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Abstract—In recent years, Vision Transformers (ViT) have
made significant progress in image classification tasks; however,
they still face challenges in high-resolution remote sensing
image segmentation and spatiotemporal video understanding
tasks. To address the computational and memory bottlenecks
caused by the complexity of the self-attention mechanism in
Transformer models, this paper proposes improvements to the
Multi-Scale Vision Transformer (MViT) architecture. First, a
shift-invariant positional embedding strategy is introduced to
overcome the limitations of absolute positional embeddings,
enhancing positional information expression through a decom-
posed form of positional distance. Second, a residual pooling
connection is proposed to address potential detail loss caused
by pooling operations, preserving feature information before
and after pooling to improve the model’s performance in
remote sensing image segmentation tasks. Additionally, the
optimized MViT architecture is combined with the standard
dense prediction framework, SegFormer, further enhancing
segmentation performance in complex remote sensing images.
Experimental results demonstrate that the proposed model,
MSRViT, effectively enhances the model’s ability to handle
multi-scale and complex features while balancing computational
efficiency and performance. These improvements provide a
more powerful tool for applying Transformer models to remote
sensing image segmentation tasks.

Index Terms—Image Segmentation, Deep Learning, Vision
Transformer, Self-Attention

I. INTRODUCTION

DESIGNING architectures for remote sensing image
segmentation has long been a challenge. Classic archi-

tectures such as VGGNet and ResNet have been widely used
for their simplicity and effectiveness. In recent years, Vi-
sion Transformers (ViT) [1–3] have demonstrated outstand-
ing performance, rivaling Convolutional Neural Networks
(CNNs)[4, 5] in many vision tasks. The ViT architecture has
undergone various modifications to adapt to different visual
tasks.

Although ViT has succeeded in image classification tasks,
it still faces challenges in high-resolution remote sensing
image segmentation and spatiotemporal video understanding
tasks. The high resolution and complex scene structures of
remote sensing images pose significant computational and
memory challenges, as the complexity of the self-attention
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module in Transformer-based models increases quadratically
with input resolution. Several strategies have been proposed
to address these issues, with two popular approaches being.

One approach involves using window-based attention
mechanisms, such as the Swin Transformer. The Swin Trans-
former applies self-attention hierarchically across different
scales of the image, initially computing self-attention within
local windows and progressively expanding the receptive
field. This approach effectively reduces computational load
while capturing global information and preserving local
details[6–8]. The hierarchical design of the Swin Trans-
former allows it to be flexibly applied to various vision
tasks, including remote sensing image classification, object
detection, and semantic segmentation. However, while the
Swin Transformer expands the receptive field through its
hierarchical structure, its local window design is less precise
in capturing global information than the global self-attention
mechanism.

Another approach is the pooling attention mechanism,
exemplified by the Multi-Scale Vision Transformer (MViT).
MViT captures features at different scales through a multi-
scale approach, allowing it to excel in processing remote-
sensing images with complex structures. MViT effectively
integrates information across scales, enhancing model per-
formance, particularly in detailed segmentation and object
detection tasks in high-resolution remote sensing images.

In this paper, the MViT model has been improved to en-
hance its performance in remote sensing image segmentation
tasks through the following modifications:

1) A shift-invariant positional embedding strategy is pro-
posed to overcome the limitations of absolute positional
embeddings. This approach introduces positional information
into Transformer blocks through a decomposed form of
positional distance, enhancing the model’s ability to perceive
spatial positional information.

2) In pooling operations, downsampling is typically used
to reduce computational load. However, such downsampling
can lead to the loss of specific detailed information, which
may affect model performance. To address this issue, a
residual pooling connection is introduced. Adding a residual
connection after the pooling operation combines the original
input features with the pooled features, compensating for de-
tail loss caused by the pooling stride in attention calculations.

3) The optimized MViT model is integrated with the
standard dense prediction framework, SegFormer, further
enhancing its performance in complex remote sensing image
segmentation tasks. Experimental results demonstrate that the
optimizations to the pooling attention mechanism and the
improvements to the MViT architecture not only enhance the
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model’s ability to handle multi-scale and complex features
but also significantly improve its performance in remote
sensing image segmentation tasks when combined with a
standard dense prediction framework. These enhancements
provide a more powerful tool for Transformer models in
remote sensing image segmentation, balancing computational
efficiency and model performance.

II. RELATED WORK

A. Residual Local Feature Network

In recent years, Transformer architectures have achieved
significant success in Natural Language Processing (NLP)
and have gradually expanded into computer vision, including
remote sensing image segmentation tasks. Traditional CNNs
have certain limitations in capturing global information and
multi-scale features in visual tasks due to their local receptive
fields and fixed convolutional kernels. Through their self-
attention mechanism, transformers effectively model long-
range dependencies and global features, thus attracting in-
creasing interest from researchers in applying them to visual
tasks[9, 10]. Vision Transformer (ViT) was one of the earliest
attempts in this direction. Despite its high computational

cost in high-resolution tasks, it laid the foundation for
developing subsequent Transformer-based models. The Swin
Transformer reduces computational load through a local
window attention mechanism and performs well in handling
multi-scale features. Models such as PVT and SegFormer
combine the multi-scale feature representation capabilities of
CNNs with the global modeling capabilities of Transform-
ers, achieving significant progress in remote sensing image
segmentation.

B. Vision Transformer

ViT applies the Transformer architecture directly to image
patches, achieving notable success in image classification
tasks. The core idea of ViT is to divide an image into
fixed-size patches and then treat these patches as a sequence
input into the Transformer to capture global dependencies.
Although ViT excels in image classification, its applica-
tion to high-resolution images and spatiotemporal video
understanding tasks remains challenging. Specifically, the
complexity of the self-attention mechanism in ViT increases
quadratically with the input image size, which limits its use
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in tasks requiring the processing of high-resolution visual
signals[11, 12].

C. Multi-Scale Vision Transformer (MViT)

The MViT was proposed to address the limitations of
ViT in handling multi-scale information. MViT introduces
a multi-scale mechanism to effectively capture features at
different scales, accommodating complex structured visual
tasks[13]. Unlike ViT, MViT gradually aggregates features
within the model, reducing computational costs and enhanc-
ing its ability to process multi-scale information. Although
MViT performs well across various visual tasks, it may still
face challenges when dealing with high-resolution images
rich in detail, which has spurred further research into its
optimization[14–16].

D. SegFormer

SegFormer[17] is a Transformer architecture specifically
designed for image segmentation tasks. It combines the
multi-scale feature extraction capabilities of PVT with the
global modeling abilities of Transformers. SegFormer em-
ploys an efficient self-attention mechanism and a simple
decoder design to achieve efficient and accurate segmenta-
tion performance. SegFormer has demonstrated outstanding
results in various semantic segmentation tasks and exhibits
strong adaptability in complex scenarios, making it a pow-
erful tool for remote sensing image segmentation tasks.

III. MSRVIT

As shown in Fig. 1, in the standard multi-head self-
attention mechanism, the model typically considers the inter-
actions between each element and all other elements globally.
While this approach excels at capturing complex depen-
dencies, it leads to a sharp increase in computational cost
when processing large-scale, high-resolution remote sens-
ing images. To address this, pooling attention mechanisms
have been introduced as an optimization strategy to reduce
computational complexity while maintaining strong model
performance. The overall structure of MSRViT is shown in
Fig. 2. The research on MSRViT was conducted under this
guiding principle, with further innovations and improvements
specifically tailored for remote sensing image segmentation.

A. Shift-Invariant Positional Embedding

In the standard self-attention mechanism, positional em-
beddings are essential because the Transformer architecture
cannot capture positional information[18]. Absolute posi-
tional encoding is typically used to explicitly indicate the
position of each element[19, 20]. However, spatial trans-
formations of remote sensing imagery (such as translation
and rotation) can render absolute positional encoding sub-
optimal in remote sensing image segmentation tasks. To
overcome the limitations of absolute positional embeddings,
MSRViT introduces a shift-invariant positional embedding
strategy. This approach incorporates positional information
into Transformer blocks through a decomposed form of
positional distance. Specifically, the model computes relative
positional distances rather than absolute positions, integrating
this information into the attention calculations. This enhances

the model’s robustness to positional changes in the input
images, providing more remarkable translation invariance to
the positions of different objects. Additionally, this relative
positional encoding reduces the model’s dependence on exact
positions, allowing it to focus more on the relative spatial re-
lationships between objects, thereby improving segmentation
performance.

B. Residual Pooling Connection

Detailed information in high-resolution images is crucial
in the remote sensing image segmentation task. The standard
pooling operation reduces the computation by downsam-
pling, but this often leads to the loss of detailed infor-
mation, thus affecting the segmentation accuracy[21, 22].
To solve this problem, MSRViT proposed residual pooling
connections. By adding residual connections after the pooling
operation, the model combines the original input features
with the pooled features to compensate for the detail loss
caused by the pooling step in the attention calculation. The
residual pooling connection retains the detailed information
in the original input and effectively reduces the computa-
tional complexity through the pooling layer. This design
ensures that the model does not sacrifice the ability to capture
subtle features of objects in remote sensing images while
maintaining efficient computation, thereby improving the
overall performance in the remote sensing image segmen-
tation task.

C. Integration of Multi-Scale Feature Extraction with Dense
Prediction Framework

The MViT has demonstrated excellent performance in
computer vision tasks due to its capability in multi-scale fea-
ture extraction. However, for remote sensing image segmen-
tation tasks, MSRViT further optimizes the MViT structure
and combines it with the standard dense prediction frame-
work—SegFormer—significantly enhancing the segmenta-
tion performance of the model. This integration leverages
the expressive power of multi-scale features, improving the
model’s performance in handling complex object segmen-
tation tasks, particularly in high-resolution remote sensing
imagery. By combining multi-scale feature extraction with
dense prediction, MSRViT exhibits outstanding performance
in fine-grained object segmentation, object detection, and
instance segmentation tasks.

D. Overall Process

Firstly, input normalization is performed as shown in
Equation (1), where X represents the input features, and
X denotes the normalized features. Next, a linear trans-
formation is applied to the normalized features to generate
the query(Q), key(K), and value(V ) vectors, as specified in
Equation (2). Here, WQ, WK , and WV are the linear trans-
formation matrices for the query, key, and value, respectively.
Subsequently, the query, key, and value vectors are pooled
to reduce computational complexity, as depicted in Equation
(3).

X̂ = Norm(X) (1)

Q = WQX̂, K = WKX̂, V = WV X̂ (2)
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Qpool = Pool(Q), Kpool = Pool(K), Vpool = Pool(V )
(3)

Following this, relative positional embeddings are com-
puted and incorporated into the attention scores, as de-
tailed in Equation (4), where E(i, j) and F (i, j) represent
the computed relative positional embeddings. The attention
weights are then calculated using the Softmax function,
and the value vectors are weighted and summed based on
these attention weights to obtain the self-attention output, as
shown in Equation (5) The next step involves combining the
input features before pooling with the self-attention output
after pooling to form a residual connection, as illustrated in
Equation (6). Finally, the output of the residual connection
is subjected to a linear transformation to yield the final
output, as indicated in Equation (7), where WO is the linear
transformation matrix for the output.

Aij =
Qpool,iK

⊤
pool,j√

d
+ E(i, j) + F (i, j) (4)

αij = Softmax(Aij) (5)

Z =
∑
j

αijVpool,j (6)

Output = WOZres (7)

This process integrates the standard self-attention mechanism
with pooling operations, residual connections, and relative
positional embeddings, enhancing the model’s positional
information perception while preserving detailed information
and reducing computational complexity.

IV. EXPERIMENTAL SETTING

A. Datasets

1) INRIA Aerial Image Labeling Dataset (IAIL): The IAIL
is a high-resolution aerial imagery dataset primarily designed
for semantic segmentation tasks related to buildings. This
dataset focuses on aerial imagery from large urban areas,
covering multiple cities in Europe and the United States,
encompassing diverse architectural styles and building den-
sities. The dataset consists of aerial images with a spatial
resolution of 0.3 meters and includes 180 large-scale images,
each with a resolution of 5120×5120 pixels. The dataset
spans approximately 360 square kilometers and includes
cities such as Austin, Detroit, and Vienna. It provides pixel-
wise semantic segmentation labels, categorizing each pixel
as "building" or "non-building," making it particularly well-
suited for binary building segmentation tasks. Although
INRIA focuses specifically on buildings, the variation in
building shapes and sizes introduces additional complexity
to the segmentation task.

2) SpaceNet Dataset: The SpaceNet Dataset is an open-
source dataset developed collaboratively by CosmiQ Works,
Maxar, and NVIDIA, aiming to advance satellite image anal-
ysis techniques. The building extraction task within SpaceNet
requires delineating building boundaries from high-resolution
satellite imagery. SpaceNet 2, in particular, is dedicated to
building segmentation tasks. The imagery in this dataset is
sourced from commercial satellites such as WorldView-3,
with resolutions ranging from 0.3 to 1 meter. Covering a total
area exceeding 1000 square kilometers, the dataset includes
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satellite images from major cities worldwide, including At-
lanta, Chicago, Las Vegas, and Kansas City. The dataset
provides precise polygon annotations (vector labels) for each
building, which is particularly useful for building outline
extraction. The diversity in building density and structure,
especially in densely populated city centers, increases the
difficulty of accurate building boundary extraction.

3) DeepGlobe Building Extraction Dataset (DBE): The
DBE was introduced as part of the 2018 CVPR challenge to
promote advancements in remote sensing image understand-
ing. This dataset is designed explicitly for building extraction
from high-resolution satellite imagery collected from various
global regions. The dataset comprises satellite images with
a resolution of approximately 0.5 meters, featuring thou-
sands of images, each with a resolution of 650×650 pixels.
These images encompass diverse geographical regions with
varying levels of urbanization. Each image is accompanied
by a binary segmentation mask, where building pixels are
labeled as "1" and non-building pixels as "0," making it
highly suitable for supervised semantic segmentation tasks.
The dataset exhibits substantial variability in building size,
shape, and spatial distribution, with certain regions featuring
sparse and irregularly shaped buildings, posing significant
challenges for model generalization.

4) WHU Building Dataset (WHUB): The WHUB, released
by the School of Remote Sensing and Information Engineer-
ing at Wuhan University, is curated explicitly for building
segmentation tasks. This dataset focuses on urban buildings
and provides high-resolution aerial imagery from multiple
cities in China. The aerial images have an exceptionally high
resolution of 0.075 meters, enabling precise identification of
building boundaries and structures. The dataset comprises
30,000 aerial images, covering a total urban area of 450
square kilometers and featuring diverse urban environments
with varying building densities and structures. Each building
in the images is annotated with detailed polygonal labels,
making the dataset particularly suitable for building outline
extraction and change detection. The high resolution of
the WHU dataset ensures that intricate building details are
preserved, imposing stringent requirements on segmentation
algorithms’ precision and detail extraction capabilities.

These datasets involve geospatial data with well-defined
annotations, making them highly suitable for automated
analysis of remote sensing imagery. They have extensive
applications in various fields and are either open-access or
freely available, making them valuable resources for remote
sensing image classification and building segmentation re-
search.

B. Evaluation Metrics

In this paper, the performance of the proposed MSRViT
model is compared against baseline models using commonly
adopted evaluation metrics in remote sensing image segmen-
tation. These metrics include Mean Intersection over Union
(mIoU), F1 Score, Dice Coefficient, Pixel Accuracy, and
Boundary IoU. Prior to introducing these evaluation metrics,
several fundamental concepts must be clarified.

True Positive (TP): A correctly predicted positive sample,
where both the model and the ground truth classify the
instance as positive.

False Positive (FP): A misclassified sample where the
model predicts a positive instance, but the ground truth is
negative.

True Negative (TN): A correctly predicted negative sam-
ple, where both the model and the ground truth classify the
instance as unfavorable.

False Negative (FN): A misclassified sample where the
model predicts a negative instance, but the ground truth is
positive.

Precision: Precision measures the proportion of correctly
predicted positive samples among all samples classified as
positive. It evaluates the accuracy of optimistic predictions
and helps reduce false positives. The formula for precision
is given in Equation (8).

Precision =
TP

TP + FP
(8)

Recall: Recall (also known as sensitivity) quantifies the
proportion of actual positive samples that the model has
correctly identified. It focuses on the model’s ability to
recognize positive samples and helps reduce false negatives.
The formula for precision is given in Equation (9).

Recall =
TP

TP + FN
(9)

Intersection over Union (IoU): IoU evaluates the ratio of
the overlapping area between the predicted segmentation and
the ground truth to their total combined area. IoU is one
of the most widely used metrics in image segmentation,
particularly in building segmentation tasks, as it accurately
quantifies the degree of overlap between predicted and actual
building regions. The IoU calculation formula is provided in
Equation (10).

IoU =
TP

TP + FP + FN
(10)

Given these fundamental concepts, the following evalua-
tion metrics are introduced:

1) Mean Intersection over Union (mIoU): mIoU is the
mean IoU computed across different classes (e.g., buildings
and background). In building segmentation tasks, mIoU is
typically used for binary classification (building vs. non-
building) and assesses the overall model performance by av-
eraging the IoU values of both classes. Since mIoU considers
building and background segmentation quality, it provides
a more comprehensive evaluation. The formula for mIoU
is given in Equation (3), with a value range from 0 to 1.
A higher mIoU, closer to 1, indicates better segmentation
performance.

2) F1 Score: The F1 Score is the harmonic mean of
precision and recall, designed to balance both metrics. It
is particularly suitable for imbalanced data scenarios, such
as building segmentation, where building pixels are often
significantly fewer than background pixels. The F1 Score
provides a more reliable evaluation in such cases, addressing
false positives and negatives. The formula for F1 Score is
presented in Equation (4), with a value range from 0 to 1. A
higher F1 Score signifies a better balance between precision
and recall.

3) Dice Coefficient: The Dice Coefficient, similar to IoU,
emphasizes the extent of overlap between the predicted and
ground truth regions. Although commonly used in medical
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TABLE I
MSRVIT PERFORMANCE UNDER DIFFERENT CONFIGURATIONS

Model Channels Blocks Heads Param FLOPs mIOU

MSRViT-T [96,192,384,768] [1,2,5,2] [1,2,4,8] 58.4 85.4 36.4

MSRViT-S [96,192,384,768] [1,2,11,2] [1,2,4,8] 61.3 88.5 38.4

MSRViT-B [96,192,384,768] [2,3,16,3] [1,2,4,8] 63.4 92.4 40.1

MSRViT-L [144,288,576,1152] [2,6,36,4] [2,4,8,16] 66.9 98.9 41.2

MSRViT-H [192,384,768,1536] [4,8,60,8] [2,4,8,16] 72.5 105.4 42.4

image segmentation, it is also effective in building segmenta-
tion tasks, particularly when evaluating models focusing on
overlapping regions. The Dice Coefficient is more sensitive
to small target regions, making it well-suited for tasks such
as building extraction. The formula for the Dice Coefficient
is provided in Equation (5), with a value range from 0 to 1.
Like the F1 Score, a higher Dice Coefficient indicates better
segmentation performance.

4) Pixel Accuracy: Pixel Accuracy represents the propor-
tion of correctly classified pixels out of the total number of
pixels in the image. While this metric is intuitive and straight-
forward, it may be influenced by class imbalance in building
segmentation tasks—particularly when the number of non-
building pixels significantly exceeds the number of building
pixels. This can result in an overestimated performance of
the model while failing to capture its true segmentation
capability. Pixel Accuracy is more reliable in scenarios where
buildings occupy a substantial portion of the image. The
formula for Pixel Accuracy is provided in Equation (6), with
a value range from 0 to 1. A higher value indicates greater
classification accuracy at the pixel level.

5) Floating Point Operations (FLOPs): FLOPs measure the
total number of floating-point operations required for a given
computational task, indicating model complexity. A lower
FLOP count generally indicates a more computationally
efficient model.

6) Frames Per Second (FPS): FPS is a performance metric
commonly used in deep learning and computer vision tasks.
It represents the number of frames the model can process
per second. FPS is crucial for evaluating model efficiency
and real-time performance, particularly in applications such
as video processing, real-time detection, and segmentation
tasks. A higher FPS indicates a faster model processing
speed.

Among the five primary evaluation metrics—mIoU, F1
Score, Dice Coefficient, and Pixel Accuracy—all have a
value range of 0 to 1, with higher values indicating bet-
ter segmentation performance. In contrast, FLOPs should
be minimized to improve computational efficiency. Under
comparable accuracy conditions, a higher FPS is preferred
for enhanced real-time processing. To enhance clarity, mIoU,
F1 Score, Dice Coefficient, and Pixel Accuracy are presented
as percentage values in this paper.

C. Baseline Models
For remote sensing image recognition tasks, various se-

mantic segmentation models exhibit distinct advantages in
handling large-scale images, complex backgrounds, and fine-
grained details. The following provides a brief introduction
to the baseline models considered in this paper:

1) Fully Convolutional Networks (FCN): FCN is the
first end-to-end convolutional neural network for seman-
tic segmentation. By replacing fully connected layers with
convolutional layers, FCN enables the network to process
input images of arbitrary size while producing segmentation
outputs of the exact dimensions. Although it establishes
the foundation for semantic segmentation, its performance
preserving fine-grained details and object boundaries remains
limited.

2) Pyramid Scene Parsing Network (PSPNet): PSPNet
introduces the Pyramid Pooling Module, which facilitates
multi-scale feature fusion to capture global and local contex-
tual information. This model is particularly effective in pro-
cessing large-scale objects with rich semantic information,
making it well-suited for scene-parsing tasks that require a
strong understanding of global semantics.

3) High-Resolution Network (HRNet): HRNet excels in
preserving high-resolution feature representations. By main-
taining parallel multi-resolution feature streams and contin-
uously fusing them, HRNet enhances segmentation accuracy
for fine-grained details. Retaining high-resolution features
throughout the network makes it particularly effective in
handling complex scenes that demand precise segmentation
results.

4) DeepLab V3+: DeepLab V3+ incorporates Atrous Con-
volution and the Atrous Spatial Pyramid Pooling (ASPP)
module while introducing an encoder-decoder structure to
refine boundary details. This model demonstrates outstanding
performance in multi-scale contextual feature extraction and
edge refinement, making it highly suitable for complex
semantic segmentation tasks.

5) SegFormer: SegFormer is a lightweight segmentation
model based on the Transformer architecture. It utilizes a
Mix Transformer (MiT) encoder for long-range dependency
modeling and employs a simple MLP decoder to enhance
computational efficiency. Striking a balance between perfor-
mance and efficiency, SegFormer is particularly well-suited
for edge-devices deployment.

Each model has its strengths, excelling in different seg-
mentation scenarios and demonstrating superior performance
in various remote sensing applications.

D. Data Cleaning and Experimental Setup

The experiments were conducted on a system equipped
with an Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz
processor, 128GB of RAM, and two NVIDIA GeForce
GTX TITAN XP GPUs, running on Ubuntu 22.04 operating
system. The experiments were based on the PaddleRS 1.0
deep learning framework built on PaddlePaddle 2.4. During
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training, the experiment employed a fixed interval learning
rate scheduler with proportional decay and explored various
decay strategies, incorporating a warmup phase to improve
model performance. The learning rate was set to 0.0004, with
a batch size of 32, and the AdamW optimizer was used.
Additionally, the training process utilized the Momentum
optimizer, combined with linear learning rate decay and
Exponential Moving Average (EMA) methods. One hundred
epochs were conducted to train the model fully, enhancing
its performance and generalization capability.

V. EXPERIMENTAL AND ANALYSIS

A. Model Comparison

To comprehensively evaluate the performance of the pro-
posed MSRViT model, Experiment 1 conducted comparative
analyses across multiple remote sensing image segmentation
datasets, including IAIL, SpaceNet, DBE, and WHUB. Sev-
eral mainstream baseline models—such as FCN, PSPNet,
HRNet, DeepLabV3+, and SegFormer—were included for
benchmarking. The results are summarized in Table II, where
the best-performing results for each metric are bolded, and
the second-best results are underlined, allowing readers to
identify the relative advantages easily. To provide a more
intuitive representation of MSRViT’s relative superiority,
Figure 3 visualizes the normalized performance of all base-
line models across all datasets (excluding FLOPs), using
MSRViT as the reference baseline (normalized to 100). This
comparative visualization clearly illustrates the performance
differences among models across various evaluation dimen-
sions. Such analysis not only enhances the interpretability
of model performance but also offers valuable insights for
future model design and selection.

The experimental results demonstrate that MSRViT con-
sistently achieves the best or second-best performance across
multiple datasets and evaluation metrics. Precisely, on the
IAIL dataset, MSRViT attains the highest scores in mIoU, F1
Score, and Pixel Accuracy, surpassing the second-best model
by 7.31%, 10.08%, and 9.82%, respectively. It also achieves
the second-best performance in Dice Coefficient and FLOPs,
with a marginal gap of 2.81% and 2.59% , respectively,
compared to the best-performing model. However, regarding
FPS, MSRViT lags behind the top-performing model by
9.66% . On the SpaceNet Dataset, MSRViT attains the
highest scores in mIoU, F1 Score, and Pixel Accuracy,
surpassing the second-best model by 1.85%, 14.29%, and
9.82%, respectively. It also achieves the second-best per-
formance in Dice Coefficient and FLOPs, with a marginal
gap of 2.80% and 2.91% , respectively, compared to the
best-performing model. However, regarding FPS, MSRViT
lags behind the top-performing model by 10.83% . On the
DeepGlobe Building Extraction Dataset, MSRViT attains
the highest scores in mIoU, F1 Score, and Pixel Accuracy,
surpassing the second-best model by 2.32%, 14.28%, and
9.82%, respectively. It also achieves the second-best perfor-
mance in Dice Coefficient and FLOPs, with a marginal gap
of 3.62% and 2.59% , respectively, compared to the best-
performing model. However, regarding FPS, MSRViT lags
behind the top-performing model by 4.49% . On the WHU
Building Dataset, MSRViT attains the highest scores in F1
Score, Dice Coefficient, and Pixel Accuracy, surpassing the

second-best model by 9.09%, 3.60%, and 9.19%, respec-
tively. Additionally, it achieves the second-best performance
in mIoU and FLOPs, with a marginal gap of 3.63% and
2.59% , respectively, compared to the best-performing model.
However, regarding FPS, MSRViT lags behind the top-
performing model by 10.38% .

mIoU is the most commonly used evaluation metric for
segmentation tasks, representing the average IoU across all
classes. The superior mIoU score of MSRViT indicates its
effectiveness in distinguishing different categories with high
precision while maintaining a low sensitivity to misclassified
regions. In remote sensing imagery, a higher mIoU implies
improved differentiation of land cover types, such as build-
ings, roads, and vegetation.

F1 Score, as the harmonic mean of Precision and Recall,
is particularly useful in scenarios where data distributions
are imbalanced. The high F1 Score achieved by MSRViT
suggests a balanced capability in minimizing false positives
and negatives, ensuring robust segmentation of target regions
while reducing misclassification errors. In remote sensing
applications, the model effectively detects most targets (high
recall) while maintaining low false alarms (high precision),
enhancing segmentation reliability.

Pixel Accuracy measures the proportion of correctly clas-
sified pixels across the entire image. The high Pixel Accuracy
achieved by MSRViT indicates a strong overall classification
capability, effectively segmenting most land cover regions.
However, in remote sensing segmentation, Pixel Accuracy
alone may not be sufficient, as it tends to favor dominant
classes while being less sensitive to small-scale objects.
Therefore, it is often combined with mIoU and F1 Score
to provide a more comprehensive assessment of model
performance.

MSRViT exhibits slightly lower Dice Coefficient values
compared to SegFormer across multiple datasets. This is pri-
marily due to SegFormer’s lightweight MLP decoder, which
enhances segmentation efficiency and preserves boundary
sharpness. Unlike complex decoders introducing excessive
smoothing, SegFormer’s design maintains finer details, im-
proving Dice Coefficient scores. Additionally, the lightweight
nature of MLP contributes to reduced FLOPs, explaining
why MSRViT has a more considerable computational cost.

Due to the multi-scale feature integration and dense predic-
tion strategy employed in MSRViT, its FPS is approximately
3–4 frames lower than the best-performing model. However,
considering its superior mIoU, F1 Score, and Pixel Accuracy,
this trade-off is deemed acceptable in achieving a balance
between accuracy and computational efficiency.

MSRViT performs excellently in comparative experiments,
demonstrating strong semantic segmentation capabilities and
computational efficiency advantages. It achieves the best
or near-best results in key metrics such as mIOU, F1
Score, Dice Coefficient, and Pixel Accuracy across mul-
tiple datasets, ensuring higher segmentation precision and
more accurate category differentiation. While maintaining
high performance, MSRViT optimizes computational cost
compared to traditional methods, allowing it to sustain a
high inference speed while preserving accuracy, making it
suitable for real-world applications. MSRViT exhibits strong
generalization ability, consistently adapting to different data
distributions and ensuring stable segmentation performance,
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Fig. 3. Proportional Performance Comparison of Baseline Models

particularly on complex datasets. Compared to other models,
it balances accuracy and speed well, making it well-suited
for various high-demand semantic segmentation tasks.

B. Impact of Positional Encoding

Following Experiment 1, which demonstrated the supe-
rior performance of MSRViT in image segmentation tasks,
Experiment 2 further investigates the influence of differ-
ent positional encoding strategies on model performance.
Specifically, this paper evaluates MSRViT on the WHUB
dataset using four distinct positional encoding strategies: No
Positional Encoding (No pos), Absolute Positional Encod-
ing (Abs. pos), Joint Relative Positional Encoding (Joint
rel. pos), and Decomposed Relative Positional Encoding
(Decomposed rel. pos). The analysis focuses on three key
metrics: mIoU, FLOPs, and FPS.The comparative results are
summarized in Table III

The experimental results reveal that Absolute Positional
Encoding and Joint Relative Positional Encoding enhance
mIoU compared to No Positional Encoding, with Joint Rel-
ative Positional Encoding achieving the best performance,
reaching 41.2%. This improvement can be attributed to
several factors:

1) More Effective Spatial Relationship Modeling
Compared to No Positional Encoding and Absolute Posi-

tional Encoding, Relative Positional Encoding captures the
relative positional information between pixels or features,
enabling the model to better learn local and global spatial
relationships. In image segmentation tasks, the relative posi-
tioning of pixels is crucial, as adjacent pixels are often highly
correlated. Joint Relative Positional Encoding provides a
more precise modeling capability, enhancing segmentation
accuracy.

2) Improved Local and Global Feature
Joint Relative Positional Encoding integrates horizontal,

vertical, and channel-wise relative positional information,
allowing the model to perceive features at different scales.
This approach enhances the model’s ability to capture local
structures, such as edges and textures, and strengthens global
information integration, leading to improved segmentation
precision.

3) Enhanced Generalization Capability
A key advantage of Relative Positional Encoding is its

ability to adapt to images of varying sizes and structures
without being constrained by fixed input dimensions. This
means that MSRViT, when utilizing Joint Relative Positional
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TABLE II
COMPARISON OF DIFFERENT POSITION ENCODINGS IN MSRVIT

Datasets Metrics
Model

FCN PSPNet HRNet DeepLab V3+ SegFormer MSRViT

IAIL

mIOU 34.82 36.68 37.21 36.91 38.44 41.25
F1 Score 56.31 64.84 68.75 73.06 78.31 86.20
Dice Coefficient 59.15 57.28 61.35 73.33 79.35 77.12

Pixel Accuracy 47.38 58.80 63.44 68.50 76.67 84.20
FLOPs 280.20 264.10 223.80 201.60 96.40 98.90

FPS 14.80 15.60 16.40 17.60 16.20 15.90

SpaceNet

mIOU 31.00 32.65 33.12 32.85 36.16 36.83
F1 Score 50.15 57.71 61.19 65.02 67.13 76.72
Dice Coefficient 52.46 50.98 54.60 65.26 70.62 68.64

Pixel Accuracy 42.17 52.33 56.46 60.97 68.24 74.94
FLOPs 237.50 235.50 199.10 179.40 85.80 88.30

FPS 13.10 13.90 14.60 15.70 14.50 14.00

DBE

mIOU 33.17 34.93 35.44 34.15 39.14 40.05
F1 Score 53.66 61.75 65.47 69.58 71.83 82.09
Dice Coefficient 57.12 54.62 58.35 69.83 75.08 72.36

Pixel Accuracy 45.12 56.00 60.41 65.23 73.01 80.18
FLOPs 266.83 251.50 213.12 191.98 91.80 94.18

FPS 14.00 14.90 15.60 15.30 15.50 14.90

WHUB

mIOU 29.90 31.65 33.15 33.78 40.20 38.74

F1 Score 52.21 61.27 64.97 69.60 74.00 80.73
Dice Coefficient 54.30 53.13 57.67 69.30 72.15 74.75
Pixel Accuracy 41.90 52.70 59.95 65.73 73.45 80.20
FLOPs 261.90 249.57 211.49 190.51 91.10 93.46

FPS 15.00 15.60 16.70 18.30 16.10 16.40

Encoding, can better generalize across different image res-
olutions and spatial configurations, resulting in more robust
performance on the WHUB dataset.

4) Balanced Computational Complexity and Performance
While Decomposed Relative Positional Encoding reduces

the number of parameters and computational complexity, the
experimental results indicate that this simplification leads to
a drop in mIoU. This decline is likely due to the loss of
global relative positional information caused by decomposi-
tion. In contrast, Joint Relative Positional Encoding strikes
an optimal balance between computational cost and perfor-
mance improvement, ensuring a significant boost in accuracy
without incurring excessive computational overhead.

5) Better Adaptation to the Transformer-Based Self-
Attention Mechanism The core of Transformer-based archi-
tectures lies in the self-attention mechanism. The incorpo-
ration of Relative Positional Encoding enhances attention
efficiency by avoiding reliance solely on absolute position in-
dexing. Joint Relative Positional Encoding allows the model
to dynamically focus on critical regions within the image
rather than being constrained by fixed coordinates, thereby
facilitating more precise object segmentation.

The superior performance of Joint Relative Positional
Encoding on the WHUB dataset can be attributed to its
advantages in spatial relationship modeling, local-global fea-
ture integration, generalization enhancement, computational
efficiency, and adaptability to Transformer-based architec-
tures. MSRViT achieves higher segmentation accuracy by

TABLE III
THE IMPACT OF DIFFERENT RESIDUAL POOLING

STRATEGIES OF MSRVIT ON MODEL
PERFORMANCE

Positional embeddings mIOU FLOPs FPS

No pos 40.80 96.60 16.40

Abs. pos 40.90 97.00 16.50

Joint rel.pos 41.20 107.20 16.50

Decomposed rel. pos 41.00 97.60 16.70

effectively utilizing positional information while maintaining
reasonable computational costs. These factors collectively
contribute to the significant improvement in the mIoU metric
when employing Joint Relative Positional Encoding.

C. Impact of Different Pooling Strategies

Building on the findings of Experiments 1 and 2, this paper
further examines the effect of different pooling strategies
on MSRViT. Specifically, the experiments conducted on the
WHUB dataset evaluate the impact of the following pooling
configurations: Without Residual Pooling (w/o), X Residual,
X Residual + Full Q/K Residual, X Residual + Q/K Pooling
and X Residual + Full Q/K Pooling + Q/K Residual.

Table IV presents the results, indicating that incorporating
X Residual increases mIoU from 39.5% to 40.2%, suggesting
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TABLE IV
COMPARISON OF MSRVIT WITH OTHER

SEGMENTATION MODELS

Residual Pooling mIOU FLOPs FPS

w/o 39.50 86.60 15.10

X\_Residual 40.20 92.50 15.30

X\_Residual + full Q/K Residual 40.70 95.60 15.30

X\_Residual + Q/K Pooling 41.00 96.90 15.50

X\_Residual+full Q/K Pooling
+ Q/K Residual

41.20 98.90 15.70

that this strategy enhances the model’s feature extraction ca-
pability. The introduction of Q/K Residual further improves
segmentation boundary precision, as residual connections
provide an additional information flow, enabling the network
to learn spatial relationships between different regions more
effectively. Q/K Residual allows the model to better focus on
critical regions while reducing interference from irrelevant
areas.

With the incorporation of Q/K Pooling, the spatial dimen-
sion is compressed, allowing the model to capture better
local structural information, which is particularly benefi-
cial for refining target edges and intricate details in image
segmentation. Additionally, reducing the Q/K dimension
in attention computation lowers computational complexity,
thereby improving inference speed while preventing feature
representations from becoming overly dispersed. The pooling
operation enables Q/K embeddings to integrate a broader
contextual understanding, making it easier for the model to
focus on distant pixels and enhancing overall segmentation
performance. As a result, more continues to improve pro-
gressively.

X Residual facilitates efficient feature propagation across
layers, mitigating information loss. Q/K Residual enhances
positional information learning within the attention mecha-
nism, making the self-attention distribution more structured
and meaningful. Q/K Pooling reduces computational costs
while improving local feature aggregation, making the model
more efficient and enhancing global contextual awareness.

Combining these three strategies yields the most signifi-
cant performance improvement, demonstrating their comple-
mentary nature within Transformer-based architectures and
their efficacy in improving segmentation accuracy. Notably,
the final configuration, which integrates residual and pooling
strategies, achieves a mIoU of 41.2%, matching the best-
performing positional encoding strategy.

VI. CONCLUSIONS

This paper addresses the challenges of high-resolution
remote sensing image segmentation by proposing improve-
ments based on the MViT. Traditional Transformer architec-
tures face significant computational and memory challenges
when processing high-resolution images. To tackle these
issues, this work introduces shift-invariant positional em-
bedding and residual pooling connections, which effectively
enhance the model’s multiscale feature extraction and detail
preservation capacity.

The shift-invariant positional embedding more accurately
captures spatial information by decomposing positional dis-

tances, improving the model’s understanding of complex
remote-sensing image structures. Meanwhile, the residual
pooling connection maintains computational efficiency while
preserving as much detail as possible that could be lost
during pooling operations. The proposed architecture demon-
strates significant advantages in complex remote sensing
image segmentation tasks by integrating the optimized MViT
with standard dense prediction frameworks such as U-Net
and FPN.

Experimental results show that the proposed methods
effectively address the computational complexity issues in-
herent in Transformer architectures for high-resolution image
segmentation, achieving a balanced trade-off between perfor-
mance and efficiency. This work provides valuable insights
for applying Transformer models in remote sensing image
analysis and lays a foundation for developing more efficient
and accurate segmentation models.
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