90.4%, a 0.4% improvement; for pit-
ted_surface, it increased from 93.2% to 95.2%, a 2%
improvement; and for rolled-in_scale, it increased from
56.4% to 67.1%, a 10.7% improvement. These results
indicate that, after lightweight processing, the improved
model not only retains strong feature extraction capa-
bilities but also enhances detection accuracy for small
targets, especially demonstrating stronger adaptability
in complex environments, making it particularly suitable
for industrial applications such as real-time steel surface
defect detection.

Figures 9 and 10 present a detailed comparison of
the prediction results of the model before and after
the improvement process. Upon examining these images,
several key enhancements in the improved model become
immediately apparent. The improved model demon-
strates a notable increase in detection accuracy, defect
type recognition accuracy, and the ability to distinguish
between different types of defects. This enhanced per-
formance is evident in the more precise and reliable
identification of defects, which is crucial for accurate
quality control in industrial settings.

Compared to the original model, the improved model
has made significant strides in prediction accuracy. It ex-
hibits higher confidence levels in its predictions, which is
a testament to its enhanced robustness. This robustness
is particularly important in dynamic industrial environ-
ments where conditions can vary widely. The improved
model effectively reduces both missed detections and
false positives, which are critical factors in maintaining
high detection reliability. By minimizing these errors,
the model shows higher stability and consistency in its
performance, which is essential for real-time applications.

Moreover, the improved model’s ability to handle
complex and dynamic industrial environments is a signif-
icant advantage. Its enhanced practicality is particularly
evident in real-time defect detection tasks, where speed
and accuracy are paramount. The model’s comprehensive
improvements in accuracy, efficiency, and robustness
make it a more reliable tool for high-precision and real-
time steel surface defect detection.

In summary, the improved model not only outperforms
the original model in terms of detection accuracy and
robustness but also demonstrates a higher level of prac-
ticality and reliability in complex industrial applications.
These enhancements collectively make the improved
model a superior choice for addressing the challenges
of steel surface defect detection, ensuring higher produc-
tion quality and efficiency in the steel manufacturing
industry.

D. Ablation Study
To validate the effectiveness of each improvement

module in terms of object detection accuracy and
model lightweighting, this paper designs four ablation
experiments. All experiments were conducted under the

Fig. 9: Detection effect of YOLOv10 model.

Fig. 10: The detection effect of the improved YOLOv10
model.

same environment and training parameters to ensure
the comparability of the results. During the experiment,
both the experimental group and the control group were
trained and tested, and the performance metrics for each
group were recorded in detail. The experimental results
are shown in Table 1.

In the first experiment, we used the original YOLOv10
model. This model achieved an mAP (mean Average
Precision) value of 0.743 on the standard test set, with
a parameter count of 2.7M. As a baseline, the first
experiment provides a foundation for comparison in
subsequent experiments.

In the second experiment, we added our custom
C3_Star_EMA module to the original YOLOv10 model.
This module combines the Star network and the EMA
(Exponential Moving Average) module, aiming to en-
hance the diversity of feature flow, reduce information
loss, and strengthen the interactions across channels and
spatial dimensions. By doing so, the C3_Star_EMA
module effectively improved the model’s feature repre-
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TABLE I: Ablation experiments

C3_Star_EMA C2FAFF MobileOneBlock AP50 parameters(M) GFLOAPs

YOLOv10n - - - 74.3 2.7 8.2

YOLOv10n
√

- - 75.7 2.45 8.0

YOLOv10n
√ √

- 76.4 2.4 7.9

YOLOv10n
√ √ √

79.2 2.25 6.7

sentation capability, raising the mAP value to 0.757
while reducing the parameter count to 2.45M. This
shows that the module enhances model accuracy while
effectively reducing computational complexity.

In the third experiment, we introduced the C2fAFF
module. This module dynamically calculates and inte-
grates the importance of features from different layers,
enhancing the interaction of effective information and
thereby improving the model’s detection accuracy. With
the introduction of this module, the mAP value further
increased to 0.764, and the parameter count decreased
to 2.4M, further demonstrating the model’s balance
between efficiency and accuracy.

In the fourth experiment, we incorporated the Mo-
bileOneBlock module, which decomposes standard con-
volution operations into depthwise convolutions and
pointwise convolutions. This significantly reduces the
computational load and improves the model’s computa-
tional efficiency. The introduction of this module resulted
in a significant increase in the mAP value to 0.792, while
the parameter count decreased to 2.25M, indicating that
it can notably improve detection accuracy while reducing
the model’s size.

To validate the overall effectiveness of this algorithm,
this paper compares the improved YOLOv10 model
with several classic object detection algorithms, includ-
ing Faster R-CNN, YOLOv3, YOLOv5s, YOLOv7s,
YOLOv8s, YOLOvX_s, and YOLOv10n. The experi-
mental results are shown in Table 2.

The experimental data shows that the improved model
outperforms other classic models in terms of both ac-
curacy and parameter count. Specifically, compared to
Faster R-CNN, the mAP increased by 0.018, while the
parameter count decreased by 134.85M; compared to
YOLOv3, the mAP increased by 0.018, and the param-
eter count decreased by 7.35M; compared to YOLOv5s,
the mAP increased by 0.046, and the parameter count
decreased by 5.05M; compared to YOLOv7s, the mAP
increased by 0.071, and the parameter count decreased
by 7.05M; compared to YOLOv8s, the mAP increased
by 0.005, and the parameter count decreased by 8.85M;
compared to YOLOvX_s, the mAP increased by 0.104,
and the parameter count decreased by 6.65M; compared
to YOLOv10n, the mAP increased by 0.049, and the
parameter count decreased by 0.45M.

In summary, the improved approach proposed in this
study has made significant breakthroughs in several
aspects. Not only has it improved object detection
accuracy, but it has also significantly reduced the model’s
parameter count while ensuring efficient computation.

Through the collaborative optimization of various mod-
ules, such as the self-designed C3_Star_EMA module,
C2fAFF module, and MobileOneBlock module, this
model has further enhanced its adaptability to small
targets and complex scenarios while maintaining high
efficiency. Especially in tasks like steel surface defect
detection, the model has demonstrated exceptional per-
formance, proving its immense potential in practical
applications.

This model has shown excellent performance across
various classical object detection algorithms, especially
in balancing accuracy and computational complexity.
For example, despite extensive optimizations for model
lightweighting, the improved YOLOv10 model still
achieves higher mAP values on several commonly used
benchmark datasets. Through the synergistic effect of
the various modules, the model’s detection capability,
particularly for small targets, has been significantly
enhanced, even in the presence of noise and complex
backgrounds.

Additionally, the reduction in parameter count not
only alleviates the computational burden but also
greatly improves the model’s adaptability in resource-
constrained environments. This makes the model well-
suited for real-time applications in industrial production
scenarios, particularly for automated defect detection
and quality monitoring on high-speed production lines.

Overall, the improved approach proposed in this study
not only overcomes the limitations of traditional object
detection methods in terms of accuracy and computa-
tional efficiency but also provides an efficient and reliable
solution for industrial automation, intelligent manu-
facturing, and other fields. With further optimization
and the expansion of application scenarios, this model
is expected to deliver even greater value in practical
applications and contribute to the advancement and
innovation of object detection technology.

V. Conclusion

This paper proposes an improved model based on
YOLOv10n for steel surface defect detection tasks.
While maintaining model lightweighting, this study
significantly enhances detection accuracy through an
innovative improvement strategy, achieving a 4.9% in-
crease in mAP. Furthermore, the model’s parameter
count is reduced by 16.7% compared to the original
version, effectively alleviating the computational burden
and improving the model’s adaptability in resource-
constrained environments. Notably, the model’s real-
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TABLE II: Comparison of Detection Performance of Different Algorithms.

Types SSD Fast R-CNN YOLOv3 YOLOv5s YOLOv7s YOLOX_s YOLOv8s YOLOv10n OURS

crazing 45.2 47.4 50.8 42.3 36.8 39.0 50.1 31.9 48.8

inclusion 81.8 78.6 87.0 86.5 86.5 80.3 89.1 83.6 82.6

patches 88.0 95.2 76.2 78.5 76.6 77.0 93.1 90.0 90.4

pitted_surface 84.2 86.9 92.9 93.0 96.1 78.6 78.1 93.2 95.2

rolled-in_scale 60.2 60.5 86.9 86.9 83.1 86.1 72.5 56.4 67.1

scratches 72.2 95.7 70.7 59.6 53.3 62.0 89.2 90.8 91.0

mAP 71.9 77.4 77.4 74.6 72.1 68.8 78.7 74.3 79.2

parameters(M) 21.2 137.1 9.6 7.3 9.3 8.9 11.1 2.7 2.25

GFLOAPs 62.7 20.2 23.6 17.0 26.7 18.2 28.4 8.2 6.9

time performance in industrial scenarios has been sig-
nificantly enhanced.

Steel surface defect detection has high practical value,
especially in industrial production. Rapid and accurate
detection of small defects on steel surfaces is crucial
for production efficiency and product quality. Tradi-
tional defect detection methods rely mostly on manual
inspection or conventional image processing techniques.
These methods are not only time-consuming and labor-
intensive, but also struggle to maintain detection accu-
racy and robustness when dealing with complex back-
grounds and small targets.

This research, based on an improved version of
YOLOv10n, demonstrates strong performance in steel
surface defect detection, particularly in detecting small
targets. Steel surface defects are often tiny and sus-
ceptible to noise interference, making them difficult for
traditional methods to capture efficiently. The proposed
improved model addresses this challenge by employing
various optimization techniques, such as the self-designed
C3_Star_EMA module and the C2fAFF module, sig-
nificantly enhancing sensitivity to small targets and
improving detection accuracy.

Experimental validation shows that the improved
model not only achieves a significant increase in detection
accuracy but also exhibits considerable improvements in
operational efficiency. Compared to traditional methods,
the improved model enables real-time detection of steel
surface defects and maintains high accuracy even in
complex environments. This makes the model highly
practical and operational in real-world industrial applica-
tions, especially for automated defect detection on high-
speed production lines.

Overall, the proposed improved model based on
YOLOv10n successfully balances detection accuracy and
model lightweighting. In the task of steel surface defect
detection, it demonstrates clear advantages in small
target detection and real-time detection capabilities. The
model not only operates stably in complex industrial
environments but also significantly improves detection
efficiency, offering a more efficient and reliable solution
for quality control in industrial production.
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