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Abstract—Orthogonal time frequency space (OTFS) 

modulation has garnered a lot of interest in the context of 
high-speed wireless communication systems because of its 
distinct delay-Doppler signal processing technique. However, 
existing signal detection approaches suffer from feature 
coupling in the delay-Doppler domain and high computational 
complexity. To overcome these challenges, we propose a 
CNN-Attention-LSTM network optimized via the nutcracker 
optimization algorithm (NOA), referred to as NOA-CALNet, 
for efficient signal detection. This network effectively captures 
the sparse characteristics of the channel along the delay 
dimension, dynamically weights key channel response regions, 
enhances the suppression of inter-symbol interference, and 
decodes time-varying correlations along the Doppler dimension. 
By leveraging NOA to automatically optimize hyperparameters, 
the model achieves an optimal configuration for high-precision 
signal detection. Simulation results show that, compared with 
traditional methods such as MMSE and other deep 
learning-based detectors, the proposed model not only 
accurately extracts signal features and reduces the symbol error 
rate but also improves computational efficiency and accelerates 
convergence, demonstrating strong applicability in 
high-mobility communication environments. 
 

Index Terms—deep learning; orthogonal time frequency 
space; nutcracker optimization algorithm; signal detection 
 

I. INTRODUCTION 

 ITH the fast development of wireless 
communication technology, high-mobility scenarios 

such as high-speed rail networks, intelligent connected 
vehicles, and aviation communication systems impose 
increasingly stringent requirements on stable and efficient 
data transmission [1]. Orthogonal frequency division 
multiplexing (OFDM) is widely recognized as one of the 
most commonly used modulation techniques in modern 
wireless communication networks. By utilizing the inverse 
fast Fourier transform (IFFT), OFDM decomposes high-rate 
data streams into multiple mutually orthogonal subcarriers, 
thereby enabling parallel transmission and effectively 
reducing inter-symbol interference (ISI). However, 
Doppler-induced frequency shifts break subcarrier 
orthogonality in high-mobility situations with fast channel 
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fluctuations, resulting in significant performance 
deterioration and severe inter-carrier interference (ICI) [2]. 
Furthermore, the time-varying nature of such channels 
necessitates frequent channel estimation and computationally 
intensive equalization processes. These operations not only 
increase system complexity but also make it challenging to 
maintain reliable communication quality under dynamic 
conditions [3]. 

 Orthogonal time frequency space (OTFS) modulation is 
increasingly regarded as an effective alternative for 
addressing these challenges. Unlike other modulation 
schemes that process signals in the time-frequency (TF) 
domain signal processing, OTFS converts time-varying 
channels into a quasi-static representation by mapping 
signals onto the delay-Doppler (DD) domain. This 
transformation inherently mitigates ISI and ICI while 
leveraging channel diversity, thereby improving spectral 
efficiency and communication robustness[4]. Nevertheless, 
OTFS signal detection remains challenging due to the 
interplay of multipath effects and non-stationary noise. 
Traditional methods like zero-forcing (ZF) and minimum 
mean squared error (MMSE) detection are highly sensitive to 
noise under complex channel conditions, which restricts their 
detection accuracy [5]. Recently, message passing 
(MP)-based detection [6] and unitary approximate message 
passing (UAMP)-based methods [7] have reduced 
computational complexity but demonstrate performance 
degradation in highly scattered environments. 
Complementary approaches based on variational Bayes (VB) 
[8] and expectation propagation (EP) [9] offer partial 
improvements in global convergence and efficiency, yet fail 
to fully resolve these limitations. 

In order to investigate more potent feature-learning 
capabilities, neural network techniques have been 
progressively included into OTFS system signal detection 
due to the quick development of deep learning technology.  
To enhance the precision of estimating the channel, a 
dedicated neural network named CENet  [10] was proposed. 
Subsequently, CCRNet, a recovery network conditioned on 
channel information, was introduced to further boost 
detection capability. Reference  [11] introduced an 
LSTM-based approach for OFDM detection, effectively 
enhancing the extraction capability for temporal features. 
Additionally, a Bayesian-based deep learning detection 
architecture, termed Bayesian parallel interference 
cancellation network (BPICNet), was proposed in [12]. This 
architecture integrates neural networks with parallel 
interference cancellation strategies, demonstrating strong 
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performance in environments with complex interference. In 
[13], an OTFS signal identification framework utilizing a 
two-dimensional convolutional neural network (2D-CNN) 
was proposed. By applying data augmentation strategies to 
expand the training data volume, the system achieved 
improved detection accuracy.  

Existing signal detection algorithms still face challenges in 
effectively modeling the intrinsic relationship between signal 
features and detection objectives, which limits further 
improvements in detection accuracy and results in high 
computational complexity. To overcome these limitations, 
we propose NOA-CALNet, a deep learning-based model for 
OTFS signal detection, incorporating the following key 
enhancements. First, a CNN module with multi-scale 
convolutional kernels is utilized to extract localized structural 
features from the delay-Doppler grid, enabling effective 
capture of multipath delay distributions. Second, a spatial 
attention mechanism adaptively adjusts the weights of 
time-frequency features, suppressing non-diagonal 
interference in the channel matrix. Third, an LSTM module is 
employed to model temporal dependencies and dynamically 
track Doppler-induced frequency shifts in high-mobility 
scenarios, which enhances the adaptability of the model to 
time-varying channels. Finally, NOA-based hyperparameter 
optimization is introduced to mitigate local minima issues 
associated with gradient descent, significantly accelerating 
the training process. 

The rest of this paper is structured as follows: Section Ⅱ 
outlines the fundamental principles of the OTFS system. 
Section Ⅲ presents the proposed NOA-CALNet-based OTFS 
signal detection method. Section Ⅳ discusses the 
experimental results, and finally, Section Ⅴ summarizes the 
findings of this study. 
 

II. SYSTEM MODEL 

A. OTFS Transmitter 

The modulation process of the OTFS system is illustrated 
in Fig. 1. The transmission procedure follows a structured 
sequence: first, the bit information undergoes constellation 
mapping, converting it into modulated symbols. A structured 
collection of modulated symbols of length N M  is created 
by mapping these symbols onto the two-dimensional DD 
domain. These symbols are then grouped into a 2D matrix 

DD
N MX  . Where DD DD[ , ] , 0, , 1, 0, ,x k l X k N l      

1M  represents the transmitted symbol located at the thk  
Doppler index and the  thl  delay index. Subsequently, the 
inverse symplectic finite Fourier transform (ISFFT) is 
applied to map the information symbols from the DD domain 
to the TF domain, producing the transformed matrix 

TF[ , ], 0, 1, 0, 1n m n N m M    X , represented by the 
following expression:  
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Next, the Heisenberg transform is applied to project the 
information symbol TF[ , ]n mX , defined in the TF domain, into 
the time-domain signal  s t  [14], where  s t  is given by: 
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Fig. 1.   OTFS system modulation block diagram 

 

where  f t  is the pulse waveform. At this point, the 
modulation and signal conversion processes at the transmitter 
are completed, and the modulated information  s t  is 
obtained.The channel response characterized in the DD 
domain within OTFS is formulated as [15]: 

      
1

,
P

i i i
i

m m       


    (3) 

where P  is the number of paths,  im  denotes the gain of 
the thi  path, and     is the Dirac function. The 
corresponding delay and Doppler shift for the thi  path are 
denoted by i  and i , respectively, and are defined as:  

 ,i i i i

i i

l l T k k f

M f M NT N
    


   


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where T  represents the symbol period, 1
Tf  , 

i
l  and  

i
k  

denote the delay index and Doppler shift index, respectively, 
both being integers.  
 

B. OTFS Receiver 

After  s t  propagating through the delay-Doppler channel, 
the received signal  z t  at the receiver is expressed as: 
          , exp 2 d dz t m s t j t w t               (5) 

where  w t  denotes additive Gaussian white noise (AWGN) 
with  20, . Subsequently, the received signal  z t  is 
processed by applying the Wigner transform, through which 
the information symbols TF[ , ]n mY  in the TF domain can be 
obtained. This relationship can be expressed as: 
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where  , ,f zA    denotes the cross-ambiguity function and 
 f t  represents the waveform pulse at the receiver. The 

information symbol  DD ,y k l  is then obtained by applying 
the symplectic finite Fourier transform (SFFT) to the signal, 
which converts it from the TF domain to the DD domain. 
This may be represented as:  
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In summary, the input-output connection of the OTFS 
system can be expressed as follows [16]: 
 y = Hx + w  (8) 

where  DD ,x k l  denotes the transmitted symbols arranged 
into a vector x , and  DD ,y k l  represents the received 
symbols similarly organized into a vector y , both having 
dimensions of 1NM  . H  Is the complex 2D channel 
description matrix, and w  indicates the noise vector. Finally, 
de-mapping is applied to the received symbol  DD ,y k l  to 
recover the transmitted bit information. 
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Fig. 2.  CALNet model structure 

 
III. THE PROPOSED NOA-CALNET MODEL 

We propose an NOA-CALNet model for OTFS system 
signal detection. When applying this model for detection, a 
CNN first extracts local spatial features of the delay-Doppler 
domain signals. Specifically, convolutional kernels are 
utilized to capture signal intensity variations and 
characteristic patterns across different delay-Doppler regions, 
thus obtaining detailed local feature information. 
Subsequently, an attention mechanism is introduced, 
enabling the model to automatically identify and enhance key 
channel features while effectively suppressing irrelevant 
interference. This significantly improves feature-learning 
accuracy and helps the network focus more precisely on 
regions containing richer information. Next, an LSTM 
network is employed to model the temporal characteristics of 
the signals, leveraging its gating mechanisms to capture 
long-term dependencies and thus extract global correlation 
information within the time sequences. Finally, the 
nutcracker optimization algorithm is used to dynamically 
optimize multiple hyperparameters, such as learning rate and 
regularization coefficients, achieving the optimal 
configuration for the model. The architecture of the proposed 
model is illustrated in Fig. 2. 
 

A. CNN layer architecture design 

In the OTFS signal detection task, local spatial features are 
extracted from received signals using CNNs [17], thereby 
enhancing the representational capability for signals in the 
DD domain. In this paper, a complex signal decomposition 
strategy is adopted, where the received signal y  of the OTFS 
system is decomposed into its real and imaginary parts, 
expressed respectively as: 
    real imag,   y y y y  (9) 

Then the CNN receives the signal as: 

 0
real

imag

N C 
  
 

y
Y

y
  (10) 

where N  denotes the number of time steps in the feature 
sequence, and the initial number of channels 0C  is set to 1. In 
this study, two convolutional layers are utilized to extract 
features from the input signals. The first convolutional layer 
primarily captures local low-level features, such as channel 
impulse response characteristics induced by multipath effects, 
enhancing the fundamental morphological information of the 
signal to serve as a basis for deeper feature extraction in 

subsequent layers. The second convolutional layer further 
extracts more abstract time-frequency features, which 
enhances the robustness of the model against complex 
channel fading and noisy environments. 

Let     ll N CY   represent the input of the thl  layer,  
     1l ll K C C W   denote the convolution kernel, K  denote 

the kernel size,  1lC   represent the number of input channels 
from the previous layer,  lC  represent the number of output 
channels in the current layer, and  lb  denote the bias term. 
The computation performed by the CNN layer can be 
mathematically described as follows: 

         1l l l lf   Y W Y b  (11) 

where   denotes the convolution operation, and  f   
represents the activation function. 
 

B. Attention mechanism 

A squeeze-and-excitation (SE) attention module is 
introduced after the CNN to adaptively reweight the 
extracted channel features. The main process consists of three 
stages: squeeze, adaptive excitation, and channel 
recalibration[18]. For the OTFS signal detection task, 
considering the varying importance of different 
delay-Doppler regions, global average pooling is applied to 
each channel to compress its spatial information into a single 
scalar value. The global representation of the thc  channel is 
defined as: 

    
1 1

1
, ,

M N

i j

z c i j c
M N  


 Y  (12) 

where M  and N  are the spatial dimensions along the delay 
and Doppler axes, respectively, and the resulting vector z  is 
the global statistical representation used to generate channel 
attention, capturing the overall response of each feature 
channel across the OTFS grid. A fully connected network is 
employed to perform a nonlinear transformation on the 
aggregated vector, generating activation weights for each 
channel. To reduce the number of parameters and prevent 
overfitting, a bottleneck structure is typically adopted. 
Specifically, the vector z  is first projected into a 
lower-dimensional space of size c

r  through a fully connected 
layer, where r  is the reduction ratio (set to 4 in this work),  
and is subsequently passed through a ReLU activation to 
obtain s . Then, a second fully connected layer is applied to 
project s  back to a c-dimensional vector, and a Sigmoid 
function is used to normalize the output to the range [0,1] , 
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where the resulting vector w  is the set of attention weights 
assigned to each channel. 

Finally, the activation weights w  are used to scale each 
channel of the original feature map Y , resulting in the 
reweighted output feature map, where each channel is 
adaptively emphasized according to its learned importance: 
  Y = w Y  (13) 

This channel-wise multiplication operation enhances the 
feature channels that are more important within the OTFS 
grid, thereby improving the ability of the subsequent LSTM 
to model the correlation in the symbol sequence. 
 

C. LTSM layer model design 

Due to multipath interference and channel time variability, 
there exists a temporal correlation between adjacent symbols. 
The extracted feature sequences are processed using an 
LSTM network [19] in order to model the underlying 
temporal dependency. LSTM utilizes a gating mechanism to 
maintain long-term states and prevent gradient vanishing, 
enabling the accurate modeling of temporal relationships 
across extended sequences. To exploit this capability for 
modeling inter-symbol dependencies, the feature maps are 
reshaped into one-dimensional sequences and fed into the 
LSTM module in order. The network sequentially processes 
the input and outputs the detection result for each symbol 
step-by-step. At each step, contextual information from 
previously detected symbols is leveraged to enhance the 
reliability of subsequent decisions. The architecture of the 
LSTM cell is illustrated in Fig. 3. 

The forget gate tf  in the LSTM unit is used to determine 
whether the historical state information in the current symbol 
sequence should be retained, thereby enabling adaptation to 
dynamically changing channel conditions. The input gate ti , 
on the other hand, controls the extent to which the extracted 
feature information from the current received symbol should 
be written into the cell state tC . The cell state is then updated 
by combining the retained past information and the newly 
selected input features, where the updated cell state is 
computed as: 
 1t t t t tC f C i C     (14) 
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Fig. 3.  LSTM cell structure 

 
Finally, the output gate to  controls the amount of 

information released from the current cell state to generate 
the hidden state th , which integrates both historical and 
current features and serves as the output for the final symbol 
decision. 
  1t o t o t oo W x U h b     (15) 

  tanht t th o C   (16) 

where tx  is the feature vector of the reconstructed symbol at 

time step t , 1th   is the signal hidden state from the previous 

time step, oW  and oU  are the time weight matrices, ob  is the 

time bias term. 
The output of the LSTM module is passed through a fully 

connected layer followed by a softmax classification layer to 
produce a probability distribution over modulation classes for 
each symbol. Symbol detection is then performed by 
selecting the constellation point corresponding to the highest 
probability, thereby reconstructing the transmitted symbol 
sequence x̂ . This end-to-end detection process directly 
optimizes the symbol mapping accuracy by minimizing the 
symbol error rate (SER), achieving a nonlinear inverse 
transformation from received signal y  to the original 

transmitted data x̂ . 
 

D. Nutcracker optimization algorithm design 

Important factors, such as the regularization factor and 
learning rate, influence the performance of the network in the 
proposed model architecture. Traditional optimization 
methods exhibit two main issues: first, gradient descent 
algorithms are prone to becoming trapped in local optima; 
second, manually tuning parameters is both time-consuming 
and unable to effectively adapt to dynamic channel 
environments. To address these issues, we adopt the 
nutcracker optimization algorithm [20], which automatically 
identifies the optimal parameter combinations through an 
intelligent search strategy. This scheme specifically focuses 
on optimizing three core parameters: the learning rate  , 
which controls the granularity of gradient updates to prevent 
oscillation or stagnation during training; the L2 
regularization coefficient  , which balances model 
complexity and generalization capability; and the learning 
rate decay factor  , which dynamically adjusts the learning 
step size to ensure stable convergence in the later stages of 
training. 

The fundamental idea behind the nutcracker optimization 
algorithm [21] is derived from nutcrackers' foraging and 
food-caching habits. The algorithm consists of two key 
phases. First, the foraging and storage strategy initializes 
multiple candidate solutions within the search space and 
employs heuristic methods for random exploration to identify 
optimal hyperparameter combinations. Second, the 
cache-search and recovery strategy adaptively adjusts the 
search scope during the optimization process by integrating 
global exploration with local exploitation mechanisms, 
thereby guiding hyperparameters progressively toward the 
global optimum and accelerating convergence. Set the 
maximum number of iterations ( NM ) and population size 
( NP ) first, then initialize the hyperparameter set at random as 
follows: 

         0 0 0 0, ,    (17) 

where  0
min max[ , ]   ,  0

min max[ , ]   , 
 0

min, max[ ]   .Second, define the fitness function  f   to 
measure the symbol error rate of the model on the validation 
set, thereby providing a criterion for evaluating the quality of 
hyperparameters during the optimization process: 
    SERf    (18) 

Determine which candidate hyperparameter combination 
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 i  has the highest fitness value, then note the current best 
option. 

During the foraging and storage phase, the NOA searches 
the hyperparameter space by employing random 
perturbations, enabling individuals to perform global 
exploration: 

      1 0,1t t       (19) 

where   is the adaptive step size and  0,1  is a random 
variable drawn from the standard normal distribution, used to 
simulate the nature-inspired search strategy. 

In the cache-search and recovery phase, NOA stores 
historically superior hyperparameters and uses them as a 
basis for local optimization: 

       1
best

t t t         (20) 

where   is the adaptive adjustment factor and best  is the 
optimal hyperparameter found during the current search. 
Finally, The optimization process terminates when the 
number of iterations reaches the predefined upper limit NM  
or when the fitness function converges. The optimal 
hyperparameter best  is then output and applied to model 
training.  
 

E. Loss function 

Signal detection is essentially a multi-class classification 
problem, with the primary objective of accurately assigning 
received signals to their corresponding modulation types. 
The loss function should be designed to establish a dynamic 
balance among model convergence speed, classification 
accuracy, and the ability to distinguish challenging samples. 
Therefore, we take the categorical cross-entropy loss function 
as the optimization benchmark. The L2 coefficients are 
dynamically optimized by combining the adaptive 
adjustment mechanism of the NOA. This approach 
effectively balances model complexity and feature 
discrimination capability, significantly enhancing the 
robustness and generalization performance of the detection 
system. The loss function is defined as: 

   2

2
1

ˆlog
C

CL i i
i

L y y W


    (21) 

where C  denotes the total number of categories, iy  is the 
true category label for symbol i , ˆiy  is the probability 
distribution predicted by the model,   is the regularization 
coefficient, and W  is the weight parameter for each layer of 
the model. This loss function measures classification errors 
while simultaneously imposing constraints on the model 
parameters, effectively reducing the risk of overfitting.  
 

IV. EXPERIMENTAL ANALYSIS 

A. Simulation experiment 

The experimental setup of the OTFS system parameters is 
as: 16N M  , 4P  , the maximum delay index  max 6l  , 
the maximum Doppler shift index max 4k  , the carrier 
frequency is 4GHz , and the subcarrier spacing is 15kHz . We 
use a QPSK modulation scheme to construct a constellation 
diagram for symbol mapping. We consider the 300Hz  
Doppler expansion. Under  randomly varying  delay-Doppler 

 
Fig. 4.   NOA-CALNet confusion matrix for test data 

 

channel conditions, we generated 10000 sets of training 
samples for each OTFS frame size to ensure that the model 
could fully learn across diverse channel environments. The 
training dataset and validation dataset are divided according 
to 8:2. 

For the proposed model the parameters are set as: Each of 
the two stacked convolutional layers that make up the CNN 
module has a stride of one and a kernel size of 3×1. The 
number of input channels for these two layers is 32 and 64, 
respectively. The LSTM module sets the number of hidden 
cells to 40. The attention mechanism uses the 
squeeze-and-excitation with the compression ratio set to 4. 
With a population size of 20 and a maximum iteration count 
of 50, the NOA is implemented. The initial learning rate, L2 
regularization coefficient, and learning rate decay factor are 
randomly selected as [0.0001,0.2] , [0.001,0.2] , and [0.1,0.9] , 
respectively. 
 

B. Simulation results analysis 

Fig. 4 illustrates the confusion matrix of the NOA-CALNet 
model on the test set, which displays a clear diagonal pattern, 
reflecting high signal recognition accuracy. Specifically, the 
diagonal elements are significantly higher than the 
off-diagonal elements across all classes, indicating that the 
model demonstrates strong capability in distinguishing 
between different symbols. A comparison between the 
vertical axis (true classes) and the horizontal axis (predicted 
classes) reveals occasional minor misclassifications, 
primarily between the first and third classes. Additionally, a 
small degree of confusion is observed between the second 
and first classes. These misclassifications account for less 
than 1% of the total samples, suggesting that the model can 
reliably recognize signals across all categories, with errors 
occurring only under conditions of strong noise or closely 
spaced symbol boundaries. 

The NOA-CALNet model achieves an overall recognition 
accuracy of 99.05% on the test set. This high level of 
accuracy results from the effective integration of feature 
extraction and temporal sequence modeling within the 
network architecture. Moreover, the attention mechanism 
effectively focuses on key feature regions, further enhancing 
detection performance. Under highly dynamic environments, 
the NOA-based adaptive optimization strategy enables 
efficient exploration of the parameter space and convergence 
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toward optimal solutions, thereby mitigating the effects of 
overfitting and gradient vanishing. 

 

C. Multi-scenario model performance analysis 

The proposed model in our study is compared with 
commonly used models, including CNN, LSTM, 
CNN-LSTM, CNN-LSTM-Attention with the Adam 
optimizer, and the classical signal detection algorithm 
MMSE. Where the deep learning models share the same 
parameter settings as the proposed model in this study. This 
section analyzes the SER of the proposed model and various 
comparison models from two perspectives: the number of 
pilots and different noise environments. 

As illustrated in Fig. 5, when the number of pilot symbols 
increases linearly, the symbol error rate (SER) of each 
algorithm exhibits a logarithmic decay trend, which aligns 
with theoretical expectations. The traditional MMSE detector 
exhibits noticeable accuracy loss within the 0–20 pilot range, 
as a result of instability in the channel matrix caused by its 
ill-conditioned characteristics. Deep learning-based methods 
exhibit relatively high SER due to their limited generalization 
capability in capturing channel characteristics. In contrast, 
NOA-CALNet maintains a low SER at a conductivity 
number of 5. As the number of pilots increases further, the 
SER of NOA-CALNet decreases at a faster rate, clearly 
outperforming the comparison models. This indicates that 
under low-pilot conditions, NOA-CALNet can more 
effectively maintain detection performance, allowing the 
system to allocate more resources to actual data transmission 
and thereby significantly improving overall communication 
efficiency. 

 
Fig. 5.  Variation of SER performance with different numbers of pilots 

 

An analysis of SER curves under Gaussian, Gamma, and 
Rayleigh conditions is conducted to assess the robustness of 
the proposed NOA-CALNet model across varying channel 
environments. In the standard Gaussian noise environment 
(Fig. 6), the SER of all detection methods decreases 
significantly with increasing signal-to-noise ratio (SNR). It is 
worth noting that when the SNR exceeds 8 dB, the proposed 
model exhibits a more pronounced reduction in SER. To 
achieve the same error performance, our model provides an 
SNR gain of nearly 4 dB compared with the conventional 
MMSE algorithm. This demonstrates that, in the presence of 
additive white Gaussian noise (AWGN), the suggested model  

 
Fig. 6.  SER performance variation in Gaussian noise environments 

 
Fig. 7.  SER performance variation in gamma noise environments 

 

is accurate and robustness.  

In the Gamma noise interference scenario (Fig. 7), the 
performance of all baseline models degrades, indicating their 
sensitivity to non-Gaussian heavy-tailed noise. Nevertheless, 
NOA-CALNet consistently achieves the best SER 
performance. Its feature selection mechanism effectively 
suppresses gradient dispersion caused by impulsive noise, 
demonstrating superior robustness in handling bursty and 
strong interference. Gamma noise is typically used to 
simulate non-ideal interference environments, such as areas 
with high electromagnetic disturbance or densely populated 
urban settings. The results suggest that the proposed model 
possesses strong practical applicability and generalization 
potential in real-world deployments. 

Under Rayleigh time-varying fading (Fig. 8), traditional 
detection methods exhibit relatively limited adaptability to 
random channel fluctuations. Deep learning algorithms rely 
on convolutional and recursive structures to mitigate some of 
the effects of fading. Our model achieves a steeper SER 
decay curve by attention-gating and LSTM-based weighted 
diversity strategies. At an SNR of 20 dB, the SER reaches 

32 10 . This validates its adaptability to fast-fading wireless 
channels and its resilience against multipath interference. 

In addition, we compare the SER accuracy of different 
neural network-based detectors in OTFS signal detection. 
The detailed results are provided in Table Ⅰ. 
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Fig. 8.  SER performance variation in Rayleigh noise environment 

 
TABLE Ⅰ  

SER ANALYSIS OF SIGNAL DETECTION ACROSS DIFFERENT MODELS 

SNR BPICNet GNN NOA-CALNet 
10 0.1306 0.1528 0.1289 
15 0.0158 0.0149 0.0132 
20 0.0013 0.0012 0.0009 

 
In summary, NOA-CALNet shows more prominent 

detection performance in multi-scenario experiments. This 
provides valuable insights for future applications in practical 
high-mobility OTFS communication scenarios. 
 

D. Computational complex analysis 

A comparison is conducted between the computational 
demands of the NOA-CALNet framework and the MMSE 
detection method. The overall computational cost of the 
model consists of the forward propagation process and the 
hyperparameter tuning overhead introduced by the NOA. 
However, during the inference phase, only forward 
propagation is required. Therefore, the overall complexity 
during inference can be expressed as: 

   22 2

1

O O
cnnL

l
l

T MN K F MN H MN H


 
       

 
  (22) 

where K  is the kernel size, cnnL  is the number of CNN layers, 

lF  is the number of convolutional filters in each layer, and 
H  is the number of LSTM hidden units. The SE attention 
module introduces only a small number of global average 
pooling and fully connected operations, and its 
computational overhead is negligible.  

Since the network parameters remain fixed during the 
testing phase, the complexity of the model grows linearly as 

2O(( ) )MN . As shown in Table Ⅱ, a notable reduction in 
computational complexity is observed relative to the 
traditional MMSE detector. In high-dimensional OTFS 
systems, its advantage becomes even more pronounced.  
 

TABLE Ⅱ 
COMPUTATIONAL COMPLEXITY 

OTFS detector Computation complexity 

MMSE O((MN)3) 

NOA-CALNet O((MN)2) 

 

V. CONCLUSION 

We propose NOA-CALNet, a model that integrates 

multi-feature extraction and optimization strategies. It 
integrates multi-feature extraction and optimization 
strategies. Experimental results show that NOA-CALNet 
effectively reduces SER under different noise environments. 
Compared to other detection methods, it shows superior 
detection performance across different SNR conditions. In 
terms of computational cost, NOA-CALNet is more efficient 
than the MMSE approach. This makes it more advantageous 
for practical detection applications. 
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