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Abstract—Precise estimation of the State of Charge (SOC) is
crucial for ensuring the safety and optimizing the
performance of lithium-ion batteries in electric vehicles and
energy storage systems. A SE-CNN-BIiLSTM SOC prediction
model that inftegrates Bayesian optimization and wavelet
denoising techniques was proposed. Initially, the original
dataset undergoes wavelet transform for denoising, effectively
mitigating noise interference while preserving critical signal
features. Subsequently, a convolutional neural network (CINN)
augmented with a Squeeze-and-Excitation (SE) module is
employed to extract features from the denoised data, thereby
improving the model's capacity to assign varying weights to
different features and enhancing feature representation
efficacy. Building upon this foundation, Bayesian optimization
is applied to fine-tune parameters such as neuron count,
learning rate and L2 regularization coefficient within the
bidirectional long short-term memory network (BiLSTM),
ensuring robust prediction accuracy and generalization
capabilities in complex dynamic environments. Finally, these
extracted features are fed into the optimized BiLSTM for
SOC forecasting. The experimental data and simulation
analyses are derived from the Turnigy Graphene 3000mAh
65C lithium-ion battery, validated under three distinct
temperature conditions: -10°C, 0°C, and 10C. The findings
indicate that the proposed model excels in state of charge
(SOC) prediction, achieving not only superior accuracy
compared to traditional methodologies but also demonstrating
significant computational efficiency advantages.

Index Terms—Lithium-ion Batteries; State of Charge
(S0C); Wavelet Denoising; Bayesian Optimization;
SE-CNN-BIiLSTM model
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[. INTRODUCTION

L ithium-ion batteries are integral to contemporary
energy systems and find extensive application in
sectors such as electric vehicles, portable electronic devices
and energy storage solutions [1]. Their high energy density,
prolonged cycle life and minimal self-discharge rate render
them among the most favored battery technologies
available today [2]. In battery management systems, State
of Charge (SOC) serves as a critical parameter for assessing
the remaining charge of a battery, which directly influences
its performance, safety and longevity. Nevertheless,
accurately predicting SOC poses significant challenges due
to the myriad complex factors that affect batteries during
operation, such as temperature fluctuations, varying
charging and discharging rates and aging processes [3].
Presently, the predominant methodologies for SOC
prediction encompass electrochemical modeling, empirical
modeling and data-driven approaches [4]. Electrochemical
modeling is grounded in the physical and chemical
characteristics of batteries. While it offers high predictive
accuracy, it entails considerable computational complexity.
Conversely, empirical modeling leverages historical data
alongside established formulas. Although straightforward
to implement, it tends to exhibit lower accuracy. Data-
driven modeling employs machine learning and deep
learning techniques that yield commendable predictive
performance, but it is susceptible to variations in data
quality and model selection.

Existing state-of-charge (SOC) prediction models exhibit
numerous limitations in complex dynamic environments.
Traditional electrochemical and empirical models struggle
to deliver high-precision predictions when confronted with
the dynamic characteristics and environmental fluctuations
of batteries, primarily because these models typically
operate under the assumption of ideal or static conditions,
failing to adequately account for the complexities inherent
in real-world applications.  Although  data-driven
approaches have enhanced predictive accuracy to some
degree, their efficacy 1s contingent upon the quality of
traiming data and model architecture selection [5].
Furthermore, data noise significantly impacts SOC
prediction accuracy. In practical scenarios, battery data
often suffers from measurement errors and environmental
disturbances that compromise input integrity and
undermine prediction reliability. Consequently, effectively
mitigating data noise emerges as a critical step toward
enhancing SOC prediction precision. Simultaneously,
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hyperparameter optimization 1is vital for improving model
performance [6], given that deep learning architectures are
particularly sensitive to hyperparameters such as neuron
count, learning rate and regularization coefficients [7-8].
The conventional manual tuning of hyperparameters proves
both time-consuming and unreliable [9].

Peng et al. proposed an enhanced method for estimating
the state of charge (S0C) of lithium-ion batteries, utilizing
a cubic Kalman filter (CKF). A first-order RC model and a
fractional-order model were developed, with parameters
identified through a mixed pulse power characteristic
experiment. The CKF demonstrated superior robustness in
SOC estimation compared to the extended Kalman filter
(EKF). Additionally, the Kalman gamn coefficient was
refined by using a fuzzy controller, effectively reducing the
SOC estimation error to 2% [10]. Chen et al. introduced an
advanced battery SOC estimation approach that integrates a
feed-forward neural network (FFNN) with the extended
Kalman filter. Its robustness across varying temperatures
was validated through experimental studies. Hardware-in-
the-loop testing indicated that this method could converge
to reference values despite initial errors in SOC and
capacity, making it suitable for complex electric vehicle
environments [11]. Li et al presented a novel SOC
estimation technique based on GRU-RNN architecture,
wherein SOC 1s directly inferred from voltage, current and
temperature data without necessitating an internal battery
parameter model. This methodology allows for accurate
SOC  estimations by using a single set of network
parameters across different temperature conditions. Results
from multiple datasets revealed its accuracy and robustness
[12]. Yang et al. proposed a method by utilizing the long
short-term memory (LSTM) recurrent neural network to
estimate the state of charge (SOC) of lithium iron
phosphate batteries across varying temperatures. By
integrating this approach with the unscented Kalman filter
(UKF) for noise reduction, experimental results indicate
that the method achieves an SOC estimation error of less
than 1.1% under different thermal conditions,
demonstrating its capability to provide accurate estimates
even in untrained temperature scenarios [13]. Tian et al.
introduced a SOC estimation technique that combines the
LSTM network with the adaptive cubic Kalman filter
(ACKF). The LSTM effectively captures the nonlinear
relationships among SOC, current, voltage and temperature,
while the ACKF enhances output smoothing to ensure
precise and stable SOC estimations. Notably, this
methodology does not necessitate a battery model.
Experimental findings reveal significant improvements in
estimation accuracy across diverse datasets [14]. Bian et al.
developed a bidirectional LSTM encoder-decoder model
aimed at estimating the SOC of lithium-ion batteries under
various temperatures. This model enhances estimation
precision by leveraging contextual information and
bidirectional dependencies within measurement sequences,
thereby bolstering both reliability and availability of battery
management systems in heterogeneous environments [15].
Ren et al introduced a long short-term memory (LSTM)
network optimized through particle swarm optimization
(PSO) for the estimation of state of charge (SOC) in
lithium-ion batteries. The LSTM parameters were fine-

tuned by using PSO, and random noise was incorporated
into the input layer to enhance its resilience against
interference [16]. Liu et al. developed a SOC estimation
method by utilizing a temporal convolutional network
(TCN), which operates independently of battery models or
adaptive filters, directly mapping accurate SOC from
voltage, current and temperature data. This approach is also
adaptable to various battery types via transfer learning [17].
Chen et al. proposed an innovative SOC estimation
technique that integrates a denoising autoencoder
(DAE-NN) with a gated recurrent unit (GRU) recurrent
neural network (RINN). The DAE-NN serves to extract
features from Dbattery data while mitigating noise.
Subsequently, these extracted features are employed to
train the GRU-RNN. In comparison to traditional
GRU-RNNs, the DAE-GRU demonstrates superior
accuracy and robustness in SOC estimation [18]. Yang et al.
introduced a deep learning approach leveraging a dual-
stage attention mechanism to enhance the accuracy of state-
of-charge (SOC) estimation for lithium-ion batteries while
mitigating the effects of noise. This method incorporates
current, voltage and temperature features into an
encoder-decoder network based on gate-controlled
recurrent units, employing the attention mechanism to
adaptively extract pertinent features and account for
temporal sequence correlations [19].

Sun et al. proposed a state-of-health (SOH) prediction
method for lead-acid batteries by utilizing a CNN-
BiLSTM-Attention model. The convolutional neural
network (CNN) was employed to extract features and
reduce dimensionality, while the bidirectional long
short-term memory (Bi.STM) network captured temporal
dependencies in both directions. An attention mechanism
was incorporated to emphasize critical features, thereby
achieving precise multi-step SOH predictions [20]. Cui et al.
introduced a hybrid approach based on a CNN-bidirectional
weighted gate recurrent unit (BWGRU), which utilized a
'multi-time-step mput' structure alongside BWGRU to
optimize the impact of battery information on predictive
outcomes. The CNN facilitated the learning of input feature
parameters, whereas the BWGRU enhanced fitting
performance at low temperatures by dynamically adjusting
weights. This network exhibited high accuracy and stability
across varying conditions and effectively mitigated the
influence of different imitial states of charge (SOC) on
estimation results [21]. Yan et al. developed an innovative
knowledge-constrained convolutional neural network-
bidirectional long short-term memory (KCCL) model that
demonstrated superior robustness under conditions of
limited training data availability. By integrating statistical
and physical knowledge constraints into its training
framework, this model not only prioritized data point
accuracy but also accounted for underlying physical
relationships among them, thus enhancing both SOC
estimation accuracy and reliability. Evaluation results
indicated that the KCCL model outperformed its
counterpart lacking knowledge constraints when faced with
restricted training datasets [22]. Wang et al. proposed a
cloud-edge collaborative approach in which a deep learmng
model based on CNN-LSTM was implemented in the cloud,
while the coulomb counting method and Kalman filter were
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employed at the edge. By integrating the estimated results
from both ends through the Kalman filtering algorithm,
high-precision and real-time state of charge (SOC) online
estimation was achieved. Evaluation results indicate that
under three dynamic driving scenarios, this method can
deliver accurate real-time estimations across varying
temperature conditions and initial error states within the
network architecture [23].

Xu et al. proposed a CNN-LSTM model that integrates
feature selection and skip connections to predict the state of
health (SOH) of lithium-ion batteries. The feature selection
technique effectively eliminates irrelevant features, thereby
enhancing training efficiency and prediction accuracy.
Additionally, the incorporation of skip connections
addresses the degradation issue associated with multi-layer
LSTMs [24]. Rincon-Maya et al. introduced an innovative
approach for predicting the remaining useful life (RUL) of
lithium-ion batteries by employing individual control charts
(ICC) to filter out degraded data, convolutional neural
networks (CNN) to mitigate data noise, and long short-term
memory networks (LSTM) to capture both spatial and
temporal dependencies within the data [25]. Li et al
developed a hybrnid methodology that combines deep
learming techniques with Kalman filtering for estimating the
state of charge (SOC). By integrating convolutional neural
networks (CNNs) or temporal convolutional networks
(TCNs) with various recurrent neural network variants,
including long short-term memory (LSTM), gated recurrent
units (GRU), peephole long short-term memory (Peephole
LSTM) and bidirectional long short-term memory
(BiLSTM), the model captures both spatial and temporal
characteristics of input signals. Subsequently, this deep
learning framework is augmented with a Kalman filter to
mitigate transient signal oscillations, thus improving SOC
estimation accuracy. Results indicate that selecting
appropriate deep learming methods can sigmficantly
enhance SOC  estimation precision. Furthermore,
combining these methods with Kalman filtering yields even
greater accuracy while minimally affecting estimation time
[26]. Yu et al. proposed a method for integrating
mechanistic knowledge from the battery domain into a deep
learning  (DL)  framework  Initially,  simplified
electrochemical models were employed to derive physically
relevant variables associated with the underlying
mechanisms, thereby enhancing the nput features of the
DL model Subsequently, a Bayesian optimization-based
long short-term memory (LSTM) network was utilized to
identify  highly  correlated wvariables, which were
incorporated into the input to enhance the accuracy of state-
of-charge (SOC) estimation. The results demonstrated that
this approach could significantly improve SOC estimation
performance while incurring only a marginal increase in
computational cost; its generalizability was further
validated across other DI models [27]. Sherkatghanad et al.
introduced a deep learmning model that integrates
convolutional neural networks (CNN), bidirectional long
short-term memory networks (Bi-LLSTM) and an attention
mechanism (CNN-Bi-LSTM-AM) for precise SOC
estimation of lithium-ion batteries over an extensive
temperature range. This model effectively captured critical
spatial and temporal dependencies, with the attention

mechanism contributing to enhanced performance and
robustness in low-temperature conditions [28]. Lin et al.
developed a capacity prediction method for lithium-ion
batteries based on convolutional neural networks (CNN)
and bidirectional long short-term memory networks
(BiLSTM), optimizing hyperparameters through the
swallow optimization algorithm (SSA). This methodology
automatically extracted features via CNIN while leveraging
BiLSTM for capacity forecasting, demonstrating efficacy
on public datasets under two distinct temperature scenarios
[29].

This paper introduces a robust framework for State of
Charge (SOC) prediction by integrating Squeeze-and-
HExcitation Convolutional Neural Networks (SE-CNN) with
Bidirectional TLong  Short-Term Memory networks
(BiILSTM). The proposed method enhances predictive
performance through the application of wavelet denoising
and Bayesian optimization techniques. The key
contributions of this study are as follows:

(1) Propose an SE-CNN-BIiLSTM model for lithium-ion
battery SOC prediction, leveraging Bavesian optimization
and wavelet denoising to enhance both accuracy and
robustness.

{2) Wavelet transformation is employed to perform
effective denoising on battery data, significantly mitigating
measurement errors and environmental noise.

{(3) The Squeeze-and-Excitation module within the
convolutional neural network (SE-CNN) facilitates feature
extraction by dynamically adjusting feature weights,
thereby improving the representation efficacy.

{4) Hyperparameters of the BilLSTM model, including
neuron count, leamning rate and L2 regularization
coefficient, are optimized via Bayesian methods to ensure
high predictive accuracy and generalization capability in
complex dynamic environments.

The structure of the remainder of this paper is organized
as follows. The second section mtroduces a SE-CNN-
BiLSTM model for predicting the state of charge (SOC) of
lithium-ion batteries, employing Bayesian optimization and
wavelet denoising techniques. This includes data noise
reduction through wavelet transformation, the design of a
convolutional neural network (CNN) integrated with a
Squeeze-and-Excitation (SE) module, and the application
of Bayesian optimization to enhance a bidirectional long
short-term memory network (BiLSTM). The third section
presents simulation validation wunder three distinct
temperature conditions: -10°C, 0°C and 10°C, utilizing data
from Turnigy Graphene 5000mAh 65C  lithium-ion
batteries. Finally, the fourth section summarizes the
findings and provides concluding remarks.

II. SE-CNN-BILSTM LITHIUM-ION BATTERY SOC
PREDICTION MODEL BASED ON BAYESIAN OPTIMIZ ATION
AND WAVELET DENOISING

The proposed Bayes-DWT-CNN-BiL.STM-Attention
architecture initially employs the discrete wavelet
transform (DWT) to mitigate noise in the original dataset,
effectively eliminating interference while preserving
essential signal features. Subsequently, a convolutional
neural network (CNN) integrated with a squeeze-
and-excitation (SE) module is utilized to extract features
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from the denocised data, thereby enhancing the model's
capacity to assign weights to various features and
improving feature representation efficacy. Building upon
this foundation, Bayesian optimization is applied to
fine-tune parameters such as neuron count, learning rate
and L2 regularization coefficient within the BiLSTM
framework, ensuring both predictive accuracy and
generalizability of the model in complex dynamic
environments. Ultimately, these extracted features are fed
mto the optimized BiLSTM for state-of-charge (SOC)
prediction. The overall architecture of this SOC prediction
model is illustrated in Fig. 1.
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Fig. 1 Overall architecture of the SOC prediction model proposed in this paper.

A. Battery Data Set Turnigy Graphene 5000mAh 63C
Li-ion

The Turnigy Graphene 5000mAh 65C Li-ion Battery
Dataset comprises a series of tests conducted by Dr. Phillip
Kollmeyer at McMaster University in Hamilton, Ontario,
Canada, focusing on the performance characteristics of a
novel 5Ah Turnigy Graphene 5000mAh 65C battery [32].
These evaluations were performed by utilizing a Digatron
universal battery tester with an output capacity of 75A and
5V within an eight-cubic-foot thermal chamber, ensuring
voltage and current accuracy to within 0.1% of full scale.
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The experiments were carried out across six distinct
ambient temperatures (40°C, 25°C, 10°C, 0°C, -10°C and
-20°C) to comprehensively assess the battery's performance
metrics. Following each test cycle, the battery was charged
at a rate of 1C to reach a voltage of 4.2V with a charge
termination current set at SmA under standard conditions
(25°C). The testing regimen included high-power pulse-
charge (HPPC) assessments through four-pulse sequences
as well as C/20 discharge and charge cycles alongside
discharge tests at rates of 0.5C, 2C and 1C. Additionally,
UDDS, HWFET, LA92 and US06 driving cycle
simulations were executed to evaluate the battery's
operational efficacy in compact electric vehicle
applications. The data presented herein 1s derived {rom the
LA92 drniving cycle test conducted under ambient
temperatures of -10°C, 0°C and 10°C.

B. Wavelet Transform Denoising

When predicting the state of charge (SOC) of lithium-ion
batteries, the collected battery data, such as voltage, current
and temperature, can be influenced by intricate noise
factors, resulting in distorted sensor readings [30]. Given
that neural networks exhibit a significant reliance on
high-quality data to facilitate effective training and accurate
predictions, the presence of noise may lead the network to
assimilate 1irrelevant information, thereby diminishing
prediction accuracy. Furthermore, noise can adversely
impact the predictability of time-series data. Consequently,
implementing robust denoising techniques to enhance data
quality is essential for improving the precision of SOC
predictions for lithium-ion batteries.

The fundamental principle behind wavelet denoising
involves decomposing the signal into various frequency
components through wavelet decomposition. Initially, an
appropriate wavelet basis function and decomposition level
are selected. Subsequently, the signal is decomposed into
multiple scales comprising approximate coetficients and
detail coefficients [31]. These coefficients undergo
thresholding. A predetermined threshold value 1s
established whereby detail coefficients falling below this
threshold are set to zero while those exceeding it are
preserved. Ultimately, these processed coefficients are
reconstructed into a denoised signal via wavelet inverse
transform. This methodology effectively mitigates noise
from the signal while preserving its principal features.

C. Discrete Wavelet Transform (DWT)

The initial phase of wavelet denoising involves applying
the discrete wavelet transform (DWT) to the original data.
This process decomposes the original signal into
sub-signals across various frequency bands, yielding
multiple scales of approximate coefficients and detail
coefficients. The selection of suitable wavelet basis
functions and decomposition levels is crucial for achieving
an  effective  decomposition  [33-34] Wavelet
decomposition effectively concentrates significant features
of the signal within a limited number of approximate
coefficients while preserving high-frequency noise in the
detail coefficients. This frequency-based decomposition
facilitates the identification and processing of noise in
subsequent stages, thereby establishing a foundation for

effective noise removal. In the context of discrete wavelet
transform, the signal x[#] is represented as a series of
scale coefficients (approximate coefficients) and wavelet
coefficients (detail coefficients), as illustrated by the
following formula:

A=) 4, ] 0
4,011 =25 (2n k) @
DEESslvll
v, [m=2 7y (240 k) @

where, J signifies the decomposition level or scale of the
wavelet transform, while 4 indicates the position of the
signal within the time domain. The symbols 4,[%] and
D [k] correspond to the coefficients of the scale function
(approximation coefficients) and wavelet function (detail
coefficients), respectively, for the decomposed signal
x|n] . Additionally, #,.[n] and ¥, .[#] denote the
discrete representations of both the scale function and
wavelet function.

D. Noise Reduction Data Analysis and Presentation

Utilize the 'dbl' wavelet to decompose the voltage and
current signals into five levels. During the denoising
procedure, the standard deviation of noise (@ ) is estimated
by computing the median absolute deviation (MAD) of the
detail coefficients. Subsequently, the threshold ( #r ) is
determined by using O in conjunction with signal length
to effectively suppress noise. In processing the detail
coefficients, employ the ‘'wthresh' function for soft
thresholding, which mitigates coefficients that fall below
this threshold, thereby facilitating efficient denoising. Eq.
(5) pertaining to noise standard deviation, threshold
determination and soft thresholding are outlined as follows.

median (lDJ —median (DJ )l) (5
0.6745

o=

where, D, rtepresents a collection of detail coefficients,
and the median absolute deviation (MAD) 1s employed to
estimate the standard deviation of noise due to its
robustness against outliers. The coefficient 0.6745 1s
utilized to convert MAD into an approximation of the

standard deviation.
thr = o J2log (N ) (&)

where, N denotes the length of the signal.
ﬁj [k] = sign (DJ [k]) max(|DJ [k]l— thr, 0) (7)

where, D; k] denotes the processed detail coefficient,
Sign (D j []) signifies the sign of the returned coefficient,
and max([D,[k]|-##.0}  indicates that coefficients
below a specified threshold are compressed to zero, thereby
effectively mitigating noise. The wavelet decomposition
analysis of voltage and current signals at varying
temperatures is illustrated in Fig. 2.
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E. CNN with SE Module

A convolutional neural network (CNN) integrated with a
Squeeze-and-Excitation (SE) module is employed to extract
features from battery data for predicting the state of charge
(SOC) of lithium-ion batteries. The network initially
captures features from voltage, current and temperature
data through multiple convolutional layers. An SE module
is incorporated after each convolutional layer to adaptively
recalibrate channel weights based on global information,
thereby emphasizing critical features. Following a series of
nonlinear activations and feature compression processes,
the final SOC prediction is generated via a fully connected
layer.

F. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) represent a
class of deep learning architectures particularly adept at
processing data characterized by grid-like structures, such
as images and videos [35]. In the context of predicting the
state of charge (SOC) in lithium-ion batteries, CNNs
facilitate the analysis of time-series data by autonomously
extracting critical features from voltage, current and
temperature measurements through convolutional layers,
thereby obviating the need for manual feature engineering.
Convolutional layers effectively capture edge and texture
information via filter applications, while pooling layers
downsample the data to preserve essential features that
enhance computational efficiency and mitigate overfitting
risks. Subsequently, fully connected layers translate these
extracted features into SOC predictions, thereby
augmenting prediction accuracy.

The adopted convolutional neural network (CNN)
architecture comprises multiple layvers designed to process
input data of size 1x4. Initially, an input layer is established
to receive battery data. Subsequently, the network

45 Original Signal - Voltage
; ; T T T T T T

381 =
I I I N f
200 400 600 800 1000 1200 1400

Approximation Coefficients

systematically extracts and refines features by alternately
stacking convolutional layers, pooling layers and fully
connected layers. During the feature extraction phase, the
network initiates with a 5x5 convolutional layer featuring
100 filter channels, ensuring that the output dimensions
remain invariant through appropriate padding and stride
configurations. Following this, a batch normalization layer
along with a ReL.U activation function is incorporated to
enhance model nonlinearity and expedite training processes.
The network then employs a second 5x5 convolutional
layer containing 70 filter channels, also utilizing padding
and stride settings for dimensional consistency. A pooling
layer follows to diminish data dimensions while extracting
salient features. Further refinement occurs through a series
of 3x3 convolutional layers with 50 and subsequently 40
filter channels respectively; each accompanied by RelLU
activation functions aimed at capturing more nuanced
feature information. Ultimately, all extracted features are
forwarded through a fully connected layer to yield the final
output prediction as illustrated in Fig. 3.

G. SE Module

Incorporating the Squeeze-and-Excitation Module (SE)
into convolutional neural networks significantly enhances
their capability to represent features for predicting the state
of charge (SOC) in lithium-ion batteries. The SE module
improves focus on critical features by adaptively
re-normalizing the feature maps derived from battery data.
Its fundamental principle involves adjusting channel
weights based on global information, thereby amplifying
responses to pertinent battery characteristics while
attenuating irrelevant or disruptive signals [36-37]. This
structural enhancement contributes to increased accuracy in
SOC prediction models. A schematic representation of the
Squeeze-and-Excitation module is illustrated in Fig. 4.
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(a) The wavelet decomposition analysis of voltage and current signals at 10°C
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(¢) The wavelet decomposition analysis of voltage and current signals at -10°C

Fig. 2 The wavelet decomposition analysis of voltage and current signals at varying temperatures.

The Transformation ( F, ) operation serves as a R
transformation function that converts the input feature map M, shped = ZI:VC X ®)
X into the output feature map U . I}, can be interpreted .
as a conventional convolution operation. The computation Specifically, let X denote the input feature map of
process for deriving the output feature map U, is outlined dimensions H'xWW'xC", while U represents the output
as follows: feature map of dimensions H xW xC . V, corresponds to

the ¢ th convolution kernel, and V. signifies the
parameters associated with the ¢ th convolution kernel on
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the S -th input channel. Furthermore, * denotes the
convolution operation itself. The right-hand side of this
equation illustrates that the output feature map U, is
derived by executing a convolution operation across each
channel of the input feature map X and subsequently
aggregating these results.

In the Squeeze (Global Information Embedding) stage,
the objective of the global average pooling operation ( £, )
is to distill each channel's spatial information into a
singular scalar value, referred to as the channel descriptor.
Specifically, given an input feature map U of size
HxW xC | the global average pooling compresses the
spatial information from each channel, which is represented
by the W xH feature map, into a single-channel scalar
value, thereby generating an 1x1xC feature vector of size
z . The outcome of this global average pooling process is
articulated through Eq. (9). Specifically, z, represents the
component of the feature vector z corresponding to the
¢ th channel, where this value is derived as the average of
all spatial feature values across the ¢th channel.

1 H W
Zc:qu(Uc)ZW;;UC (i.7) ©)

In the Excitation (adaptive recalibration) operation, the
Squeeze-and-Excitation (SE) module captures channel
dependencies and enhances feature representation by
weighting the significance of each channel. Specifically,
the feature vector 2 , obtained through global average
pooling, is fed into two fully connected neural networks.
The first layer compresses the dimensionality of z while
introducing nonlinearity via a ReLU activation function.
Subsequently, the second fully connected layer expands
this dimension again and outputs a weight vector § by
using a Sigmoid activation function. This weight vector §
is then applied element-wise to each channel of the input

X U

feature map U , adaptively recalibrating their importance
and thereby enhancing the network's capacity to capture
critical features. During the Excitation stage, the SE
module learns these weight coefficients for feature channels
through a fully connected layer combined with an
activation function (typically ReL U followed by Sigmoid).
These weights serve to adjust either enhance or suppress
specific channels' responses within the input feature map.

s=F, (z20)=0c(g(z))=c(W,5(7,-2)) (10)

where, W, and W, represent learnable weight matrices,
G denotes the Sigmoid function, § corresponds to the
weight coefficients for each channel, and & signifies the
RelLU activation function. Ultimately, the SE module
performs an element-wise multiplication of these weight
coefficients with the original feature map across channels,
resulting in a recalibrated output feature map.

In the Scale (Re-weighting) operation, the objective is to
apply the attention weights derived from the preceding
Excitation operation to each channel of the feature map.
Specifically, for each channel's input feature map U , it 1s
multiplied by its corresponding weight s, to yield a
weighted output feature map X . - This process can be
mathematically represented by Eq. (11).

X, =Fp (Ues.) =5, U, (1D
where, U, represents the feature map corresponding to
the ¢ -th channel of the input feature map, while s,
denotes the weight coefficient associated with that channel.
Ultimately, the weighted feature map X . functions as the
output of the Squeeze-and-Excitation (SE) module. This
operation enables the network to adaptively modulate
features according to each channel's significance, thereby

enhancing its ability to capture critical information.

Fully Connected Layer

Feature Output

H’ H
w’ w

c’ (&)

Fig. 4 Structure diagram of the Squeeze-and-Excitation module.
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H. Bayesian Optimization with Bidirectional Long
Short-Term Memory Neural Network

In the prediction of state-of-charge (SOC) for lithium-ion
batteries, the integration of Bayesian optimization with a
bidirectional long short-term memory neural network (Bi-
LSTM) markedly enhances model performance. The
feature outputs derived from a convolutional neural
network (CNN) augmented by an SE module will serve as
inputs to the Bi-LSTM, further bolstering predictive
accuracy. Bayesian optimization adeptly fine-tunes the
hyperparameters of the Bi-LSTM architecture, optimizing
both its structure and training process to ensure maximal
prediction precision. The Bi-LSTM's bidirectional
framework effectively captures temporal dependencies in
time series data, thereby improving its capacity to model
battery voltage, current and temperature dynamics.
Through meticulous tuning via Bayesian optimization, the
Bi-LSTM model is better equipped to accurately discern
dynamic {luctuations in battery SOC, ultimately enhancing
both reliability and precision in predictions.

1. Bidirectional Long Short-Term Memory Neural
Network (Bil.STM)

The LSTM unit comprises a forget gate ( f; ). an input
gate (%), an output gate { ¢, ) and a memory cell (C,). The
structural diagram of the LSTM cell 1s illustrated in Fig. 5.
The forget gate is responsible for determining which
information within the cell state should be discarded or
preserved, while the input gate identifies the new
information that needs to be incorporated into the cell state.
The output gate regulates the flow of curent cell
information to the hidden state, ultimately generating the
final output [38]. Through these gating mechanisms, Long
Short-Term Memory (LSTM) networks effectively manage
both the transmission and updating of nformation. The
mathematical formulations for the forget gate, input gate,
output gate and cell state update are presented in Eq

(12)-(15).

I :J(wﬁxﬁrwﬁhiiﬁbf) (12)
i =o(wx, +w,h_+b) (13)
0, =c(w,x +w,h_+b,) (14
s, = tanh(w,x, +w,h_ +b_} (15)

where, the subscripts W and & denote the weight
matrices and bias vectors associated with the forget gate,
mnput gate and output gate, respectively. The funcion @
is a Sigmoid activation function that produces an output
ranging from O to 1, serving as a gating mechanism where O
signifies discarding information and 1 indicates retention.
5, represents the common candidate value vector within
layer tanh .

The update mechanism for the cell state 1s delineated as
follows. Initially, the forget gate identifies and selects the
portions of the previous cell information that are to be
discarded, multiplying the old state by the output of the
forget gate [, to eliminate unnecessary data retention.
Subsequently, new candidate cell information S, is

introduced via the input gate, which is then scaled by the
output of this input gate i, to derive a new cell state C, .
This process is illustrated through corresponding formulas
alongside those governing LSTM unit outputs.

C:f = -fLCL—l +izsz (16)

b, = otanh(C,) (17

The computational mechanisms of each neural cell are
delineated in Eq. (18)-(19), where &  denotes the
activation function, #, v and W signify the connection
weights, and & and b, represent the bias values.

h=c(u-x, +wh_+b) (18)

v, =o(v-h+b,) (19)

The Bidirectional Long Short-Term Memory (BiLSTM)
network represents an enhancement of the traditional
LSTM model, enabling simultaneous consideration of both
forward and backward information flows within the input
sequence. By integrating outputs from both forward and
backward LSTM networks, BiLSTM effectively captures
contextual mformation in sequence data more
comprehensively, thereby enhancing performance in
various tasks such as sequence classification, speech
recognition and natural language processing [39]. Fig. 6
illustrates the information transmission processes occurring
in both forward and backward neural networks across three
consecutive time steps. The black lines denote the forward
flow of information, while the red lines indicate the reverse
flow. The training protocols for these two LSTMs are
fundamentally similar; one is trained to process data in a
forward direction while the other operates in reverse. As
depicted in Fig. 6, these two directional LSTMs function
independently without interference during operation. The
outputs generated by both hidden layers and output layers
from each network will be jointly considered for final
results. The specific calculation formula is presented as
follows.

b =o(i-x,+h_+b) (20)
]‘é:a(ﬁ-xivtﬂz-;lvt];) 21
v, :G(v-[li;ﬁi}rc) (22)

where, & and ¢ denote the bias parameters, ©
signifies the activation function, ¥ and W represent the
weight matrices of connections, while the final output ¥,
1s derived from the integration of ocutputs produced by both
L3TMs.

The operational framework of BiLSTM encompasses
three distinct phases. Firstly, the forward and backward
LSTM networks are independently trained utilizing the
backpropagation through time (BPTT) algorithm; Secondly,
at each temporal step, the forward and backward LSTMs
process sequence information in isolation, Finally, the
outputs from both directions are amalgamated to yield the
final predictive outcome. This bidirectional processing
approach allows BiL.STM to more comprehensively capture
contextual information within the input sequence.
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J. Bayesian Optimization

In the context of state-of-charge (SOC) prediction for
lithium-ion batteries, the hyperparameters of the BiLSTM
model, including the number of hidden neurons, initial
learning rate and 1.2 regularization coefficient, significantly
influence both the model's generalization capability and its
overall performance. An excessively high number of
hidden neurons may lead to over-fitting on training data,
thereby diminishing predictive accuracy on unseen battery
datasets. Conversely, a too-low count may hinder the
model’s ability to adequately capture essential features
within the battery data, resulting in suboptimal predictions.
The selection of an appropriate initial learning rate is
equally critical; A learning rate that is too high can impede
effective convergence while one that is too low may

hy
A
C,_/ > C/
s =X
ht » /1y
Xt
(a) Forget gate
hy
A
»C:
#—0
» h,

(c) Input gate update
Fig. 5 Schematic diagram of the LSTM cell.

prolong training or trap it in local optima. Furthermore, the
L2 regularization coefficient serves a vital function in
mitigating over-fitting by incorporating a weight penalty
term into the loss function. However, improper calibration
of this coefficient could impair the model's learning
capacity and adversely affect SOC prediction accuracy.

To enhance the alignment of the BiLSTM network
model with specific datasets, accelerate training speed, and
effectively boost model performance, identifying the
optimal combination of hyperparameters has emerged as a
significant and  challenging endeavor.  Bayesian
optimization techniques are extensively employed due to
their ability to integrate prior knowledge with historical
evaluation results, facilitating efficient exploration of
multi-dimensional parameter spaces and swiftly pinpointing
optimal hyperparameter configurations.

hy

A
C,.] : C/

f =X
» Iy
Xt
(b) Input gate

hy

A
» C,
> I

RY

(d) Output gate

Fig. 6 Architecture of the BiLSTM model.
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By leveraging Bayesian optimization, it is possible to
reduce the number of iterations while maximizing model
performance, thereby ensuring that the network mitigates
over-fitting while retaining its capacity to capture intricate
data patterns. This approach ultimately enhances the
model's generalization capabilities in practical applications.

Bayesian optimization is a highly effective global
optimization technique, particularly well-suited for high-
dimensional and computationally intensive optimization
challenges associated with target functions [40-41]. In the
context of optimizing hyperparameters for the BiLSTM
model, Bayesian optimization constructs an agent model,
typically a Gaussian process, to estimate the distribution of
the target function, thereby facilitating an efficient
exploration and utilization of the hyperparameter space.
This approach leverages information from previously
sampled points to iteratively enhance the performance of
the target function until optimal hyperparameters are
identified. Following each evaluation, the algorithm
proceeds to conduct subsequent sampling, enabling it to
converge towards an optimal solution while minimizing
evaluation costs.

The model delineates a collection of hyperparameter
combinations, denoted as ¥ =%,%,,---, %, , while Eq. (23)
articulates the mathematical framework for identifying the
optimal hyperparameter combination within the model.

x" = argmin f(x) (23)

XEY
where, x denotes an optimized set of hyperparameters,
while f(x) signifies the minimization of the target

function associated with hyperparameter ¥  within the
framework of Bayesian optimization. During this process,
the posterior probability of the target function is computed
utilizing Bayes' theorem, as illustrated in Eq. (24).

P(DIf)P(f)
PUIP) === (24)
where, [ denotes an unknown objective [unction and
constitutes a set of observed data, P(/f]D) signifies the
posterior probability of the target function f given the
observed data D, P(f) represents the prior probabili
associated with the objective function [ | P(D|f
indicates the probability distribution of the observed data
under the assumption that [ holds true, and P(D)
reflects the marginal likelihood distribution. In Bayesian
optimization, marginal likelihood plays a crucial role in
optimizing hyperparameters. The structure of the predictive
model 1s illustrated in Fig. 7.

III. SIMULATION EXPERIMENT AND RESULT ANALYSIS

A. Simulation Experiment Overview

This section aims to rigorously evaluate and analyze the
performance of the Turnigy Graphene 5000mAh 65C
lithium-1on battery across varying temperature conditions.
Three temperature environments of -10°C, 0°C and 10°C
were selected to test the battery's behavior under different
temperature conditions and the accuracy of the prediction
model. Through simulation, it can be obtained curves
representing state of charge (SOC) predictions {rom various
models, followed by an evaluation of prediction errors at

different temperatures for each model. Additionally, a radar
chart was constructed as a performance indicator to
illustrate the comprehensive capabilities of each model. To
further substantiate the predictive capacity of these models,
scatter plots were generated to visualize correlations
between predicted outcomes and actual data points. The
visualization of experimental data will facilitate our
understanding of how battery performance trends vary with
temperature fluctuations while optimizing the prediction
model within the battery management system to enhance
reliability and accuracy in diverse environmental contexts.

B. Prediction Accuracy Indicator

In assessing the accuracy of a battery performance
prediction model, employing multiple metrics for
prediction accuracy can yield a more comprehensive
understanding. The following four metrics are commonly
utilized: root mean square error (RMSE), mean absolute
error (MAR), coefficient of determination (R*) and mean
absolute percentage error (MAPE). Each of these metrics
emphasizes different aspects and provides insights into the
predictive performance from various perspectives.

Root Mean Square Error (RMSE) quantifies the standard
deviation of the discrepancies between predicted and actual
values, thereby providing a comprehensive assessment of
model prediction accuracy. RMSE 1s particularly sensitive
to outliers, making it an effective metric for evaluating
model performance under extreme conditions. The formula
for RMSE 1s as follows:

RSE = [ 5\(y, 5, f ©3)

where, J; denotes the actual value, 3, signifies the
predicted value and # indicates the sample size. Given
that the unit of RMSE aligns with that of the data, it offers
a clear representation of the absolute magmtude of
prediction error. A lower RMSE value reflects greater
predictive accuracy.

Mean Absolute Error (MAE) represents the average of
the absolute deviations between predicted and actual values.
In contrast to Root Mean Square Error (RMSE), MAE
exhibits reduced sensitivity to individual large
discrepancies, thereby offering a more robust estimation of
overall error. The formula for MAE is as follows:

R .
MAE ==3"|y, - %,
n::l

(26)

In the computation of Mean Absolute Error (MAE), the
absolute value 1s utilized to prevent cancellation due to
error direction, thereby providing a more accurate
representation of the deviation between predicted and
actual values. A lower MAE indicates a reduced average
absolute error in the model's predictions, which correlates
with enhanced predictive accuracy.

The coefficient of determination, denoted as R? ,
quantifies the degree to which the model accounts for
variability in the data and serves as an indicator of the
model's goodness of fit. The value of R? ranges from 0 to
1, where a value of 1 signifies that the model fully captures
all vaniability in the data, while a value of 0 indicates that it
fails to account for any variability.
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Fig. 7 Structure diagram of SOC prediction model.

The corresponding formula is:

R2 Z;(yi—jji)z

== @7

Z;(yi_?)z

where, ¥ denotes the mean of the observed values, while
R?* provides insight into the model's explanatory power
regarding the data. A value closer to 1 indicates a superior
fit of the model to the data and an enhanced capacity to
account for its variability.

The Mean Absolute Percentage Error (MAPE) is an
unscaled metric that quantifies the average percentage of
absolute deviations between predicted and actual values.
This metric offers a relative assessment of prediction error
in relation to actual wvalues, thereby facilitating
comparability of errors across diverse data scales. The
formula for MAPE is as follows:

MAPE = —Z

i=1

x100% (28)

Yi

MAPE quantifies the proportion of the actual value
represented by the prediction error. A lower MAPE
indicates a reduced relative prediction error and enhanced
predictive accuracy of the model. This metric is particularly
valuable for assessing the comparative performance of
models across datasets of varying sizes.

By employing a comprehensive set of prediction
accuracy metrics, one can thoroughly assess the

Lithium-lon Battery SOC
Prediction Results

| Prediction Results Evaluation |

Prediction Metrics

performance of the predictive model, discern its strengths
and weaknesses, and subsequently optimize it. These
metrics facilitate enhancements in the model's predictive
accuracy within practical applications, thereby bolstering
the reliability of battery performance forecasts.

C. Lithium-ion Battery SOC Prediction at 10°C

The simulation experiment results for the state of charge
(SOC) of lithium-ion batteries at 10°C, as illustrated in Fig.
8-11, indicate that the SOC prediction curves across all
models closely align with actual values. Notably, the
prediction curve generated by the Bayes-DWT-CNN-
BiLSTM-Attention model demonstrates a significantly
closer fit to these actual values, reflecting superior
predictive accuracy. This is particularly evident during
substantial fluctuations i SOC values, where this model
exhibits reduced amplitude 1in curve variations,
underscoring its enhanced adaptability and predictive
capability. To further assess comparative prediction
accuracy among models, Fig. 9 presents error curves for
various approaches. Here, the Bayes-DWT-CNN-
BiLSTM-Attention model shows minimal fluctuation in
error and a more concentrated overall error distribution.
Additionally, Fig. 10 provides a scatter plot comparison
between different models and the Bayes-DWT-CNN-
BiLSTM-Attention model at 10°C. It is apparent that
predictions from this latter model are more tightly clustered
around actual values with denser point distributions,
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especially when contrasted with traditional CNN and
LSTM models, highlighting its stability and precision
Table T quantitatively delineates performance disparities
among various models. Notably, the Bayes-DWT-CNN-
Bil.STM-Attention model excels across all performance
metrics, including RMSE, MAE, MAPE and R? values,
further substantiating its status as an optimal modeling
approach. Furthermore, Fig. 11 illustrates a bar chart
depicting each model's performance indicators. Analysis
reveals that the Bayes-DWT-CNN-BILSTM-Attention
model achieves superior outcomes across RMSE, MAE, R?
and MAPE metrics, with particular distinction noted in
RMSE and MAPE, thereby affirming its exceptional
predictive capacity and robustness.

At 10°C, the Bayes-DWT-CNN-BILSTM-Attention
model demonstrated substantial enhancements across all
performance metrics when compared to alternative models.
Specifically, the integration of CNN with Bil.STM resulted
in reductions of RMSE, MAE and MAPE by 52.24%,
46.43% and 51.58%, respectively, while R?> was improved
by 1.17%. Following the incorporation of DWT denoising
techniques, RMSE, MAE and MAPE were further
decreased by 22.66%, 28.57% and 22.52% respectively; R?
saw an enhancement of 0.14%. Subsequent optimization
through Bavesian methods led to additional reductions in
RMSE, MAE and MAPE by 21.21%, 22.67% and 27.12%
respectively; R® experienced a modest improvement of
0.07%. Finally, the inclusion of the SE module contributed
to further decreases in RMSE, MAH and MAPE by 15.38%,
10.34% and 16.40% respectively; R* was enhanced by an
additional increment of 0.04%. Collectively, these
optimizations markedly elevated both prediction accuracy
and stability within the model framework, demonstrating
that each optimization step vielded varying degrees of
improvement i predictive performance particularly
concerning error mitigation and fitting precision.

D. Lithium-ion Battery SOC Prediction at 0°C

The simulation results for the state of charge (SOC) of
lithium-ion batteries at 0°C, as illustrated in Fig. 12-15,
indicate that the SOC prediction curves across all models
closely align with actual values. Notably, the prediction
curve generated by the Bayes-DWT-CNN- BiLSTM-
Attention model exhibits a remarkable consistency with
observed data, demonstrating superior predictive accuracy.
This is particularly evident during significant fluctuations
in SOC values, where the amplitude of variation in this
model's curve is distinctly reduced, highlighting its
enhanced performance. To provide a more comprehensive
comparison of predictive accuracy among models, Fig. 13
presents error curves for each approach; It reveals that the
Bayes-DWT-CNN-BIiLSTM-Attention model experiences
mimmal error fluctuation and displays a more concentrated
error distribution. Furthermore, Fig. 14 employs scatter
plots to compare model performances at 0°C, Here too,
predictions  from the Bayes-DWT-CNN- Bil.STM-
Attention model show optimal alignment with actual
measurements and exhibit denser point distributions. Table
II  quantitatively assesses differences in predictive
performance across models; Findings indicate that the
Bayes-DWT-CNN-BiLSTM-Attention model excels in

metrics such as RMSE, MAE, MAPE and other error
indicators  while achieving peak R?> values, further
substantiating its designation as the optimal modeling
approach. Lastly, Fig. 15’s bar chart corroborates these
findings by illustrating that this model surpasses all
comparative models across key performance indicators.

At 0°C, the integration of CNN with BiLSTM resulted in
reductions of 44.79%, 39.13% and 46.91% in RMSE, MAE
and MAPE, respectively, while R? exhibited an
improvement of 1.19%. The subsequent incorporation of
DWT further decreased RMSE, MAE and MAPE by
44.03%, 48.57% and 41.21%, respectively, alongside a
modest enhancement in R? by 0.35%. Optimization through
Bayesian methods led to reductions of RMSE, MAE and
MAPE by 20.22%, 22.22% and 25.96% respectively;
However, the increase in R* was marginal at just 0.06%.
Finally, the addition of the SE module contributed to
further decreases in RMSE (11.27%), MAE (10.71%) and
MAPE (14.52%), with a slight improvement in R? by only
0.02%.

E. Lithium-ion Battery SOC Prediction at -10°C

The simulation experimental results for the State of
Charge (SOC) of lithium-ion batteries at -10°C, as
illustrated in Fig. 16-19, indicate that the prediction
accuracy of the Bayes-DWT-CNN-BiL.STM-Attention
model is markedly superior, with a reduced fluctuation
amplitude in its curve, thereby demonstrating its
exceptional performance. To further evaluate the predictive
capabilities of various models, Fig. 17 presents the error
curves associated with each model. The findings reveal that
the Bayes-DWT-CNN-BiLSTM-Attention model exhibits
the least error fluctuation and a higher concentration of
errors. Additionally, Fig. 18 provides a comparative
analysis of each model's performance at -10°C through
scatter plots. The prediction outcomes from the Bayes-
DWT-CNN-BILSTM-Attention model align most closely
with actual values; furthermore, points within the scatter
plot are more densely clustered, reflecting its superior
stability.

As 1llustrated in Table 111, the model's performance has
undergone significant enhancement at -10°C following
multiple optimization strategies. Initially, the integration of
CNN with BiL.STM resulted in reductions of RMSE, MAE
and MAPE by 51.56%, 40.28% and 48.26% respectively,
while R?> experienced an improvement of 0.70%.
Subsequently, the incorporation of wavelet denoising
(DWT) further decreased RMSE, MAE and MAPE by
10.09%, 11.63% and 20.89% respectively; R? saw a modest
increase of 0.04%. Following Bayes optimization, RMSE,
MAE and MAPE were reduced by an additional 19.39%,
19.74% and 24.58% respectively with a slight enhancement
in R? by 0.06%. Finally, the addition of the SE module led
to further reductions in RMSE (31.63%), MAE (36.07%)
and MAPE (36.35%) along with another increment in R? by
0.06%. Fig. 19 provides a clear comparative analysis of
each performance metric. As each optimization step is
implemented, both prediction accuracy and stability are
markedly improved across all indicators, culminating in
optimal performance for the Bayes-DWT-CNN-BiL.STM-
Attention model at -10°C.
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SOC Predictions by Different Models at 10°C
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Fig. 9 Predicted error curves for different models at 10°C.

To enhance the persuasiveness of this study, the
proposed overall architecture predictive model was
rigorously compared with several relevant studies through
experimental evaluations, as detailed in Table IV and Fig.
20. This comparison includes the Extended Kalman Filter
(EKF), the Adaptive Extended Kalman Filter with Adaptive
Fading Factor (MAEKF), the Kalman Filter utilizing an
Improved Davidon Equivalent Circuit Model (ECM) and

the Genetic Algorithm Support Vector Regression Model
(GASVR) under varying cycle conditions and temperatures.
The results indicate that the proposed model consistently
outperforms these comparative benchmarks, thereby
demonstrating that the Bayes-DWT-CNN-BiLSTM-
Attention model exhibits superior performance relative to
other models.
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Fig. 10 Scatter plot of different prediction models at 10°C.
TABLE I. PERFORMANCE INDICATORS OF DIFFERENT MODELS AT 10°C
Model Number RMSE MAE R-squared MAPE
CNN M1 0.0268 0.0196 0.9851 4.2357
LSTM M2 0.0191 0.0151 0.9924 3.0243
BILSTM M3 0.0171 0.0137 0.9939 2.7234
CNN-LSTM M4 0.0140 0.0112 0.9959 2.3972
CNN-BILSTM M35 0.0128 0.0105 0.9966 2.0509
DWT-CNN-LSTM M6 0.0114 0.0086 0.9973 1.8793
DWT-CNN-BIiLSTM M7 0.0099 0.0075 0.9980 1.5891
Bayes-DWT-CNN-LSTM M8 0.0080 0.0059 0.9987 1.2262
Bayes-DWT-CNN-BiLSTM M9 0.0078 0.0058 0.9987 1.1581
Bayes-DWT-CNN-BiLSTM-Attention M10 0.0066 0.0052 0.9991 0.9682
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Fig. 11 Bar chart of performance indicators of different prediction models at 10°C.

SOC Predictions by Different Models at 0°C
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Fig. 12 SOC prediction curves for different models at 0°C.
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Prediction Errors by Different Models at 0°C

0.1
0.08
0.06
0.04
0.02
<)
g 0
m
-0.02 -
-0.04
-0.06
-0.08
0.1 | | | 1
0 50 100 150 200
Time Index
—CNN ---LSTM ~-BiLSTM
---------- CNN-LSTM ——CNN-BiLSTM - - -DWT-CNN-LSTM
-----DWT-CNN-BiLSTM - Bayes-DWT-CNN-LSTM ——Bayes-DWT-CNN-BiLSTM
Bayes-DWT-CNN-BiLSTM-Attention
Fig. 13 Predicted error curves for different models at 0°C.
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Fig. 14 Scatter plot of different prediction models at 0°C.

Volume 33, Issue 7, July 2025, Pages 2749-2771



Engineering Letters

0.025
0.03
_ 0.0255 0.0257 0.02 0.0199 0.0200 0.0200
0.02 0.015
0.015
0.0106 0.01 0.0083
0.01 ] 0.0089 0.0091 ‘ 0.0072 0.0075
0.005 80
0 " " 0
N OO X © > O O
AR R S R N R S S
(@)
R2

T T T T T

T

T
0.9990 0.9992

0.9984
0.9977 9.258

4.0869 3 g6

0.995 3.7343

0.99

0.9868 (0.9866

1.5232 1.5567

0.985

0.98
© (d)

Fig. 15 Bar chart of performance indicators of different prediction models at 0°C.

SOC Predictions by Different Models at -10°C

1.2~
—CNN
===LSTM
BiLSTM
1 ——CNN-BiLSTM
- -DWT-CNN-LSTM
----- DWT-CNN-BiLSTM
-~ Bayes-DWT-CNN-LSTM
08 ——Bayes-DWT-CNN-BiLSTM
. Bayes-DWT-CNN-BiLSTM-Attention
——Real Value
Q
Q06—
w2
0.48 3
04 0.46 |
0.44 | e
o42rML ¥ WA=, 1T N e
02 04
0.38 |
0 | I | | ‘
0 50 100 150 200

Time Index

Fig. 16 SOC prediction curves for different models at -10°C.
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Fig. 17 Predicted error curves for different models at -10°C.
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Fig. 18 Scatter plot of different prediction models at -10°C.
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Fig. 19 Bar chart of performance indicators of different prediction models at 10°C.

TABLE II. PERFORMANCE INDICATORS OF DIFFERENT MODELS AT 0°C

Number RMSE MAE R-squared MAPE

CNN M1 0.0288 0.0230 0.9832 4.8802

LSTM M2 0.0255 0.0199 0.9868 4.0869

BiLSTM M3 0.0257 0.0200 0.9866 3.9620
CNN-LSTM M4 0.0226 0.0200 0.9896 3.7343
CNN-BIiLSTM M3 0.0159 0.0140 0.9949 2.5909
DWT-CNN-LSTM M6 0.0106 0.0083 0.9977 1.8371
DWT-CNN-BiLSTM M7 0.0089 0.0072 0.9984 1.5232
Bayes-DWT-CNN-LSTM M8 0.0091 0.0075 0.9983 1.5567
Bayes-DWT-CNN-BIiLSTM M9 0.0071 0.0056 0.9990 1.1278
Bayes-DWT-CNN-BiLSTM-Attention M10 0.0063 0.0050 0.9992 0.9640

TABLE III. PERFORMANCE INDICATORS OF DIFFERENT MODELS AT -10°C

Model Number RMSE MAE R-squared MAPE

CNN Ml 0.0225 0.0144 0.9910 4.0258

LSTM M2 0.0245 0.0153 0.9893 43520

BiLSTM M3 0.0195 0.0118 0.9933 33744
CNN-LSTM M4 0.0157 0.0129 0.9956 3.2288
CNN-BIiLSTM M5 0.0109 0.0086 0.9979 2.0829
DWT-CNN-LSTM M6 0.0118 0.0093 0.9975 2.1913
DWT-CNN-BiLSTM M7 0.0098 0.0076 0.9983 1.6477
Bayes-DWT-CNN-LSTM M8 0.0093 0.0074 0.9985 1.5780
Bayes-DWT-CNN-BiLSTM M9 0.0079 0.0061 0.9989 1.2427
Bayes-DWT-CNN-BiLSTM-Attention M10 0.0054 0.0039 0.9995 0.7910
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TABLE IV. PREDICTIVE PERFORMANCE METRICS OF OTHER RESEARCHERS' MODELS ON TURNIGY GRAPHENE 5000MAH 65C Li-ION BATTERY DATA

Model Reference Drive Cycle Temperature RMSE MAE R? MAPE

-10°C 0.0989 N/A N/A N/A

EKF Ref. [42] LA92 0°C 0.0178 N/A N/A N/A

10°C 0.0101 N/A N/A N/A

0°C 0.0089 0.0139 N/A N/A

LA92 25°C 0.0125 0.0149 N/A N/A

40°C 0.0101 0.0129 N/A N/A

0°C 0.0300 0.0411 N/A N/A

MAEKF Ref. [43] US06 25°C 0.0257 0.0341 N/A N/A

40°C 0.0138 0.0322 N/A N/A

0°C 0.0158 0.0303 N/A N/A

Mixed 25°C 0.0194 0.0325 N/A N/A

40°C 0.0143 0.0322 N/A N/A

ECM Ref. [44] LA92 252C 0.0355 0.0292 N/A N/A

-20°C 0.0195 0.0157 0.9879 N/A

-10°C 0.0150 0.0130 0.9894 N/A

LA92 0°C 0.0097 0.0097 0.9883 N/A

10°C 0.0102 0.0084 0.9889 N/A

GASVR: Ref. [45] 25°C 0.0098 0.0084 0.9891 N/A

-20°C 0.0206 0.0163 0.9860 N/A

-10°C 0.0139 0.0115 0.9850 N/A

NEDC 0°C 0.0112 0.0093 0.9877 N/A

10°C 0.0084 0.0073 0.9892 N/A

25°C 0.0095 0.0077 0.9892 N/A
-10°C 0.0054 0.0039 0.9995 0.7910
Bayes-DWT-CNN-BiLSTM-Attention Present LA92 0°C 0.0063 0.0050 0.9992 0.9640
10°C 0.0066 0.0052 0.9991 0.9682

Radar Chart for RMSE Radar Chart for MAE Radar Chart for R-squared
0.1 Ref.[43] 0.03 Ref.[43] | Ref.[43]
i 0.08 . i
Ref. [44] - Ref. [44] Ref. [44] 0.995
0.04
0.02
B Ref, [42] Ref. [42] Ref. [42]
Ref. [45] Ref. [45] Ref. [45]
Present Present Present

@

IV. CONCLUSIONS AND PROSPECTS

This  paper  presents a  SE-CNN-BIiLSTM
state-of-charge (SOC) prediction model for lithium-ion
batteries, leveraging Bayesian optimization and wavelet
denoising  techniques. By employing  wavelet
transformation to effectively denoise the original dataset,
the model significantly mitigates noise interference while
preserving essential signal features, thereby enhancing
predictive stability. Furthermore, the incorporation of a
Squeeze-and-Excitation (SE) module augments the CNN's
capacity to allocate weights across diverse features,
resulting in more precise feature extraction. Additionally,
Bayesian optimization is utilized to fine-tune critical
hyperparameters of the BiLSTM architecture, ensuring that

©
Fig. 20 The radar chart of predicted performance indicators of other researchers on the Turnigy graphene 5000 mAh 65C lithium-ion battery data.

the model achieves high predictive accuracy and robust
generalization capabilities within complex dynamic
environments. Experimental results demonstrate that the
proposed SOC prediction model excels under varying
temperature conditions and markedly surpasses alternative
models in SOC prediction tasks. Simulation outcomes at
-10°C, 0°C and 10°C reveal not only significant advantages
in performance metrics such as RMSE, MAE and MAPE
but also a high R? value, validating its superior predictive
capability and robustness. In summary, this SE-CNN-
BiLSTM framework offers an efficient and reliable solution
for SOC prediction in lithium-ion batteries with substantial
implications for future battery management system design
and optimization.
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