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Abstract—After getting dynamic model of two wheels driven

mobile robot, a model reference adaptive control system using
Popov hyperstability theory is proposed. The model reference
adaptive control system has simple structure, and can adapt to
the systems affected by interference. Using Popov hyperstability
criterion the mobile robot system can be designed and obtain
same characteristics of dynamic response with reference model
for same control input. Then by using Matlab/Simulink
simulation software, the dynamic model based simulation
control for a mobile robot is carried out, and the simulation
result shows that the model reference adaptive control
algorithm using hyperstability theory can effectively improve
the adaptive ability of mobile robot system.

Index Terms—Adaptive control, Mobile robot systems ，
Dynamic model，Popov hyperstability

I. INTRODUCTION

heeled mobile robots have been widely used due to its
fast speed, strong flexibility, high accuracy, high

efficiency, and simple mechanical structure. A common
structure is differential drive, with two independent drive
wheels and one or two unpowered wheel for balancing.
Currently, differential drive robots have been used in many
fields, such as transportation, monitoring, automated vehicles,
and so on [1-3].

For a differential drive mobile robot, an important issue is
the design of its motion controller. Mai, etc. proposed an
optimal fuzzy system to control the operations of
two-wheeled balancing mobile robots [4]. Cui, etc. proposed
an adaptive control strategy proposed for simultaneous
tracking and stabilization of nonholonomic mobile robot with
uncertainties [5]. Qin, etc. proposed a super-twisting
fractional-order sliding mode fault-tolerant control method
combined with a fault observe aiming at the actuator
fault-tolerant trajectory tracking problem of two-wheeled
differential-driven mobile robots [6]. Almomani, etc. first
developed a discrete-time linear model for the mobile robot
from the robot dynamics, then proposed a discrete optimal
controller to track desired velocities of robot wheels [7].
Pang, etc. developed a hyperbolic tangent function-based
adaptive sliding mode controller to remove the negative
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impacts imposed by the nonlinear external disturbances on it
based on the established dynamics model of a practical two
wheels mobile robot [8].

The controller design of mobile robot system is mainly
based on two kinds of model. One is kinematic model, the
other is dynamic model. Because of the complexity of
dynamic model, kinematic model is often used. However, for
getting better velocity control, the control based on dynamic
model for mobile robot is also researched.

A kind of model reference adaptive control algorithm
using Popov hyperstability theory is presented in this paper.
The model reference adaptive control is used so as to solve
the problem that is generated by the inaccuracy of controlled
object model. Model reference adaptive controller possesses
the ability of self-adapting. It can automatically adjust the
parameters of controller, and achieve the optimal control of
mobile robot system. The performance of proposed algorithm
is better than traditional PID controller. Furthermore, it
shows excellent adaptability in the control of the nonlinear
and complex object.

II. THE DYNAMICS MODEL OF MOBILE ROBOTS

In the following, we first establish the dynamic model of
the wheeled mobile robot.

A. Robot structure
A differential drive mobile robot is shown as Fig. 1. There,

v and  are, respectively, the linear and angular velocities,
M is the midpoint of the connecting line between the two
traction wheels. M is with coordinates x and y in the xOy
plane,  is the robot orientation, and d is the distance
between the center lines of the traction wheels [9].

The state of the robot is represented by the position and
heading angle of the midpoint M of its two driving wheels in
the coordinate system xOy

Fig. 1. The differential drive mobile robot

B. Dynamic equation of linear velocity for robot
In the absolute coordinate system xOy , a rigid mobile

robot with independent dual rear wheel drive moves in the
plane, the dynamic equations can be used to describe the
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dynamic characteristics of the robot [10].
For the whole vehicle body, according to the principle of

torque balance, the rotational torque of the vehicle body is
equal to the active torque of the right wheel minus the active
torque of the left wheel, that is

  M r lI F l F l (1)

According to Newton's laws, there is
  r lMs F F (2)

where, MI is the Moment of inertia around the point M of
the robot, lF and rF are the driving forces of the left and
right wheels respectively, l is the distance from the left and
right wheels to the point M of the robot,  is the pose angle
of the robot, and s is the linear displacement the point M of
the robot.

For two driving wheels, according to the principle of
torque balance, the dynamic characteristics of the left and
right wheels are represented by the following equation.

 

 

   


  

 

 
w r r r r

w l l l l

I c ku dF

I c ku dF
(3)

In the above left and right wheel parameters, wI is the
moment of inertia of the wheel, c is the coefficient of viscous
friction, k is the driving gain, d is the radius of the wheel,
l and r are respectively the angle of the left and right
wheels, and ru and lu are respectively the driving input of
left and right wheels.

According to the principles of mobile robots, there are the
following equations.

2



 

 r ls s
s (4)

2




  r ls s

l (5)

where rs and ls are respectively the linear displacement of
left and right wheels.

From equations (4) and (5), the following result can be
gotten.

 

 

   


  

  
  

r r

l l

s d s l

s d s l
(6)

Multiply both sides of equation (3) by d ,
2

2

 

 

   


  

 

 
w r r r r

w l l l l

I d cd kdu d F

I d cd kdu d F
(7)

From the equation (7), the following result can be gotten.
       2            

w r l r l r l r lI d cd kd u u d F F (8)

From equations (4), the following result can be gotten.
  2    r ld s (9)

Take the derivative on both sides of the above equation,
and get the following equation.

  2    r ld s (10)

Substitute equation (9) and (10) into equation (8), and get:
  22 2     w r lI s cs kd u u Md s (11)

From equation (11), we can get:

 2 2
2

2 2
   

 
  r l

w w

c kds s u u
Md I Md I

(12)

C. Dynamic equation of angular velocity of mobile robot

Multiply both sides of equation (1) by 2d , and get:
 2 2  M r lI d F F d l (13)

From equation (3), the following result can be gotten.
                   

w r l r l r l r lI c k u u d F F (14)

Multiply both sides of equation (3) by dl ,
        2            

w r l r l r l r lI dl c dl k u u dl F F d l (15)

From equations (6), the following result can be gotten.
  2     r ld l (16)

Take the derivative on both sides of the above equation,
and get the following equation.

  2     r ld l (17)

Substitute equation (16) and (17) into equation (15), and
get:

    22 2         w r l r lI l l cl l k u u dl F F d l (18)

Substitute equation (13) into equation (18), and get:
  22 2          w r l MI l l cl l k u u dl I d (19)

The above equation can be rewritten as:
 22 2          w M r lI l l I d k u u dl cl l (20)

From equation (20), we can get:

 
2

2 2 2 2
2

2 2
 
  

 
  r l

w M w M

cl kdl u u
I l I d I l I d

(21)

D. State space model of mobile robot
In the following, by defining state variables, we can obtain

a state space model of dynamics equations of mobile robot.

Defining the state variable        T
px s s , the control

input is   T
p r lu u u , the output variable        T

py s s ,

the dynamic equation of robot can be gotten as follows:
 

 

p p p p p

p p p

x A x B u

y C x
(22)

where 1

2

0   1     0    0
0       0   0
0   0     0    1
0   0     0    

 
 
 
 
 
 

p
a

A

a

, 1 1

2 2

0      0
     

0      0
   -

 
 
 
 
 
 

p
b b

B

b b

,

1    0     0    0
0    1     0    0
0    0    1    0
0    0    0    1

 
 
 
 
 
 

pC , 1 2
2

2
 

 w

ca
Md I

,

2

2 2 2
2

2



w M

cla
I l I d

, 1 2 2


 w

kdb
Md I

,

2 2 22


w M

kdlb
I l I d

.
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III. THEMODEL REFERENCE ADAPTIVE CONTROL
USING POPOV HYPERSTABILITY THEORY

We design a model reference adaptive controller which
makes the plant track the output of the reference model with
the same reference input. In other words, the MRAC method
best suits us here to obtain perfect tracking goal [11-12]. The
target in our case study is tracking the desired movement
under the given control input.

A. The Structure of Model Reference Adaptive Control

Fig. 2. The Model Reference Adaptive Control System

Fig. 2 is the model reference adaptive control system of
mobile robot. In Fig.2, the state space model of the reference
model is:

 
 

m m m m m

m m m

x A x B u
y C x

(23)

where mC is unit matrix I , and the design method of
matrices mA and mB will be provided below.

The state space model of the controlled object is equation
(22).  G t and  F t are respectively gain matrix and
feedback matrix which need to be adjusted in real time by the
adaptive controller. The controlled object,  G t , and

 F t form an adjustable system.

After  G t and  F t are introduced, it can be concluded
that

    p pu G t u F t x (24)

Substitute equation (24) into equation (22), and get:
   p p p p px A B F t x B G t u     (25)

From equation (25), it can be seen that by changing  G t

and  F t , the input matrix sB and state matrix sA of the
adjustable system can be changed, then the output of the
controlled object is changed.

In equation (25), let  '  p p pA A B F t ,  ' p pB B G t ,

and get:
' ' p p p px A x B u (26)

Defining the generalized output vector error:
 m pe y y (27)

The adaptive controller adjusts  G t and  F t based on
generalized output error e , so that the output of the control
object tracks the output of the reference model

B. Popov Hyperstability Theory

Fig. 3. The block diagram of a nonlinear system

As shown in Fig. 3,  G s is the forward block and  , y t
is the feedback block. In order for the closed-loop system to
become a hyper stable system,  G s must satisfy positive

real property and  , y t must satisfy the Popov integral
inequality.

In the following, first convert the system described in Fig.
2 to the system described in Fig. 3, and then apply the Popov
hyperstability criterion.

Differentiate two sides of equation (27), and get the
following equation.

 
' '

' '

   

   

      

    m p m p

m m m p p p

m m p p m p

e y y x x

A x B u A x B u

A e A A x B B u

(28)

In order to ensure the stability of the system, Popov
Hyperstability theory is applied. Thus, a linear compensator
D that satisfies the following equation is introduced.

v De (29)
The following adaptive adjustment law is used for

variables '
pA and '

pB .

   

   

'
1 20

'
1 20

, , ,

, , ,

 

   

    

   





t
p p

t
p p

A v t d v t A

B v t d v t B
(30)

where  1 , , v t and  2 , , v t are both functions of

variables v , t , and  0   t .
Substitute equation (30) into equation (28), and get the

following results.
 

   

   

1 20

1 20

, , , ,

      + , , , ,



   

    

   



         
       





 m

t
p m p

t
p m

e A e I
v De

v t d v t A A x

v t d v t B B u

(31)

Equation (31) converts the system described in Fig. 2 to
the system described in Fig. 3, and it includes two parts.

One is the forward block which is represented as follows:
    




 me A e I
v De

(32)

The other is feedback block which is represented as
follows:
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   

   

1 20

1 20

, , , ,

      + , , , ,

   

    

       
     





t
p m p

t
p m

v t d v t A A x

v t d v t B B u
(33)

In order to make the system meet the Popov criterion, the
variables of equation (32) and equation (33) need satisfy the
following three conditions:
1) Determine variable  1 , ,v t  and  2 ,v t

       
       

1

'
2

, ,

,

T
a p

T
a p

v t F t v x

v t F t v t x t

     

 

(34)

where  aF t is the impulse response function of positive real

function system  aF s , and  ' 0aF t .

2) Determine variable  1 , ,v t  and  2 ,v t

       
       

1

'
2

, ,

,

T
b p

T
b p

v t F t v u

v t F t v t u t

    



  



(35)

where  bF t is the impulse response function of positive real

function system  aF s , and  ' 0bF t .
3) Determine variable D

T
m mPA A P Q

PI D

   



(36)

where P and Q are always a Positive-definite matrix, and
D is strictly positive real function matrix.

Substitute  '  p p pA A B F t and  ' p pB B G t into

equation (30), and get:

     

     

1 20

1 20

, , ,

, , ,

t
p

t
p p

F t B v t d v t

G t B v t d v t B

 

   





        


       




(37)

where pB
 is the generalized inverse of pB .

C. The Design of Reference Model
In a model reference adaptive control system, the static and

dynamic characteristics of the controlled object output will
tend to be consistent with the static and dynamic
characteristics of the reference model output as much as
possible.

We first consider mobile robots as two decoupled
second-order differential equations containing damping ratio
 and undamped natural oscillation frequency n :

2 2
1 1 1 1

2 2
2 2 2 2

2

2

   

      

   


  

 

 
n n n

n n n

s s s r

r
(38)

where 1 and 2 are both damping ratio, and 1n and

2n are both undamped natural oscillation frequency.
Then, we convert equation (38) into a state space model

represented by equation (23), the relevant parameters are as
follows:

2
1 1

2
2 2

0              1         0            0

-    2    0            0
0              0         0            1

0              0       -    2

n n
m

n n

w
A

w

 

 

 
 

   
 
  

,

2 2
1 1

2 2
2 2

0            0

    
0      0

    -

n n
m

n n

w w
B

w w

 
 
   
 
  

,

1    0     0    0
0    1     0    0
0    0    1    0
0    0    0    1

mC

 
 
 
 
 
 

IV. SIMULATION

A. Simulation Parameters
In order to verify the effectiveness of the proposed method,

the mobile robot system is simulated in the Matlab/Simulink
environment. The relative parameters of the mobile robot are
described as follows:

1 0.05 a , 2 0.09 a ,

1 0.25b ， 2 1.67b
The relative parameters of the reference model are

described as follows:
1 0.707  , 1 1  ,

2 0.707  , 2 2 
Q is unit matrix,

0.1450   0.5000         0           0
0.5000   0.6250         0           0
     0           0       1.1813    0.1250
     0           0       0.1250    0.1953

D

 
 
 
 
 
 

,

 aF t  =  '
aF t =  bF t  =  '

bF t =1

B. Simulation Results without Interference
In order to verify the effectiveness of the proposed method,

given      2  1T T
l ru u u  , the step response is shown in

Fig. 4~Fig.7.

Fig. 4. The Line Displacement Tracking Diagram
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Fig. 5. The Line Velocity Tracking Diagram

Fig. 6. The Angular Displacement Tracking Diagram

Fig. 7. The Angular Velocity Tracking Diagram

From Figures 2 to 4, it can be seen that the output of the
controlled object has dynamic and static characteristics that
are similar to the output of the reference model.

C. Simulation Results with Interference
In order to verify the adaptability of proposed algorithm,

the interference is added to the controller output at 10 second
during the simulation. The Pulse generator chosen from the
Sources module library is used to generate interference, and
parameters of Pulse generator are: the Pulse height is 1, the
Pulse period is 50 seconds, and the Pulse width is 2 seconds.
The system simulation diagram with interference is shown in
Fig. 8, Fig. 9, Fig. 10 and Fig.11.

Fig. 8. The Line Displacement Tracking Diagram

Fig. 9. The Line Velocity Tracking Diagram

Fig. 10. The Angular Displacement Tracking Diagram
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Fig. 11. The Angular Velocity Tracking Diagram

The simulation results show that the proposed algorithm
can still well track the output of reference model for the
system under interference influence.

V. CONCLUSION

We have presented a simulation model of mobile robot
system, and a model reference adaptive control algorithm
based on Popov Hyperstability theory for a mobile robot
system. The simulation results shows that the proposed
algorithm has better control effect for a mobile robot system.
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