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Abstract—We introduce a fractional MSIR model employing
Caputo fractional derivative. We estimate the basic reproduc-
tion number and the model equilibrium states. Furthermore, we
analyze its local and global asymptotic stability at the disease-
free steady. Lastly, utilising Matlab, we handle simulations to
support our findings.
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I. INTRODUCTION

CONTAGIOUS illnesses, also known as diseases, are
conditions triggered by organisms like bacteria or

viruses. Certain infectious diseases can spread through insect
stings or direct contact between individuals, while others
are contracted from exposition to the surroundings micro-
organisms or by consumption of contemned water or food.
Every year, millions of individuals lose their lives due to
diseases like tuberculosis, measles, and Ebola virus. In-
fectious maladies persist due to several factors, including
inadequate sanitation and healthcare in numerous countries,
which create conducive environments for the transmission
of infectious agents. Furthermore, the emergence of drug-
resistant strains among pathogens poses a significant chal-
lenge, potentially precipitating new outbreaks despite exist-
ing medical interventions.

The primary objective of abstract models in epidemiology
is to explain the dynamics of a specific diseases, including
aspects like the spread pattern, epidemic duration, and its
repercussions on the population. These models play a crucial
role in guiding health authorities towards optimal strategies
for managing the epidemic. Such strategies may encom-
pass initiatives like large-scale vaccination campaigns, the
administration of antiviral medications, pest management,
and disinfection protocols, as well as enforcing isolation and
quarantine measures.

Mathematical models serve to represent reality, yet they
often necessitate simplifications due to the impracticality
of managing numerous input parameters. When examining
infectious diseases, certain variables, such as weather condi-
tions, individual diets, other illnesses, and specific types of
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interactions between individuals, are typically disregarded.
Therefore, it becomes crucial to pinpoint the primary vari-
ables that exert significant influence on the model. This
approach aims to streamline computational complexity while
maintaining an accurate depiction of the disease’s progres-
sion. Typically, an epidemiologic model partitions the total
population into distinct compartments, each representing
a particular health state regarding the infectious agent of
interest. This model is time-dependent, capturing changes
in the number of individuals in each compartment as their
health conditions progress. This characteristic is particularly
significant in infectious diseases characterized by short infec-
tious periods, like measles, chickenpox, rubella, or mumps.
In such cases, the birth and death dynamics are commonly
disregarded due to the brevity of the timeframe.

A fundamental framework in epidemiological modeling
categorizes the population into three distinct health states:
Susceptible (S) to the contagious agent, Infected (I) by it,
and Immune (R) or Recovered. This structure forms the
basis of what is known as the SIR model (see [3], [4]).
The original formulation of SIR model was addressed by
Kermack et al. [17], significantly shaping the mathematical
modeling of disease spreading. Subsequent contributions by
these researchers extended the model to incorporate demo-
graphic dynamics such as birth and death rates [18], [19].
Over time, various extensions and alternative formulations
have emerged. For instance, the Greenwood and Reed-Frost
models approach the problem using discrete-time steps [1],
[4]. Simpler models, like the SI model, assume no recovery
once an individual is infected [29]. More sophisticated
versions of the SIR model have been proposed as well, some
account for stratification within the susceptible population
based on differing infection risks [9], [24], while others
allow for multiple infection stages, including both sublethal
and lethal forms [6]. Additionally, further refinements to
these models include the integration of interventions such
as vaccination strategies and antiviral treatments [10], [11],
[23]. Consequently, the MSIR model classifies individuals
according to

M : individuals who possess temporary immunity acquired
from maternal antibodies;

S : the susceptible group, comprising those who are vul-
nerable to infection but have not yet encountered the
disease;

I : individuals currently infected and who may spread the
illness to others;

R : individuals who acquired immunity, i.e., recovered.
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The structure of an epidemiological model varies based on
the specific health compartments it includes. For instance,
well-known variations include the SIS model [12], the SIRS
model [20], SEIR model [21], and MSEIR model [15],
among several others. Lately, fractional derivatives were
employed in epidemiological modeling, demonstrating su-
perior accuracy in certain scenarios compared to traditional
methods. Various definitions exist for fractional derivatives;
however, we opt here to utilize the Caputo derivatives.
Employing this derivative offers several benefits, including
the ability to incorporate classical initial conditions into the
problem formulation. Additionally, unlike other fractional
derivatives, the Caputo derivative yields zero when applied
to a constant, which enhances its practical utility.

This paper addresses a new approach by presenting a
fractional MSIR model, which characterizes the disease’s
transmission through a set of fractional differential nonlin-
ear equations. One should see that fractional derivatives,
being nonlocal functionals, offer a more apt framework for
modeling systems with memory dependence on past events.
Furthermore, the flexibility in choosing any positive real α
for the fractional order allows us to tailor the model to
fit empirical data accurately. Consequently, this capability
enables us to fine-tune the modeling of real world data,
enhancing our ability to forecast the disease’s progression
effectively.

In the paper: Section 2 gives an overview of the standard
MSIR model. In Section 3, the model is extended using tools
from fractional calculus. This section focuses on demonstrat-
ing the well-posedness of the system, examining equilibrium
states, and calculating the basic generation number. Finally,
Section 4 showcases numerical simulations performed with
Matlab.

II. CLASSICAL MSIR MODEL

We assume in the study that individual who recover from
the infection, acquire permanent immunity. Additionally, we
assume a constant and equal birth and death rate, represented
by b, which maintains a stable total population over time, i.e.;

M + S + I +R = N.

The susceptible class S grows at a rate of bS, as only
susceptible mothers can give birth to susceptible offspring
(those not protected by maternal antibodies). In contrast, in-
dividuals from the other compartments, having been exposed
to the disease, are immune, so their newborns, amounting
to b(N − S) come in the passive immune category M .
Transitions between compartments occur at various rates:
individuals leave class M at rate δM , class S at rate µS,
and recover from infection at rate γI . Let β be the spread
rate, representing the likelihood that a susceptible person
becomes infected following effective contact with someone
infectious. This gives µ = βI/N .

The infection flow is governed by the below ordinary

differential system (ODS) (see [13]):

M ′(t) = b (N − S(t))− (b+ δ)M(t),

S′(t) = b S(t) + δM(t)

− β

N
I(t)S(t)− b S(t),

I ′(t) =
β

N
S(t)I(t)− (b+ γ) I(t),

R′(t) = γ I(t)− bR(t).

(1)

The time t is expressed in units like months, days or hours,
relying on how rapidly the contagion spreads. By using the
relation S = N − I−M −R, the differential expression for
S can be removed. Additionally, introducing the normalized
variables m := M/N , r := R/N and i := I/N allows for
a more compact formulation of the model:

m′(t) = b (r(t) + i(t))− δm(t),

i′(t) = β i(t)(1−m(t)− i(t)− r(t))

− (b+ γ) i(t),

r′(t) = γ i(t)− b r(t).

(2)

III. FRACTIONAL MSIR MODEL

Building on (1), we introduce a fractional version of the
MSIR system. This is achieved by replacing each ordinary
derivative with a Caputo derivative of order α ∈ (0, 1).
To maintain dimensional consistency across the equations,
each parameter denoted by ? is modified to ?α, except for
N , which remains dimensionless, as discussed in [7]. As
a result, the model is described by the below nonlinear
fractional differential system:

CDα
0+M(t) = bα(N − S(t))

− (bα + δα)M(t),
CDα

0+S(t) = δαM(t) + bαS(t)

− βα

N
S(t)I(t)− bαS(t),

CDα
0+I(t) =

βα

N
I(t)S(t)

− (γα + bα)I(t),
CDα

0+R(t) = γαI(t)− bαR(t).

(3)

It is presupposed that the functions M , I , S and R, along
with their Caputo derivatives, maintain continuity. Analo-
gous to the classical interpretation, we have CDα

0+N(t) = 0,
and this yields N := M + I + S + R remains constant.
Consequently, the fractional system (3) can be rephrased,
yielding subsequent system:

CDα
0+m(t) = bα (r(t) + i(t))− δαm(t)

CDα
0+i(t) = βα i(t)(1−m(t)− i(t)− r(t))

− (γα + bα) i(t)
CDα

0+r(t) = γα i(t)− bα r(t)

(4)

with the initial data

m(0) = m0, i(0) = i0 and r(0) = r0, (5)

where 0 ≤ m0, i0, r0 ≤ 1. The susceptible portion of the
population can be determined by

s(t) = 1− r(t)−m(t)− i(t).
Remark. An alternative approach to address the dimen-
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sional inconsistencies arising from substituting ordinary
derivatives with fractional derivatives in (2) is proposed
in [8], [26]. This method suggests to multiply the left-
hand side of any relation by τα−1, where τ being a time-
constant introduced to restore dimensional balance after the
substitution of derivative operators. Applying this adjustment
leads to the below fractional system:

τα−1 CDα
0+m(t) = b (r(t) + i(t))− δ m(t)

τα−1 CDα
0+ i(t) = βi(t) (1−m(t)− i(t)− r(t))
− (b+ γ) i(t)

τα−1 CDα
0+ r(t) = γ i(t)− b r(t).

Theorem III.1. The problem delineated by (4)-(5) admits a
unique solution belonging to

[R+
0 ]3 := R+ × R+ × R+.

Proof: The unique global solvability is established in
[22, Theorem 3.1] and [22, Remark 3.2]. To demonstrate its
non-negativity, one should examine the subsequent auxiliary
fractional differential system:

CDα
0+m(t) = bα(r(t) + i(t))− δm(t) +

1

k
CDα

0+i(t) = βαi(t)(1− i(t)−m(t)− r(t))

− (γα + bα) i(t) +
1

k
CDα

0+r(t) = γαi(t)− bαr(t) +
1

k
with k ∈ N.

(6)

We next show that for all t ≥ 0, the solution
(m?

k(t), i?k(t), r?k(t)) of system (5)-(6) lies in [R+
0 ]3. To

arrive at a contradiction, suppose there is a specific moment
when the condition does not hold. Consider

t0 = inf
{
s̃ > 0 : (m∗k(s̃), i∗k(s̃), r∗k(s̃)) /∈ [R+

0 ]3
}
.

So, (m∗k (t0) , i∗k (t0) , r∗k (t0)) ∈ [R+
0 ]3 and one of m∗k(t0),

i∗k(t0) or rk(t0) is zero. Supposing that mk(t0) = 0, then
since we have

CDα
0+m

∗
k(t) = bα (i∗k (t0) + r∗k (t0)) +

1

k
> 0,

we use the continuity of CDα
0+m

∗
k to conclude that for some

ζ > 0, we have
CDa

0+m
∗
k([t0, t0 + ζ[) ⊆ R+.

Employing Theorem A.1, we get m∗k([t0, t0 + ζ[) lies in
R+

0 , and thus m∗k is non-negative. Similarly, we show
that the functions i∗k, r∗k are also non-negative, yielding a
contradiction. Using Lemma A.4, we infer for k →∞ that
a solution (m∗(t), i∗(t), r∗(t)) of (4)-(5) lies in [R+

0 ]3, for
each t ≥ 0.

Theorem III.2. The system described by (4)-(5) admits at
most two equilibrium states:
- Disease-free equilibrium at PF = (0, 1, 0, 0),
- Endemic equilibrium at PE = (m∗, s∗, i∗, r∗), where

r∗ =
γa

bα
i∗, s∗ = 1−m∗ − i∗ − r∗,

and
i∗ =

bαβαδα − δαbα(γα + bα)

γαβαbα + b2αβα + δαβαbα + δαγαβα

m∗ =

βαb2α + βαγαbα − 2γαb2α − γ2αbα − b3α

βα(γαbα + b2α + δαbα + δαγα)

if m∗, i∗, s∗ and r∗ range in (0, 1).

Proof: The equilibrium states are determined by setting
right-hand terms in (4) equal to 0. We have

CDα
0+m(t) = CDα

0+i(t) = CDα
0+r(t) = 0.

Subsequently, we find
bα(r(t) + i(t))− δαm(t) = 0

βαi(t)(1−m(t)− r(t)− i(t))− (γα + bα) i(t) = 0

γαi(t)− bαr(t) = 0,

⇐⇒


bα(i+ r)− δαm = 0

i(βα(1−m− i− r)− (γα + bα)) = 0

γαi− bαr = 0,

⇐⇒
bα(i+ r)− δαm = 0

i = 0 or (βα(1−m− i− r)− (γα + bα)) = 0

r = γα

bα
i.

If i = 0, then m = 0, r = 0 and s = 1, Thus the, disease-
free steady occurs at

PF = (0, 1, 0, 0).

If (βα(1−m− i− r)− (γα + bα)) = 0, then

1−m− i− r =
γα + bα

βα
⇔ m = 1− i− r − γα + bα

βα
.

We replace m and r =
γα

bα
i in the equation:

bα(i+ r)− δαm = 0

to find

bα(i+
γα

bα
i)− δα(1− i− r − γα + bα

βα
) = 0

⇐⇒ bαi+ γαi− δα + δαi

+
δαγα

bα
i+

δα(γα + bα)

βα
= 0

⇐⇒ γαβαbαi+ b2αβαi− bαβαδα + δαβαbαi

+ δαγαβαi+ δαbα(γα + bα) = 0

⇐⇒ i(γαβαbα + b2αβα + δαβαbα + δαγαβα)

= bαβαδα − δαbα(γα + bα)

⇐⇒ i =
bαβαδα − δαbα(γα + bα)

γαβαbα + b2αβα + δαβαbα + δαγαβα
.
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We have m = 1− i− r − γα+bα

βα , then

m = 1− bαβαδα − δαbα(γα + bα)

γαβαbα + b2αβα + δαβαbα + δαγαβα

− γα

bα
i− γα + bα

βα

⇐⇒

m = 1− bαβαδα − δαbα(γα + bα)

γαβαbα + b2αβα + δαβαbα + δαγαβα

− γα

bα
bαβαδα − δαbα(γα + bα)

γαβαbα + b2αβα + δαβαbα + δαγαβα

− γα + bα

βα

⇐⇒

m = 1− bαβαδα − δαbα(γα + bα)

γαβαbα + b2αβα + δαβαbα + δαγαβα

− γα βαδα − δα(γα + bα)

γαβαbα + b2αβα + δαβαbα + δαγαβα

− γα + bα

βα
.

Then,

m =
βαb2α + βαγαbα − 2γαb2α − γ2αbα − b3α

βα(γαbα + b2α + δαbα + δαγα)

IV. LOCAL STABILITY ANALYSIS

Theorem IV.1. The infection-free state PF of (4)-(5) is
locally asymptotically stable (shortly denoted ”LAS”) if

βα

bα + γα
< 1

Proof: The Jacobian matrix of system (4), computed at
PF is  −δα bα bα

0 βα − γα − bα 0
0 γα −bα

 (7)

We determine the eigenvalues of this matrix by resolving

P (λ)

= det(J − λI)

=

∣∣∣∣∣∣
−δα − λ bα bα

0 βα − γα − bα − λ 0
0 γα −bα − λ

∣∣∣∣∣∣ = 0

or equivalently,

(−δα − λ)(βα − γα − bα − λ)(−bα − λ) = 0.

Thus, matrix (9) has the below eigenvalues:

λ = −δα ∨ λ = −bα ∨ λ = βα − γα − bα,

As proven in [2], [25], the infection-free equilibrium for (4)
is LAS if the above eigenvalues verify:

α
π

2
< |arg (λi)| , (8)

proving the desired result.

Theorem IV.2. The disease-present equilibrium PE of sys-
tem (4)-(5) is LAS if

βα

bα + γα
> 1

Proof: Compute a Jacobian matrix of (4) at PE , is yields −δα bα bα

−βαi∗ 0 −βαi∗
0 γα −bα

 (9)

We determine then their eigenvalues by resolving

P (λ)

= det(J − λI)

=

∣∣∣∣∣∣
−δα − λ bα bα

−βαi∗ −λ −βαi∗
0 γα −bα − λ

∣∣∣∣∣∣ = 0

or equivalently,

λ3 + λ2(δα + bα) + λ(δαbα + γαβαi∗ + βαbα)

+ δαγαβαi∗ + βαb2αi∗ + βαbαγαi∗ = 0

where

a1 = δα + bα > 0,

a2 = δαbα + γαβαi∗ + βαbα

= δαbα + βαbα

+ γαβα
bαβαδα − δαbα(γα + bα)

γαβαbα + b2αβα + δαβαbα + δαγαβα

= δαbα + βαbα

+ γαβα
bαδα(βα − (bα + γα))

γαβαbα + b2αβα + δαβαbα + δαγαβα

> 0,

a3 = δαγαβαi∗ + βαb2αi∗ + βαbαγα i∗

= (δαγαβα + βαb2α + βαbαγα) i∗

= (δαγαβα + βαb2α + βαbαγα)

× bαδα(βα − (bα + γα))

γαβαbα + b2αβα + δαβαbα + δαγαβα

> 0.

By Hurwitz-Routh Criterion, system (4) is LAS if

ai > 0 , a1a2 > a3 (i = 1, 2, 3).

Thus, the disease present equilibrium PE of (4) is LAS if

βα/(γα + bα) > 1.

The generation number R0, is given by the formula
βα/(γα+bα). It signifies the mean count of new cases aris-
ing from one infection in a fully susceptible host population.
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V. GLOBAL STABILITY

Theorem V.1. The disease-free steady PE of (4)-(5) is
globally asymptotically stable (shortly denoted GAS) if

R0 < 1.

Proof: Let V : Γ → R, V (m, i, r) = i be a Lyapunov
map so that

Γ =
{

(m, i, r) ∈ Γ : m > 0, i > 0, r > 0
}
.

Hence, the Lyapunov map derivative is as below
CDα

0+V (m, i, r) = CDα
0+i

= βαi(t)(1−m(t)− r(t)− i(t))− (γα + bα) i(t)

= i(t)(βα (1−m(t)− r(t)− i(t))− (γα + bα))

= i(t)
[
R0

(
γα + bα)(1−m(t)− r(t)− i(t)

)
− (γα + bα)

]
= i(t)(γα + bα)(R0(1−m(t)− r(t))− 1− i(t) ).

Thus
0 ≥ CDα

0+V (m, i, r) ⇐⇒ 1 ≥ R0,

CDα
0+V = 0 ⇐⇒ i = 0.

Using LaSalle principle [31], we find that PE is GAS in Γ.

VI. SENSITIVITY ANALYSIS OF R0

Sensitivity is often employed to assess the model robust-
ness regarding to variations in parameter values, helping us
identify which parameters significantly influence the basic
reproduction number R0. Applying the method outlined by
Chitnis et al. [30], we compute the normalized forward sen-
sitivity indices of R0. Specifically, consider ΥR0

p = ∂R0

∂p ∗
p
R0

as the sensitivity index of R0, relative to p. This yields:

R0 =
βα

γα + bα
, ΥR0

β = α,

ΥR0
γ =

−αγα

γα + bα
, ΥR0

b =
−αbα

γα + bα
.

From the above discussion we observe that the basic repro-
duction number R0 is most sensitive to changes in β . If β
will increase R0 will also increase with the same proportion
and if β decreases in same the proportion, γ and b will be
an inversely related to R0.

VII. NUMERICAL SIMULATION

We present several numerical solutions to system (4) for
various parameter values. The initial conditions are chosen
such that m+i+r = 50. We perform and display simulations
of (4) to illustrate our results.. By choosing b = 0.065 and
γ = δ = 1, the disease-free steady is PF = (0, 1, 0, 0), and
the generation number is R0 = 0.11, which is less than 1.
According to Theorem IV.1, this disease-free equilibrium is
LAS, see the figures below.

By varying the initial values m0, i0 and r0, we observe
from such figures that

1) The population of individuals with passive immunity,
safeguarded by maternal antibodies, approaches zero
(m = 0), see Fig. 1.

2) The infected cases decreases and converges to zero,
see Fig. 2.

3) The recovered people with permanent immunity in-
creases at first, then decreases and approaches the
value r = 0.1, see Fig. 3.

Similarly, by varying the value α, we observe from the
obtained figures that

1) The population of individuals with passive immunity,
conferred by maternal antibodies, tends towards m =
0, see Fig. 4.

2) The infected cases decreases towards zero, see Fig. 5.
3) The population of recovered people with permanent

immunity increases at first, then decreases and ap-
proaches the value r = 0, see Fig. 6.

VIII. CONCLUSION

Epidemic models play a role globally by offering insights
to health authorities for understanding disease transmis-
sion and making informed decisions on epidemic control
strategies. We have introduced a fractional nonlinear MSIR
model which is applicable to any case where individuals
gain permanent immunity post-infection by the causing
microorganism. We demonstrated the uniqueness and non
negativity of our models solution along with proving that it
has a maximum of two equilibrium points. Furthermore, we
presented a requirement for LAS and GAS stability of the
infection-free equilibrium.

APPENDIX A
APPENDIX : PRELIMINARIES

We recall here some useful notations, definitions, and
lemmas. Let f : R+ → R. For a given α ∈ (0, 1) and
t0 ∈ R, we consider the fractional system:

CDαy(t) = f(t, y(t)) with y (t0) = y0 (10)

For a global solvability of system (10), we need the follow-
ing theorem, see [22].

Theorem A.1. Let J = [t0 − α, t0 + α], B = BRd(y0, b)
and D = J ×B. Let f : D → Rd verifying

1) ft,· : y → f(t, y) is continuous on B,
2) f·,y : t→ f(t, y) is measurable on J ,
3) ‖f(·, y)‖ ≤ ω + λ‖y‖, ∀ y ∈ B, where ω, λ ≥ 0.

Thus, there exists a function y solving System (10).

Remark. Besides assumptions of theorem A.1, y 7→ ∂f(t,y)
∂y

is further supposed to be continuous on B. Then, a solution
y(t) of (10) exists and is unique.

We now highlight the Gamma map, given by

Γ(n) =

∫ ∞
0

e−ttn−1 dt.

Using the Matlab syntax [ ] = gamma(), the function Γ can
be directly implemented.
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Fig. 1. Evolution of passively immunized population.

Fig. 2. Evolution of infected population

Fig. 3. Evolution of recovered population

Let α, β ≥ 0, we highlight the Leffler-Mittag function
Eα,β of parameters α and β is as below

Eα,β(z) =
∞∑
k=0

zk

Γ(β + k α)
.

Definition A.2. 1. Given α > 0 and y : [a, b] → R
integrable, the α-order fractional integral of y is

Iαa+y(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1y(τ) dτ, ∀ t > a.

2. The α-order Caputo fractional derivative is
CDα

a+y(t) :=
1

Γ(n− α)

∫ t

a

(t− τ)n−α−1y(n)(τ) dτ

if α /∈ N (n = [α] + 1)

y(α)(t) if α ∈ N.

Theorem A.3. Let y and CDα
a+y be continuous functions.

For any t ∈ (a, b], there is c ∈]a, t[ verifying

y(t) = y(a) +
1

Γ(α+ 1)
CDα

a+y(c) (t− a)α.

Remark. Theorem A.3 implies that if CDα
a+y(t) > 0, ∀ t, y
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Fig. 4. Evolution of passively immunized population

Fig. 5. Evolution of infected population

Fig. 6. Evolution of recovered population

increase strictly (y decreases strictly if CDα
a+y(t) < 0, ∀ t.

Proposition A.1. 1. If y : [a, b]→ R is continuous, then
CDα

a+I
α
a+y(t) = y(t).

2. Let y : [a, b]→ R be of class Cn, then

Iαa+
CDα

a+y(t) = y(t)−
n−1∑
k=0

y(k)(a)

k!
(t− a)k.

Lemma A.4. Let fi : [a, b] × Rm → R be a continuous
functions which are Lipschtiz on x, i.e.;

∃Ki > 0 ; |fi(t,X)− fi(t,X ′)| ≤ Ki ‖X −X ′‖.
Consider f = (f1, .., fm), k ∈ N∗ and α ∈ (0, 1).

Then, if X?
k = (x1,k, .., xm,k) and X? = (x1, .., xm) are

respectively, solutions of

CDα
a+Y (t) = f(t, Y ) +

1

k
,

CDα
a+Y (t) = f(t, Y ),

(11)

for the same initial requirement, one has

X?
k(t) −→

k→∞
X?(t), ∀ t.
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Proof: By integrating (11) in fractional sens, we find

‖X?
k(t)−X?(t)‖

≤
m∑
i=1

∣∣x?i,k(t)− x?i (t)
∣∣

≤
m∑
i=1

[ 1

Γ(α)∫ t

a

(t− τ)α−1 |fi (τ, kX?(τ))− fi (τ,X?(τ))| dτ

+
(t− a)α

Γ(α+ 1)k

]
≤

m∑
i=1

[ Li
Γ(α)

∫ t

a

(t− τ)α−1 ‖kX?(τ)−X?(τ)‖ dτ

+
(t− a)α

Γ(α+ 1)k

]
.

Then, Gronwall inequality leads to (see [14, Theorem 8])

‖X?
k(t)−X?(t)‖

≤ m(t− a)α

kΓ(α+ 1)
Eα

( m∑
i=1

Li(t− a)α
)
.

Therefore, we infer that

‖X?
k(t)−X?(t)‖ −→

k→∞
0.
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