
  

Abstract—Many small targets in UAV aerial photography 

are affected by occlusion and lighting conditions. At present, the 

accuracy of some popular detection models is low, and there are 

missing and false detection phenomena. To solve the above 

problems, we optimized YOLOv8s and presented an advanced 

small target detection algorithm for UAV aerial photography 

(BDS-YOLOv8). First, add a tiny detection head and delete the 

original large detection head. To save the parameter cost of the 

model and realize a complete feature fusion process, the idea of 

a bidirectional feature pyramid network (BiFPN) is introduced 

into the neck network and combined with the detection head 

structure proposed in this paper. Second, the dynamic snake 

convolutional layer (DSConv) replaces the convolutional layer 

in the bottleneck in the backbone network to enhance the ability 

of the model to extract the feature information of small targets. 

Finally, Wise-IoU (WIoU) v3 was employed as the bounding box 

regression loss, and the influence of deviation on the loss was 

dynamically adjusted by introducing weight factors. The model 

was experimented on using the VisDrone2019 dataset. The 

experimental results show that compared with the baseline 

model YOLOv8s, the number of model parameters is reduced 

by 17.5%, and the average detection accuracy of mAP0.5 and 

mAP0.5:0.95 is increased by 5.6% and 3.7%, respectively. 

Index Terms—UAV, Small Target Detection, DSConv, 

BiFPN 

 

I. INTRODUCTION 

AVS have been extensively applied in various fields, 

including urban security [1], traffic monitoring [2], crop 

analysis [3], and many other fields. With the popularization 

of UAV image acquisition, due to factors such as complex 

backgrounds, lighting conditions, high proportion of small 

targets, and occlusion, the recognition of small targets in 

UAV aerial photography has also become a corresponding 

problem. Traditional object detection algorithms have 

difficulty ensuring high-precision detection results when 

processing these images, as exemplified by the Deformable 

Part Model (DPM) [4], which utilizes a trained classifier to 

classify the local image in each window and produces a 

binary classification result. This detection method uses a 

pixel-by-pixel and window-by-window calculation method, 

which is very time-consuming and usually has low detection 

accuracy. Therefore, it is gradually being replaced by some 
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existing mainstream algorithms. 

Currently, mainstream algorithms for object detection can 

be classified into two-stage and single-stage categories. For 

the two-stage algorithm, such as Faster R-CNN [5], a Region 

Proposal Network (RPN) is introduced based on generating 

candidate regions, and the candidate region generation 

process is integrated with the object detection network. It 

dramatically improves the efficiency of detection. Although 

the two-stage algorithm offers certain benefits in detection 

accuracy, it also has shortcomings, such as difficult training 

and optimization. Different from the two-stage algorithm, the 

single-stage algorithm (such as YOLO [6] and SSD [7]) 

eliminates the traditional candidate region generation step 

and simultaneously performs object classification and 

bounding box regression in one forward propagation, which 

has higher computational efficiency and stronger real-time 

performance, but has limited accuracy for small targets. 

Based on the above problems, this paper proposes the 

BDS-YOLOv8 object detection model, aimed at enhancing 

the detection performance for small targets. The key 

contributions are summarized as follows: 

1. We introduced an innovative detection head structure that 

includes a tiny detection head while omitting the large 

detection head. To reduce the model’s parameter cost and 

achieve a complete feature fusion process, the idea of a 

bidirectional feature pyramid network (BiFPN) is used in 

the neck network to combine the detection head structure 

proposed in this paper. 

2. We use Dynamic Snake Convolution (DSConv) to replace 

conventional convolution layers in Bottleneck, enhancing 

the model’s ability to extract feature information of small 

objects under challenging conditions. 

3. We use Wise-IoU (WIoU) v3 as the model’s bounding box 

loss function. It incorporates a dynamic non-monotony 

mechanism and an improved method for gradient gain 

allocation. Introducing a weighting mechanism solves 

traditional IoU’s limitations in dealing with small targets, 

multiple targets, and complex scenarios. 

4. We performed relevant experiments based on the above 

points and visually analyzed the results. 

II. RELATED WORK 

Target detection from the UAV perspective is widely used 

but also faces many challenges. Because of its small targets, 

target occlusion, and target clustering, it has important 

practical value and research significance [8]. With the 

continuous development of object detection technology, 

many excellent methods have emerged to solve the above 

problems. Yang et al. [9] proposed a QueryDet detection 

algorithm, which uses a novel query mechanism cascaded 
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sparse query (CSQ) to accelerate the inference of dense 

object detectors based on feature pyramids. The region 

containing small objects is initially screened by both high and 

low-resolution features. To some extent, it solves the 

problem of poor detection effects of small objects. Yang et al. 

[10] introduced the ClusDet framework, which consists of 

three components: the Clustering Proposal Network (CPNet), 

the Scale Estimation Network (ScaleNet), and the Detection 

Network (DetecNet). CPNet identifies clustered object 

regions from the input image, while ScaleNet predicts their 

corresponding object scales. These normalized regions are 

then passed to DetecNet to perform the final detection, which 

solves the problem of small object clustering to a certain 

extent. Xu et al. [11] proposed an occlusion object detection 

algorithm, which improved the detection performance of 

occlusion scenes through the combination of the occlusion 

sample generation module (OSGM) and the occlusion sample 

inpainting module (OSIM). 

Although the current mainstream object detection methods 

have made remarkable progress in promoting the small target 

detection task of UAVs [12], they are usually accompanied 

by high computational requirements. They are difficult to 

apply to resource-constrained low-power image processors 

[13]. Therefore, it is a great challenge to achieve the balance 

between computing requirements and detection effects, and 

the YOLO series of detection algorithms provides an 

effective solution. In 2016, Joseph Redmon et al. presented 

YOLOv1, the first version of YOLO series. As a single-stage 

object detection algorithm, YOLOv1 provides a new idea for 

object detection. Unlike conventional detectors, it transforms 

object detection into a regression problem, which adopts 

multi-stage processing. The model extracts bounding boxes 

and estimates class probabilities based on the image content. 

Subsequently, Joseph Redmon et al. released YOLOv3 in 

2018, which uses three-level feature maps (small, medium, 

and large) for multi-scale detection and introduces a K-means 

clustering algorithm to optimize the size of anchor frame and 

optimizes the detection performance of small objects. In 2020, 

Ultralytics released YOLOv5, it widely improved in the 

YOLO family and offered models in different sizes (e.g., 

YOLOv5s, v5m, v5l, v5x) to adapt to different hardware 

platforms, providing researchers with more flexible options 

for their mission needs. In 2022, Meituan Vision AI released 

YOLOv6, which uses a lightweight backbone incorporating 

CSPStackRep structures and a PAN topological neck to 

further enhance feature extraction capabilities. In 2023, 

Ultralytics released YOLOv8 based on YOLOv5; as a 

cutting-edge variant within the YOLO family, it abandoned 

the previous Anchor-Base and used the Anchor-Free idea. 

This change means the model no longer relies on predefined 

anchor boxes during object detection but directly predicts the 

bounding boxes and categories of objects, thus reducing the 

complexity of the model structure and enhancing the 

flexibility and efficiency of detection. 

This paper chooses YOLOv8s as the baseline model, 

consisting of backbone, neck, and head networks. The basic 

network structure of YOLOv8s is presented in Fig. 1. It first 

extracts features from input images through the backbone 

network to generate feature maps of different scales. Then, 

these feature maps are fused through the neck network (FPN 

[14]-PAN [15]) to enhance the feature expression and 

multi-scale object detection. Finally, the head network makes 

the prediction, and the object’s bounding box and class 

confidence are output. 

III. IMPROVED MODEL 

Building on the YOLOv8s architecture, we designed the 

BDS-YOLOv8 model. The overall architecture of the model 

is presented in Fig. 2. In the design of the detection head of 

the model, a tiny detection head is added, which removes the 

original large detection head, decreases the number of model 

parameters to a certain degree, and increased the model’s 

attention to small targets. In the backbone network structure 

of the model, the C2f structure is improved, and the 

conventional convolution layer in Bottleneck is replaced with 

a dynamic snake convolution layer, which boosts the model’s 

capability for small target detection in some complicated 

backgrounds to a certain extent. In the neck network structure 

of the model, the module PAN-FPN of YOLOv8 was 
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Fig. 1. YOLOv8 network structure 
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Fig. 2. BDS-YOLOv8 network model 

improved and replaced with the module combining 

bidirectional feature pyramid network and path aggregation 

network (Bi-FPN-PAN), which effectively reduced the 

parameter cost of the model and realized a complete feature 

fusion process. In the model’s loss function, WIoU v3 is used 

as the bounding box regression loss, and the influence of 

deviation on the loss is dynamically adjusted by introducing 

weight factors to optimize the model’s location performance 

to the target bounding box. 

A. Improved detection head 

By default, YOLOv8 is equipped with detection heads of 

three different scales to detect targets. Specifically, the small 

detection head is associated with an 80×80 feature map and is 

responsible for identifying small objects larger than 8×8. The 

medium detection head corresponds to a 40×40 feature map, 

targeting objects exceeding 16×16 in size. Lastly, the large 

detection head operates on a 20×20 feature map and is used 

for detecting large-scale objects with dimensions greater than 

32×32. Through experiments, we find that this head structure 

is ineffective in detecting small objects, so the original head 

structure is improved. 

As illustrated in Fig. 3, the network architecture is 

modified by introducing a new tiny detection head and 

removing the original large detection head. The added tiny 

head is associated with a high-resolution feature map of size 

160×160, which enables the detection of tiny objects larger 

than 4×4. 

Head

80×80

YOLOv8

Tiny Detection 

Head

Head

40×40

20×20

BDS-YOLOv8

80×80

40×40

160×160

Fig. 3. Detection head comparison 

B. Improved backbone 

YOLOv8 combines the conventional convolution module 

and C2f module, wherein the conventional convolution 
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module is employed to capture essential features, while the 

C2f module enhances multi-scale feature fusion capability 

through cross-layer connection and feature aggregation, thus 

strengthening the detection effectiveness of the model. A 

Bottleneck module in the traditional C2f structure uses a 

fixed convolution mode, but the traditional convolution 

operation may not capture the features of small targets 

adequately when dealing with complex backgrounds or 

textures, which tends to cause fuzzy features or information 

loss. Therefore, dynamic snake convolution [16] is used in 

this paper to replace conventional convolution layers in 

Bottleneck, improving the feature extraction effect and 

reducing redundant features, making the model more 

accurate while maintaining efficiency. The four different 

convolution kernels are shown in Fig. 4. (a) standard 

convolution is simple and efficient, (b) dilated convolution 

[17] is suitable for capturing context information, while (c) 

deformable convolution [18], and (d) dynamic snake 

convolution significantly enhance feature extraction 

capabilities for complex backgrounds, small targets and, 

irregular shapes by flexibly adjusting sampling locations. In 

particular, dynamic snake convolution performs best in 

boundary feature extraction and complex scenes. 

 (a) Standard             (b) Dilated           (c) Deformable  (d) Dynamic Snake 

Fig. 4. Comparison of convolution kernel structure 

The inspiration for dynamic snake convolution comes 

from observing and understanding the particularity of tubular 

structures. However, the UAV aerial photography data set 

used in this paper has a tubular structure, such as a road. 

Dynamic snake convolution has a good feature extraction 

ability for this tubular structure. Dynamic snake convolution 

accurately captures the features of tubular structures by 

adaptively focusing on elongated and circuitous local 

structures. The main concept behind this convolution method 

is to enhance the ability to perceive and optimize the feature 

extraction of tubular structures through the convolution 

kernel of dynamic shapes. We improve the C2f structure in 

the YOLOv8s architecture’s backbone and replace the 

conventional convolution layer in Bottleneck with a dynamic 

snake convolution layer. The C2f_DSConv structure is 

shown in Fig. 5. 

Input
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Out
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Input DSConv DSConv A Out
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Fig. 5. C2f_DSConv structure 

C. Improved neck 

In YOLOv8, the feature graph is mainly divided into five 

scale features in order from largest to smallest, and they are 

processed through the FPN (F3–F5) and PAN (P4–P5) 

structures built upon the backbone (B1–B5) and neck 

networks. Initially, five multi-scale features (B1–B5) are 

extracted from the input image by the backbone. B1 is the 

large-scale feature map, which contains rich, detailed 

information and is suitable for small target detection. B5 is a 

small-scale feature map containing high-level semantic 

information suitable for large target detection. Secondly, 

these basic feature maps are further processed and optimized 

by FPN-PAN. FPN uses a top-down structure to improve 

semantic information in multi-scale feature blocks (B3-F3, 

B4-F4) and further improve the expression ability of 

low-level features. FPN-PAN adds a bottom-up structure 

based on FPN. Using bottom-up feature fusion strengthens 

the localization ability of mid-high-level feature maps (F4-P4, 

F5-P5). The position information lost in the semantic 

enhancement of FPN is made up, and the semantic and 

localization features are complemented. 

However, the structure of FPN-PAN still has room for 

improvement when processing small target detection 

scenarios such as UAV aerial photography data. On the one 

hand, insufficient attention to large-scale features (such as B1 
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and B2) may lead to the degradation of small target detection 

performance. On the other hand, long-term up-sampling and 

down-sampling operations may lead to feature degradation or 

information loss. Accordingly, several modifications have 

been applied to the neck structure in this study. 

First, to strengthen the extraction of large-scale semantic 

information (such as B1 and B2) in the traditional FPN-PAN 

structure, we added an upsampling process from F3 to F2 in 

FPN. We fused the features extracted from the B2 layer of the 

backbone network, enhancing the detection performance for 

small targets. Considering the model’s efficiency, we deleted 

the downsampling process from P4 to P5 in PAN to reduce 

the model’s parameters and improve the efficiency. To enrich 

the information content of low-resolution feature maps and 

improve final detection accuracy, an up-sampling layer and a 

1×1 convolution layer were added at each stage of the neck. 

The up-sampling operation progressively enlarges the feature 

map dimensions, while the 1×1 convolution reduces the 

number of channels to retain computational efficiency. We 

call this structure the tiny target detection layer. 

Secondly, the concept of BiFPN [19] is adopted to enhance 

the feature fusion strategy within the neck network. Its core 

objective is to increase the efficiency and frequency of 

multi-scale feature interaction, thereby optimizing the 

exchange of information across different resolutions. This 

facilitates better utilization of low-level detailed features and 

high-level semantic cues, ultimately leading to improved 

detection accuracy. The main realization principle is to 

maintain the feature fusion method of neck FPN and optimize 

the feature fusion method of neck PAN. In the PAN structure, 

when a feature map has two input paths and its resolution 

matches that of a corresponding feature map in the backbone 

network, an additional connection is introduced from the 

backbone to fuse this feature map. 

Finally, each bidirectional (FPN and PAN) path is treated 

as a unit, and the unit is reused to enhance integration. To 

make the model lightweight, we added only additional paths 

of B3-P3 and B4-P4 and used only one cell. The enhanced 

neck structure is illustrated in Fig. 6. 

D. Improved loss function 

In target detection tasks under UAV aerial photography 

scenarios, the significant presence of small objects makes the 

design of a suitable loss function critical for enhancing the 

model’s detection efficiency. The original YOLOv8 adopts 

Distribution Focal Loss (DFL) [20] and Complete 

Intersection over Union (CIoU) [21] to compute the 

bounding box regression loss. However, using CIoU has the 

following shortcomings: First, CIoU aims to optimize factors 

including the bounding box’s aspect proportions and center 

point location, but for small targets with significant shape 

variations, CIoU may struggle to handle precise bounding 

box regression effectively. Second, CIoU does not consider 

the difficulty of regressing a target bounding box. It may 

excessively optimize easily regressed samples while failing 

to provide sufficient optimization for difficult-to-regress 

samples. Third, CIoU involves inverse trigonometric 

functions in its computation, which increases computational 

complexity and resource consumption and is not conducive 

to the lightweight of the model. The calculation formulas for 

CIoU are shown in Equations (1)–(3). 
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In Equation (1), IoU denotes the ratio of the intersection 

area to the union area between the predicted and ground truth 

boxes; ρ(b,bgt) denotes the Euclidean distance between the 

centroids of the predicted and ground truth boxes; c 

represents the diagonal length of the smallest enclosing box 

covering both. In Equation (2), h and w denote the predicted 

box’s height and width, and hgt and wgt describe the height 

and width of the ground truth box. In Equation (3), v 

represents the variation in aspect ratios between the predicted 

and reference boxes, and α is a dynamic factor that modulates 

the relative importance of IoU and aspect ratio in the loss 

computation. 

The previously described CIoU employs a static focusing 

mechanism. In contrast, WIoU comprehensively considers 

IoU, centroid offset, and aspect ratio error while providing an 

improved gradient gain distribution method, successfully 

boosting the model’s effectiveness in complex scenes and 

small target detection. Tong et al. [22] presented WIoU, 

which includes various versions: WIoU v1 constructs an 

attention-based bounding box loss, and WIoU v2 and WIoU 

v3 further incorporate a focusing coefficient. This paper 

adopts the latest version, WIoU v3, which makes use of a 

dual-layer attention module and a dynamic non-monotony 

mechanism, further optimizing the computation of both the 

attention mechanism and the focusing coefficient to make 

them more dynamic and efficient. Its calculation formulas are 

shown in Equations (4)–(6). 
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=         (5) 

1IoUL IoU= −         (6) 

In Equation (4), LIoU denotes the IoU-based loss, which 

evaluates the overlap between the predicted and the ground 

truth boxes. xp and yp represent the coordinates of the 

predicted box, while xgt and ygt represent the coordinates of 

the ground truth box; H and W, respectively, stand for the 

height and width of the two boxes. In Equation (5), β denotes 

the anomaly degree of the predicted box; the smaller the 

anomaly degree, the better the anchor box quality. Using β to 

construct a non-monotony focusing function assigns a 

smaller gradient gain to predicted boxes with larger anomaly 

values, reducing harmful gradients from low-quality training 

samples; α and δare hyperparameters. In Equation (6), IoU 

represents the intersection-over-union between the predicted 

box and the ground truth box, and the meanings of the other 

parameters are shown in Fig. 7. 
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Fig. 7. WIoU v3 

IV. EXPERIMENT AND ANALYSIS 

A. Experimental Dataset 

In this experiment, we use the VisDrone2019 dataset [23], 

a popular UAV aerial photography small target dataset 

gathered and organized by the AISKYEYE team at Tianjin 

University. The images in this dataset were captured from 14 

cities in China, with a high resolution of up to 2000×1500 

pixels. The training set consists of 6,471 images in the 

datasets, with 343,205 annotated targets, averaging 53 

instances per image, indicating a high target density. Some 

targets are even smaller than 8×8 pixels. A total of 548 

images are used for validation and 1,610 for testing in the 

datasets. The dataset covers 10 target types: pedestrian, 

person, bicycle, car, van, truck, tricycle, awning tricycle, bus, 

and motor vehicle. This dataset contains many small targets 

that are densely and unevenly distributed. VisDrone2019 is a 

comprehensive UAV dataset characterized by multi-scale, 

multi-scene, and multi-angle images compared to traditional 

computer vision datasets, making it more challenging than 

general computer vision tasks [24]. 

B. Experimental Equipment and Training Strategy 

The model used in this experiment is YOLOv8. First, it is 

necessary to set up a compatible version of PyTorch. 

Additionally, considering the model’s computational cost 

and the dataset’s size, renting a suitable server is necessary. 

Table I shows the server’s hardware specifications and the 

required software environment configurations, including the 

GPU model, memory, operating system, and deep learning 

framework. 

TABLE I 

TRAINING ENVIRONMENT 

Parameters Configuration 

GPU NVIDIA GeForce RTX3090 

GPU memory size 24 G 

Operating systems ubuntu22.04 

Deep learning architecture PyTorch2.1.2+Cuda11.8 

The YOLOv8 framework enables the creation of five 

model variants based on scale: YOLOv8n, YOLOv8s, 

YOLOv8m, YOLOv8l, and YOLOv8x. Users can balance 

model accuracy and inference speed based on task 

requirements. This paper focuses on small target detection in 

UAV aerial photography and considers speed and accuracy. 

Ultimately, we select the YOLOv8s as the baseline models of 

this study. YOLOv8s has low parameters and computational 

costs while maintaining good performance in small target 

detection. 

During the training phase, essential hyperparameters, 

including batch size, number of epochs, and optimizer were 

meticulously adjusted. The detailed configurations are 

provided in Table Ⅱ. These adjustments improve the model’s 

detection performance while ensuring efficient inference 

speed. 

TABLE Ⅱ 

HYPERPARAMETERS FOR MODEL TRAINING 

Parameters Setup 

Epochs 200 

Input image size 640 × 640 

Batch size 6 

Momentum 0.932 

Initial learning rate 0.01 

Final learning rate 

Optimizer 

0.0001 

SGD 

C. Evaluation Metrics 

This paper adopts precision, recall, mAP0.5, and 

mAP0.5:0.95 as evaluation metrics to evaluate the improved 

model’s detection performance. These metrics are defined in 

detail below. 

Precision quantifies the ratio of true positive predictions to 

the total number of instances classified as positive. This 

process is mathematically defined as: 

TP
Precision

TP FP
=

+
        (7) 

Recall measures the model’s ability to detect all relevant 

positive instances within the dataset. This process is 

mathematically defined as: 

TP
Recll

TP FN
=

+
        (8) 

Average Precision (AP) is obtained by computing the 

precision for each class based on ranked outputs and then 

taking the average across all classes. This process is 

mathematically defined as: 

1

0
( ) ( )AP Precision Recall d Recall=     (9) 

The computation of Mean Average Precision (mAP) 

involves two critical steps: (a) determining AP for each class, 

and (b) calculating their mean value. This process is 

mathematically defined as: 

1

1
i

N

i

mAP AP
N =

=         (10) 

𝑖 represents the class index, and 𝑁 denotes the number of 

categories in the training dataset. mAP0.5 refers to the mean 

average precision across all classes when the IoU threshold is 

set to 0.5. mAP0.5:0.95 represents the mean average 

precision calculated over IoU thresholds ranging from 0.5 to 

0.95. 
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D. Comparative Experiments 

To verify whether the proposed detection head structure 

can achieve the best experimental results under the 

corresponding conditions, we performed a comparative 

analysis of the detection head based on YOLOv8s using the 

VisDrone2019 dataset. Under the influence of the BiFPN 

concept in the neck network, we tested different detection 

head structures to evaluate their effects on the model. 

First, we applied the concept of BiFPN to improve the 

neck network. Then, we tested the model using different 

detection head structures. In our experiments, we defined 

four different models, the first being Baseline Model 1 

(YOLOv8s), Model 2 (after improving the neck network, 

adding a tiny detection head), Model 3 (after improving the 

neck network, adding a tiny detection head and removing the 

large detection head), and Model 4 (after improving the neck 

network, using the default detection head structure). The 

experimental results show that after adding a tiny detection 

head and removing the large detection head, the model 

achieved the highest average precision, and the number of 

model parameters significantly decreased, as shown in Table 

Ⅲ. Model 2, which added a tiny detection head, also 

achieved good results but had a higher parameter count than 

Model 3. Model 4, which used the original detection head 

structure after applying BiFPN to the neck network, 

performed much worse than Model 3. Based on these 

findings, we chose to add a tiny detection head and remove 

the large detection head. Although this choice increases the 

computational cost of the model, it maximizes the accuracy 

of small target detection. 

TABLE Ⅲ 

COMPARATIVE EXPERIMENT OF DETECTION HEADS 

Models\Metrics mAP0.5/% mAP0.5:0.95/% Parameters/106 

Baseline 39.1 23.4 11.1 

Model2 43.9 26.8 10.6 

Model3 43.9 26.9 7.47 

Model4 38.9 23.3 11.1 

To demonstrate the advantages of WIoU v3, we performed 

comparative experiments on YOLOv8s by applying WIoU 

v3 along with several mainstream loss functions. The results 

of the experiment are summarized in Table Ⅳ. The 

experimental results show that when WIoU v3 is used, 

mAP0.5 and Recall of the model increase by 0.2% and 0.5%, 

compared with CIoU. Although some effects were slightly 

improved when using other loss functions, the model’s 

overall performance was best when using WIoU v3, proving 

the effectiveness of the introduction of WIoU v3. 

TABLE Ⅳ 

COMPARATIVE EXPERIMENT OF LOSS FUNCTIONS 

Loss\Metrics Precision/% Recall/% mAP0.5/% 

CIoU 50.1 38.4 39.1 

DIoU 50.2 38.5 39.2 

GIoU 49.6 38.6 38.9 

EIoU 49.3 38.2 38.5 

WIoU v3 49.5 38.9 39.3 

To demonstrate the superiority of the BDS-YOLOv8, two 

comparative experiments were performed using the 

VisDrone2019 dataset, where the proposed model was 

evaluated against both YOLO series architectures and other 

mainstream models. Table Ⅴ lists the accuracy, mean average 

precision, recall, parameters, and computational cost of the 

BDS-YOLOv8 compared to YOLO series architectures. 

YOLOv3-tiny adopts a simplified network structure to 

reduce computational complexity and parameter count but 

sacrifices model accuracy. YOLOv5 adopts the Focus 

module to expand the receptive field, improving the 

robustness of the network. YOLOv6 employs an updated 

self-distillation strategy [25], simplifying the SPPF module 

in YOLOv5. YOLOv8 improves the Anchor-Free design and 

optimizes multi-scale feature fusion. YOLOv8, YOLOv9 

[26], and YOLOv10 [27], as the cutting-edge versions of the 

YOLO series, have achieved enhanced detection accuracy. 

Compared to the YOLOv8s, the BDS-YOLOv8 demonstrates 

significant improvements across all metrics, achieving 5% 

higher accuracy, 4.1% greater recall, 5.6% improved mAP0.5, 

and 3.7% better mAP0.5:0.95, while reducing parameter 

count by 17.5%. 

As illustrated in Table Ⅵ, the BDS-YOLOv8 dominates 

other mainstream models in terms of detection effectiveness. 

CenterNet [28] proposes an anchor-free detection approach 

to mitigate the imbalance issue introduced by anchor-based 

methods, particularly for medium and small-sized objects. 

Faster R-CNN adopts a Region Proposal Network (RPN), 

remarkably improving the detection speed of the algorithm. 

QueryDet accelerates inference for feature pyramid-based 

dense object detectors using a novel query mechanism, 

Cascaded Sparse Queries (CSQ), which pre-screens regions 

containing small objects using high-level low-resolution 

features, improving small target detection performance to 

some extent. RetinaNet [29] introduces focal loss, which has 

been extensively applied to UAV aerial object detection tasks. 

The EDGS-YOLOv8 [30] model, based on YOLOv8n, 

excels in model lightweight but sacrifices detection accuracy. 

ATSS [31] focuses on determining positive and negative 

samples. 

TABLE Ⅴ 

COMPARATIVE EXPERIMENT OF YOLO SERIES ARCHITECTURES 

Models\Metrics Precision/% Recall/% mAP0.5/% mAP0.5:0.95/% Parameters/106 GFLOPs 

YOLOv3-tiny 38.1 24.5 23.4 13.1 12.1 18.9 

YOLOv5s 49.2 38.2 38.4 22.9 9.11 23.8 

YOLOv6 39.5 30.1 29.1 16.9 4.23 11.8 

YOLOv8s 50.1 38.4 39.1 23.4 11.1 28.5 

YOLOv8m 53.4 41.1 42.3 25.9 25.8 78.7 

YOLOv9s 51.4 37.6 39.1 23.6 7.17 26.7 

YOLOv10s 49.3 38.2 39.0 23.4 8.04 24.5 

BDS-YOLOv8 55.1 42.5 44.7 27.1 9.16 37.0 
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TABLE Ⅵ 

COMPARATIVE EXPERIMENT OF VARIOUS MAINSTREAM MODELS 

Models\Metrics mAP0.5/% mAP0.5:0.95/% Parameters/106 GFLOPs 

CenterNet [28] 33.7 18.8 — — 

Faster R-CNN [5] 37.2 21.9 41.7 187 

QueryDet [9] 38.1 23.7 — — 

RetinaNet [29] 19.1 10.6 — — 

EDGS-YOLOv8 [30] 31.3 17.6 — 7.9 

ATSS [31] 36.4 22.3 — — 

BDS-YOLOv8 44.7 27.1 9.16 37.0 

TABLE Ⅶ 

ABLATION EXPERIMENT 

BiFPN Head C2f_DSConv WIoU v3 Precision/% Recall/% mAP0.5/% mAP0.5:0.95/% Parameters/106 GFLOPs 

✗ ✗ ✗ ✗ 50.1 38.4 39.1 23.4 11.1 28.5 

✓ ✗ ✗ ✗ 49.1 38.1 38.9 23.3 11.1 28.2 

✓ ✓ ✗ ✗ 54.4 41.8 43.9 26.9 7.47 33.7 

✓ ✓ ✓ ✗ 54.1 42.4 44.4 27.1 9.16 37.0 

✓ ✓ ✓ ✓ 55.1 42.5 44.7 27.1 9.16 37.0 

 

E. Ablation Experiment 

To assess the effectiveness of the proposed enhancement 

approaches, ablation experiments were carried out on the 

VisDrone2019 dataset using the baseline model. The 

corresponding results are illustrated in Table Ⅶ. First, after 

introducing BiFPN in the neck network combined with our 

proposed tiny detection head structure, mAP0.5 showed a 

4.8% improvement, while mAP0.5:0.95 gained 3.5%. Then, 

replacing the conventional convolutional layer in the 

Bottleneck with a dynamic snake convolutional layer resulted 

in 0.5% and 0.2% increases in mAP0.5 and mAP0.5:0.95. 

Finally, adopting WIoU v3 as the loss function delivered an 

additional 0.3% boost to mAP0.5. Experimental results 

demonstrate that BDS-YOLOv8 achieves a 17.5% reduction 

in parameters compared to YOLOv8s, with concurrent 

improvements of 5.6% in mAP0.5 and 3.7% in mAP0.5:0.95. 

F. Visualization Analysis of Experimental Results 

Fig. 8. shows the confusion matrices of YOLOv8s and 

BDS-YOLOv8. We provide a detailed comparative analysis 

of the confusion matrices between the baseline YOLOv8s 

model and the proposed BDS-YOLOv8 model, illustrating 

the performance enhancement achieved by improving the 

YOLOv8s model. 

The diagonal elements, representing the true positive rate, 

indicate that BDS-YOLOv8 achieves a higher correct 

detection rate across all object categories, with a significant 

improvement exceeding 5% in several challenging categories. 

This advancement is attributed to the optimized detection 

head structure and the advanced feature fusion strategy 

employed in BDS-YOLOv8, which collectively enhance the 

model’s ability to distinguish target features while effectively 

suppressing background interference. 

Beyond the diagonal elements, the non-diagonal elements 

reveal that the improved model significantly reduces 

inter-class confusion and incorrect background classification, 

demonstrating its superior robustness in complex scenarios. 

Reducing background misclassification underscores the 

model’s improved capability to differentiate foreground 

objects from noise, a critical factor for practical deployment 

in real-world applications.  

(a) YOLOv8s 

(b) BDS-YOLOv8 
Fig. 8. Comparison of confusion matrices 
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（a) YOLOv8s                                                                                                 (b) BDS-YOLOv8 

Fig. 9. Comparison of detection performance in different scenarios 

 

A comprehensive comparison of detection results is 

conducted on UAV aerial images captured from three 

representative scenarios, as illustrated in Fig. 9. The first row 

presents a scenario characterized by a high density of small 

objects under sufficient illumination conditions; the second 

row represents a sparse distribution of small objects, also 

under adequate lighting; and the third row depicts a densely 

populated scene captured at night, reflecting low-light 

conditions. Across all scenarios, several common object 

categories—such as bicycles, pedestrians, and vehicles—are 

present, providing a consistent basis for comparative 

evaluation. 

The experimental results demonstrate that the proposed 

BDS-YOLOv8 algorithm achieves robust and accurate 

detection across varying environmental and object density 

conditions. In both the first and third scenarios, where small 

objects are densely distributed and often suffer from 

occlusion, the improved model maintains strong detection 

capabilities, effectively mitigating the challenges posed by 

complex spatial overlaps and diverse illumination. Notably, 

under nighttime conditions (Scenario 3), the model exhibits 

remarkable resilience to low-light interference, further 

highlighting its enhanced adaptability and robustness. 

In Scenario 2, with a sparse distribution of small targets, 

compared with the baseline model, BMS-YOLOV8 

significantly improves detection accuracy. This indicates that 

this algorithm can not only effectively handle densely 

arranged targets but also accurately detect isolated small 

targets that are easily overlooked. Overall, the proposed 

improvements are conducive to enhancing the detection 

stability and generalization. Moreover, the BDS-YOLOv8 

has a strong anti-interference ability and broad applicability 

in unmanned aerial vehicle-based monitoring tasks in the real 

world. 

V. CONCLUSION 

In UAV aerial object detection tasks, challenges such as 

small object sizes, complex backgrounds, severe occlusions, 

and varying lighting conditions are prevalent. To address 

these issues, this paper proposes an improved YOLOv8s 

algorithm, BDS-YOLOv8. First, a novel detection head 

structure is designed by adding a tiny-scale detection head 

that directly utilizes high-resolution feature maps for small 

target detection while removing the large detection head to 

reduce parameter overhead. Second, a dynamic snake 

convolution layer is introduced into the backbone network to 
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improve the model’s ability to capture the features of small 

objects in complex backgrounds. Additionally, the BiFPN 

concept is incorporated into the neck network to achieve 

more efficient multi-scale feature fusion. Finally, WIoU v3 is 

adopted to substitute the original loss function, optimizing 

the model’s target positioning accuracy for small targets. 

Our experimental results demonstrate that BDS-YOLOv8 

significantly improves detection performance compared to 

the YOLOv8s while reducing the parameters. Specifically, 

the parameters decreased by 17.5%, mAP0.5 increased by 

5.6%, and mAP0.5:0.95 improved by 3.7%. Moreover, 

compared with mainstream object detection models, 

BDS-YOLOv8 exhibits notable advantages in both small 

target detection accuracy and parameters. 

Our future research focus is to reduce the computational 

load of the model further with sustained high accuracy in 

small target detection and a faster inference speed in the 

resource-constrained UAV aerial photography scenarios to 

better meet the practical application requirements. 
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