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Abstract—To address the challenges of computational
complexity and parameter redundancy in existing
fatigue-driving detection methods, we propose a novel approach
named SL-YOLOv8 (StarNet-LWDH-Head-YOLOv8). This
method integrates the YOLOv8n model with the StarNet
backbone network, improving the capacity for driver fatigue
detection and feature extraction effectiveness while reducing
computational complexity. Furthermore, the Star module is
incorporated into the neck network to form the C2f-star,
improving feature fusion efficiency while maintaining a low
computational cost. 3×3 depthwise separable convolutions
are applied to the YOLOv8 detection head to optimize the
model further, significantly reducing the number of model
parameters. The experimental results demonstrate that the
proposed SL-YOLOv8 achieves an average accuracy of 98.2%.
Compared to YOLOv8n, it achieves a 53.7% reduction in
parameters and a 45.7% reduction in computational cost.
These findings highlight that SL-YOLOv8 effectively mitigates
computational and parameter burdens while preserving high
detection accuracy.

Index Terms—Image processing; Deep learning; Lightweight;
Fatigue detection; YOLOv8

I. INTRODUCTION

W ITH the rapid advancement of the economy and the
transportation industry, the global number of traffic

accidents is increasing rapidly. Studies show that fatigued
driving is a crucial factor contributing to traffic accidents[1].
In a state of fatigue, a driver’s reaction speed and judgment
capacities are remarkably diminished, making it difficult to
respond promptly to unexpected circumstances. Statistical
data reveals that approximately half of traffic accidents are
associated with excessive driver fatigue. In our transportation
system, fatigue driving is a major causal factor of accidents.
Consequently, the identification of the fatigue state of drivers
holds substantial significance in curtailing the occurrence rate
of traffic accidents and enhancing road safety [2].

Researchers have made remarkable progress in computer
vision and target detection using deep learning in recent
years, applying it to fatigue driving detection. Traditional
target detection methods, such as HOG [3] (Histogram
of Orientation Gradients) and DPM [4] (Part Modeling),
encounter difficulties in efficiently accomplishing the
detection task, exhibiting relatively low overall efficiency
and accuracy. For instance, Zhang Zhiwei et al. use the
VGG19[5] network to monitor driver distraction behavior;
however, the deficiency in localization accuracy under
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specific conditions restricts its practical application. In
contrast, Xiu-Li Lu et al. combine facial feature point
detection with an improved SSD[6] algorithm to determine
fatigue status, yet the model is large and challenging
to deploy on standard devices. Additionally, two-stage
detection algorithms (e.g., R-CNN [7], Fast R-CNN [8],
and Faster R-CNN [9] ), although capable of enhancing
accuracy, necessitate the generation of candidate frames,
leading to a limited operation speed. Although each of
these one- and two-stage algorithms possesses merits
and demerits in fatigue driving detection, they fail to
address the core issue comprehensively. The DETR [10]
(Detection Transformer) algorithm detects targets through
direct prediction; nevertheless, it remains inadequate when
handling fatigue driving detection. For this reason, Joseph et
al. propose the single-stage YOLO (You-Only-Look-Once)
algorithm[11], which can simultaneously predict multiple
bounding boxes and their corresponding categories.
Compared with traditional two-stage algorithms, YOLO
exhibits a significant superiority in processing speed and
synchronizes classification and position prediction by
transforming the target detection task into a regression
problem. Consequently, researchers have extensively applied
the YOLO algorithm in driving behavior detection. Murthy
et al. utilized YOLOv5s [12] as a detection framework for
driver assistance systems, demonstrating better performance
than YOLOv3 and YOLOv4. However, it fails to adequately
consider the significance of lightweight design in detecting
fatigue driving. In contrast, YOLOv7 incorporates the
E-ELAN structure to augment the learning capacity of the
network and preserve the integrity of the gradient paths[13].
YOLOv8 adopts an anchorless design and introduces the
C2f module, further refining the model’s feature extraction
ability and detection accuracy.

Although the aforementioned algorithms have addressed
specific issues in fatigue driving detection, there remains
scope for enhancement in optimizing the network structure,
especially under diverse lighting conditions, reducing the
number of parameters, and alleviating the computational
burden. This paper proposes a new approach to overcome the
limitations of existing algorithms under such circumstances.
It proposes a lightweight improved algorithm, SL-YOLOv8,
based on the YOLOv8n algorithm to further optimize
performance and augment efficiency.

II. RELATED WORK

A. YOLOv8n Model

The YOLO series, a classic single-stage target detection
approach, has been extensively employed in vision. YOLOv8
has undergone optimization in multiple aspects based on
YOLOv5, particularly in detection accuracy and speed,
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achieving remarkable progress. One of the core novelties of
YOLOv8 compared to its predecessors is the incorporation
of anchor-free detection, which substantially accelerates the
post-processing step of non-maximum suppression (NMS).
With its outstanding detection speed and accuracy, YOLOv8
precisely recognizes and localizes targets within images and
videos and supports tasks such as image classification and
instance segmentation.

In contrast to other YOLO models, YOLOv8 has
garnered widespread attention due to its efficient detection
performance and rapid response capabilities. YOLOv8n
divides its network structure into three main components: the
input layer (Input), the backbone network (Backbone), and
the neck and head (Neck and head). Moreover, YOLOv8 can
furnish five distinct scale versions by diverse practical task
requirements, namely N/S/M/L/X [14, 15]. By eliminating
anchor frames and directly locating the target centroid,
YOLOv8 reduces the utilization of a priori frames and
optimizes the processing speed of NMS.

On the other hand, the backbone network comprises a
convolutional layer, a C2f module, and a fast pyramid
pooling (SPPF) module, which is mainly responsible for the
hierarchical extraction of multi-scale features. This segment
employs residual connectivity and a bottleneck structure
to diminish model complexity and enhance performance
[16]. Compared to the C3 module of YOLOv5, the C2f
module attains more favorable feature extraction outcomes
with fewer parameters. The neck structure encompasses
convolution, the C2f module, concatenation (Concat), and
an up-sampling module, which effectively integrates shallow
and deep feature information through the feature pyramid
method (FPN) and path aggregation network (PAN). The
neck network of YOLOv8 incorporates the SPPF module,
the probabilistic anchor-box assignment (PAA) module, and
two PAN modules, and the model subsequently feeds the
fused features into three different scales of detection heads.
The detection head generates the final target detection results
via convolution and deconvolution operations. In addition,
the classification head performs the target classification task
through global average pooling [17].

B. Improved SL-YOLOv8n Module and StarNet Module

In order to effectively address the issues of excessive
parameters and high computational complexity during the
process of driver fatigue detection, this paper proposes
an improved YOLOv8n target detection algorithm, namely
SL-YOLOv8. The network structure diagram of the
SL-YOLOv8 target detection algorithm is illustrated in
Figure 1. The specific improvements are detailed as follows:

(1)SL-YOLOv8 integrates the backbone network of
StarNet with YOLOv8, thereby realizing the mapping
of high-dimensional and nonlinear feature space through
the star operation. This combination not only averts the
escalation of computational complexity but also fortifies the
model’s capacity to perceive fatigue detection under varying
lighting conditions, consequently enhancing the efficacy of
feature extraction.

(2)The C2f module of YOLOv8 is enhanced by
substituting its neck structure with the Star Block, giving
rise to the C2f-Star structure. This modification optimizes

the model architecture and markedly boosts the model’s
operational efficiency.

(3)By incorporating a lightweight asymmetric detection
head, LWDH-Head, which utilizes 3×3 depth-separable
convolution, the number of parameters of the model is
substantially diminished, and the computational efficiency is
enhanced.

The backbone network of YOLOv8n is composed of
multiple convolutional and pooling layers. Compared to
YOLOv5, YOLOv8n incorporates the C2f module[18],
which supplants the original C3 structure. The C2f module
curtails the number of parameters via optimized design
while simultaneously enhancing the feature extraction ability.
This module mitigates redundant parameters and augments
computational efficiency, enabling the model to maintain
high performance while remaining lightweight.

To further augment the feature extraction capacity and
reduce the parameter count of the model, this paper
proposes using StarNet instead of the original network
architecture of YOLOv8n.StarNet maps the high-dimensional
and nonlinear feature space through star operations without
augmenting computational complexity, which optimizes
the feature extraction outcome. Additionally, incorporating
StarNet augments the model’s adaptability within complex
environments and facilitates more precise fatigue detection.
This enhancement empowers SL-YOLOv8 to strike a
superior balance between performance and efficiency,
furnishing robust support for the practical applications of
driver fatigue monitoring. StarNet streamlines the model
representation in a single-layer neural network by integrating
the weight matrix and the bias term as a unified entity. We

denote this integration as W=
[
W
B

]
, W represents the weight

component, and B designates the bias term. Therefore,
the input vector X is extended into a new input matrix
to incorporate a constant term (typically assuming the

value of 1 ), denoted as X=
[
X
1

]
.On this basis, StarNet

specifically implements the star operation WT
1 X * WT

2 X .In
the single-input single-output scenario, we define the weight
matrices W1 and W2 and the inputs X ∈ R(d+1)×1.

Where d represents the number of input channels, this
approach can be readily extended to multiple output channels
by simply adjusting the dimensions of the weight matrices
W1 and W2 accordingly. Through this construction, StarNet
not only enhances the computational efficiency of the model
but also streamlines the processing of the deviation term. To
sum up, we can express the star operation as follows:
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Here, i and j denote the different channels, while denotes
the coefficient of each element. The star operation can
eventually be generalized to (d+2)(d+1)

2 portfolios As shown
in equation (1). By stacking the multilayer structure, the
dimensions of the hidden layers can grow recursively,
approaching infinity. Assuming the width of the initial
network layer is d, once generated, a star operation operation
is performed

∑d+1
i=1

∑d+1
j=1 ω

i
1ω

j
2x

ixj . This leads to an

implicit representation of the feature space R

(
d√
2

)21

. In this
way, we denote the star operation of the nth iteration by Sn.



S1 =
d+1∑
i=1

d+1∑
j=1

ωi
(1,1)ω

j
(1,2)x

ixj ∈ R

(
d√
2

)21

S2 = WT
2,1S1 ∗WT

2,2S1 ∈ R

(
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2

)22

S3 = WT
3,1S2 ∗WT

3,2S2 ∈ R

(
d√
2

)23

...

Sn = WT
n,1Sn−1 ∗WT

n,2Sn−1 ∈ R

(
d√
2

)2n

(3)

As the number of model iterations increases, the model
becomes increasingly adept at capturing complex and
abstract features, leading to a significant improvement
in overall performance. By stacking multiple layers of
star operations, the potential feature dimensions grow
exponentially. This paper, building upon this principle,
proposes a new method., this paper introduces a Star Block,
which is further developed into a Star Network (StarNet),

as illustrated in Figure 2. The proposed model features a
simple yet efficient structure that leverages the advantages
of star operations to enhance real-time performance
while maintaining high accuracy, showcasing considerable
potential for practical applications. As the depth of the neural
network augments and the number of feature map channels
escalates. However, the network performance is enhanced.
It concomitantly leads to the accumulation of redundant
information and substantially elevates the computational cost.
This issue is also conspicuously prominent in the YOLO
series of models. This paper proposes a new method to
enhance the efficiency of fatigue driving detection. This
paper proposes StarNet, a lightweight backbone network that
is designed to effectively diminish the computational and
parameter magnitudes. The overall model performance is
further optimized by substituting the backbone network of
YOLOv8n with StarNet.

C. C2f-star module
The C2f module represents a crucial constituent in

YOLOv8, and its design stems from enhancements made
to the C3 module in YOLOv5, intending to maintain a
lightweight architecture while augmenting the richness of
gradient flow information. In the YOLOv8n model, the
C2f module augments the overall network performance
by integrating multiple bottleneck structures. Nevertheless,
redundant or irrelevant feature information may be
incorporated due to the excessive accumulation of bottleneck
structures within this module. Such redundancy not only
augments the computational burden of the model but may
also exert a negative impact on the recognition accuracy.

Fig. 1. SL-YOLOv8 Structure Diagram
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Fig. 2. StarNet Structure Diagram

For this reason, this paper introduces the star-shaped block
as a substitute for the bottleneck structure. The star-shaped
block exhibits functionality comparable to that of the
bottleneck structure at a reduced computational cost and
can attain equivalent or superior recognition outcomes.
Consequently, replacing the traditional bottleneck structure
in the C2f module with star-shaped blocks optimizes the
performance and computational efficiency of the model.
Figure 3 illustrates the C2f-star structure. Based on this,
by introducing the star-shaped block, the C2f module not
only effectively diminishes the computational complexity
but also enhances the model’s efficiency in exploiting the
feature information. This improvement renders the model
more adaptable in diverse application scenarios, particularly
in resource-constrained environments. Additionally, the
structural design of star-shaped blocks streamlines the
network architecture. It facilitates a smoother gradient
flow during the backpropagation process, accelerating the
training process and enhancing the convergence speed.
These advantages endow SL-YOLOv8 with enhanced
competitiveness and practicality in practical applications
regarding performance and computational efficiency. Figure
3 depicts the structure of C2f-star.

The star block’s processing flow is initiated by conducting
a convolution operation on the input data. Subsequently, the
data is processed through two fully connected layers, one
of which applies a ReLU activation function. Thereafter,
the outputs of these layers are integrated through the star
operation. Eventually, the merged results are combined with
the initial input data, and an additional convolution operation
is carried out to produce the final output.

The C2f-Star module utilizes star operations in the star
block to remove the traditional bottleneck structure, thus
effectively reducing redundant computation and model size.
The star block can extract high-dimensional features from

low-dimensional input space, which significantly improves
the extraction efficiency of fatigue driving features. This
feature makes the model show higher efficiency and
practicability in practical applications.

D. Lightweight Detection Head LWDH Module

In YOLO series models, the detection head generally
comprises three branches, each of which processes
information from different scales of the same object.
However, conventionally, these branches operate
independently, which may result in inefficient utilization of
model parameters and an elevated risk of overfitting. To
tackle this problem, this paper substitutes the standard 3×3
convolution in each branch with 3×3 depthwise separable
convolutions (DWConv) [19]. In contrast to traditional
convolutions, DWConv remarkably reduces the number
of parameters by disassembling the convolution operation
into depthwise convolution and pointwise convolution.
During the depthwise convolution stage, the kernel acts on
each channel independently, ensuring that the number of
feature maps remains equal to the number of input channels
without expanding the dimensionality of the feature maps.
Subsequently, pointwise convolution, via 1×1 convolution,
integrates information across different channels, modifying
the number of channels while maintaining the spatial
dimensions of the feature maps. By decreasing the number
of parameters, depthwise separable convolutions enhance
computational efficiency, and pointwise convolutions
effectively integrate cross-channel information, retaining the
model’s feature extraction capabilities. Figure 4 illustrates
the structure of the LWDH-Head module.

This method further diminishes the model parameters and
augments the detection speed. Excessive coupling between
tasks is effectively circumvented by introducing three 3 ×
3 depth-separable convolutional layers for the classification
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task and the bounding box regression task, respectively. After
substituting the head structure in the YOLOv8 network with
the LWDH-Head, the number of parameters of the model
is markedly reduced while the stability of the detection
accuracy is maintained, signifying that the optimization
strategy curtails the model complexity without impairing the
detection performance.

III. EXPERIMENT

A. Experimental environment

The operating system used for the experiments in
this paper is Win11, using Python3.8, Cuda11.8, and
Pytorch2.0 as the development environment and deep
learning framework. The graphics card is NVIDIA GeForce
RTX 3090(24GB), and the CPU is 15 vCPU Intel(R)
Xeon(R) Platinum 8362 CPU @ 2.80GHz. YOLOv8n was
used as the baseline model, the input image size was
640×640, the batch size (BatchSize) was 32, the initial
learning rate was 0.01, and 300 rounds of iterative training
were performed (Epoch).

B. Dataset

In order to validate the feasibility of this algorithm, it is
essential to acquire an appropriate dataset. During the dataset
collection process, this paper organizes the datasets under
factors such as age, gender, and lighting. Therefore, this
experiment will gather images from the following datasets:

(1) YAWDD dataset[20]: YawDD is a dataset specifically
designed for driver fatigue detection. It captures images of
male and female drivers by installing a camera beneath the
rearview mirror of a vehicle.

(2) CEW dataset: The CEW dataset was collected
and produced by Nanjing University of Aeronautics and
Astronautics (NUAA), focusing on closed-eye detection. It
encompasses facial images of individuals of diverse genders,
ages, and races when their eyes are closed.

(3) Self-constructed dataset: This dataset comprises images
of drivers in the eye-open, eye-closed, and yawning states
under varying lighting conditions.

In this paper, the three datasets are integrated and
named FDD (Fatigue Driving Detection), amounting to 8019
images. These images are annotated using a labeling tool to
categorize them into four classes: eyes open, eyes closed,
mouth open, and mouth shut. The processed files are saved
in JPG format, annotated in XML format, and converted to
TXT format before the experiment. Figure 5 presents some
of the images within the dataset.

C. Evaluation Metrics

The model evaluation indexes in this paper are Precision
P, Recall R, and Mean Average Precision mAP. The main
calculation formula is as follows:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

mAP =
1

N

N∑
i=1

APi (6)

Fig. 3. C2f and C2f-star module
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Fig. 4. LWDH-Head module

Fig. 5. Partial images in the dataset

TP is the correctly identified target in the picture, FP
refers to the category that recognizes the target’s location
but incorrectly identifies the target, FN represents an error
in forecasting results. N is the category of representation,
APi is the area under each class PR curve.

In addition, this paper employs other metrics, such as the
number of parameters, computational volume, and model
weight size, to compare with other mainstream target
detection models, thereby comprehensively demonstrating
the improved model’s superior detection performance. The
number of parameters represents the total count of all
parameters within the model and reflects the complexity
of the network. Generally, a more significant number of
parameters endows the model with greater expressiveness,
yet it also entails higher computational and storage demands.

The computational volume is typically quantified in
FLOPs (Floating Point Operations Counts), which signifies
the computational cost the model requires during inference.
A smaller computational volume usually implies a faster
model inference. The weight size, on the other hand, pertains
to the storage capacity of the model file. Models with
smaller weights exhibit higher efficiency during training and
streamline the deployment process, primarily when utilized
on resource-constrained devices[21].

D. Backbone Network Comparison Experiment

In order to more intuitively assess the performance
superiority of substituting the YOLOv8 backbone network
with StarNet, this paper undertakes a series of backbone
network comparison experiments. We compare several
networks that have gained popularity in recent years as
performance benchmarks.We conduct these experiments
within the same environment and on the FDD dataset, and
present the experimental results in Table I.

In the experiments, this paper systematically compares
the performance of multiple network architectures within
YOLOv8. The experimental results indicate that the
incorporation of EfficientViT[22] and MobileNetV4[23] fails
to enhance the detection accuracy of the model; instead, it
leads to a substantial increase in the number of parameters
and computational load, augmenting the complexity of
the model without yielding the anticipated performance
improvement. The average accuracy of Fasternet [24]
decreases by 0.4%, accompanied by a significant elevation
in its number of parameters and computational complexity.
In contrast, HGNetV2 [25] does exhibit a notable reduction
in the number of parameters and computational cost, yet
its performance advantage over StarNet is not pronounced.
Although GhostHGNetV2 [26] performs better in reducing
the number of parameters and computational complexity, its
average accuracy declines by 0.3%, which fails to enhance
the overall model performance effectively. In contrast,
StarNet not only surpasses YOLOv8n in terms of the
number of parameters and computational complexity but
also attains an average accuracy comparable to that of
the baseline model. When compared with other network
architectures, StarNet manifests significant performance
advantages. Therefore, the selection of StarNet as the
backbone network of YOLOv8n remarkably improves the
perception of fatigue detection and augments the effect
of feature extraction, validating its superiority in complex
detection tasks.

E. Ablation experiment

In order to verify the effectiveness of each module on
the algorithm’s performance, this paper conducts ablation
experiments under the premise that the configuration of the
self-constructed dataset FDD and the environment remains
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TABLE I
COMPARISON EXPERIMENT RESULTS OF BACKBONE NETWORK

Model Precision/% Recall/% mAP@0.5/% Params/M GFLOPs

YOLOv8n 96.3 96.1 98.3 3.0 8.1

YOLOv8n + EfficientViT 96 96 98.3 4.0 9.4

YOLOv8n + Fasternet 95.8 94.8 97.9 4.2 10.7

YOLOv8n + Mobilenetv4 95.8 96.3 98.3 5.7 22.5

YOLOv8n + HGNetV2 96.7 95.1 98.3 2.4 6.9

YOLOv8n + GhostHGNetV2 96.3 95.1 98 2.3 6.8

YOLOnv8n + StarNet 96.6 94.9 98.3 2.2 6.5

TABLE II
RESULTS OF THE ABLATION EXPERIMENT

StarNet C2f-Star LWDH mAP@0.5/% Params/M GFLOPs Size/M

Baseline 98.3 3.0 8.1 6.0

✓ 98.3 2.2 6.5 4.5

✓ 98.1 2.4 6.9 5.1

✓ 98.3 2.4 5.7 4.8

✓ ✓ 98.1 2.0 6.1 4.1

✓ ✓ 98.2 1.6 4.5 3.4

✓ ✓ 98.0 1.9 4.5 3.9

✓ ✓ ✓ 98.2 1.4 3.7 2.9

consistent. Through these experiments, we observe the trends
of different model performance indicators and present the
experimental results in Table II.

Following optimization, SL-YOLOv8 significantly
reduced both the complexity of the model and the
computational load. Specifically, YOLOv8n sequentially
incorporated three modules: StarNet, C2f-Star, and LWDH,
resulting in reductions of 26.3%, 15.7%, and 20.7% in
the number of parameters, respectively. Gleichzeitig, the
computational load was reduced by 19. 8%, 14. 8% and 29.
6%. These optimizations effectively reduced the complexity
of the model while the detection accuracy remained largely
unchanged. More specifically, when we replaced the original
YOLOv8 with the optimized model that included the
StarNet and LWDH modules, the number of parameters
dropped from 3.0M to 1.6M, reducing 45. 7%, while the
computational load decreased from 8.1G to 4.5G, reducing
by 44.4%. After incorporating StarNet, LWDH, and C2f-Star
modules, the parameter count of SL-YOLOv8 was reduced
to 1.4M, about 46. 3% of the parameters of YOLOv8n, while
the computational load was reduced to 3.7G, representing
45.6% of the baseline model load. Despite these reductions,
SL-YOLOv8 maintained a high detection accuracy, proving
that the optimization did not compromise performance.
These results demonstrate that SL-YOLOv8, through
effective structural optimization, reduced model complexity
and enhanced computational efficiency. Furthermore, despite
the substantial reduction in both the parameters and the
computational load, SL-YOLOv8 still provided a high
detection accuracy, further confirming the effectiveness of
the proposed optimization strategy. This study provides
valuable information for deploying deep learning models in
resource-constrained environments and offers an effective
solution for reducing model complexity without sacrificing

accuracy.

F. Results and Analysis
To assess the performance of the SL-YOLOv8 model, the

aforementioned indicators were used as measures of model
performance, and comparisons were made with current
standard target detection models under the same experimental
environmental conditions. The experimental results are
presented in Table 3. First, this study compared the improved
SL-YOLOv8 with other models in the YOLO family,
such as the newly introduced YOLOv9, YOLOv10, and
YOLOv11. Although the detection accuracy of SL-YOLOv8
is slightly lower than that of some lightweight mainstream
YOLO models, such as YOLOv6n, YOLOv7-tiny, and
YOLOv9t, it exhibits significant advantages in terms of
parameter count and computational complexity. Specifically,
in resource-constrained environments, SL-YOLOv8, with its
reduced computational demands, can effectively enhance
real-time processing capabilities and meet the requirements
of practical applications. Compared with YOLOv12n,
which maintains similar detection accuracy, SL-YOLOv8
offers a reduced parameter count and lower computational
complexity, further demonstrating the superior performance
of SL-YOLOv8. Compared to the latest RT-DETR-R18
model, SL-YOLOv8 has a precise parameter count and
computational complexity advantage and exhibits superior
detection accuracy. Compared to Faster-RCNN, SL-YOLOv8
still maintains certain advantages in terms of parameter
quantity and computational cost while also achieving
better detection performance. In conclusion, although the
detection accuracy of SL-YOLOv8 is comparable to
that of some mainstream algorithms, its lower parameter
count and computational complexity are significantly
reduced compared to other models, thereby demonstrating
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TABLE III
COMPARATIVE EXPERIMENTAL RESULTS

Model mAP50/% mAP50-95/% Params/M GFLOPs

yolov3-tiny 98.1 61.4 8.7 12.9

yolov5n 98.0 62.4 1.8 4.1

yolov6n 98.4 61.7 4.6 11.3

yolov7-tiny 98.3 61.2 6.0 13.0

yolov8n 98.3 64.7 3.0 8.1

yolov9t 98.4 64.1 2.6 11.0

yolov10n 98.3 64.6 2.3 6.5

yolov11n 98.3 64.5 2.6 6.3

yolov12n 98.3 64.4 2.6 6.3

Faster-RCNN 83.6 56.5 110.9 370.2

RT-DETR-r18 95.5 60.1 2.0 57.0

SL-YOLOv8 (ours) 98.2 63.6 1.4 3.7

its superiority and potential for practical applications,
particularly in tasks requiring high efficiency and real-time
performance.

Experimental comparisons reveal that the SL-YOLOv8
model proposed in this paper significantly enhances detection
performance and model size compared to mainstream
models. This renders SL-YOLOv8 more suitable for fatigue
driving detection, especially for installation and deployment
on small-scale devices. Figure 6 (a) depicts the detection
plot of YOLOv8, and Figure 6 (b) presents the detection
plot of the improved SL-YOLOv8 algorithm. As observable
in Fig. 6, the improved SL-YOLOv8 algorithm demonstrates
only a marginal reduction in detection accuracy while
substantially decreasing the number of parameters under
normal lighting conditions and in low-light or even dark night
environments. This indicates that the improved algorithm
can maintain a high level of detection performance while
considerably enhancing the efficiency, thereby possessing a

robust practical application value.

IV. CONCLUSIONS

The paper proposes a new algorithm called SL-YOLOv8,
which addresses key challenges such as computational
complexity and parameter redundancy in fatigue driving
detection. The method integrates the YOLOv8n model with
the StarNet backbone network, enhancing driver fatigue
detection capabilities and feature extraction effectiveness
while reducing computational complexity. Furthermore,
incorporating the Star module into the neck network to
form C2f-star improves feature fusion efficiency without
significantly increasing computational cost. Additionally,
applying 3×3 depthwise separable convolutions to the
YOLOv8 detection head reduces the model’s parameters.
Experimental results show that SL-YOLOv8 achieves an
impressive detection accuracy of 98.2%. Compared to
YOLOv8n, it reduces the number of parameters by 53.7%

(a) YOLOv8n

(b) SL-YOLOv8n

Fig. 6. The visual comparison chart between YOLOv8n and SL-YOLOv8
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and the computational load by 45.7%, thus demonstrating
significant performance improvements. These findings
highlight that SL-YOLOv8 mitigates the computational and
parameter burdens of existing models and maintains high
detection accuracy, making it a strong candidate for fatigue
detection applications. The conclusion suggests that while
the SL-YOLOv8 method shows promising results, challenges
remain, such as false positives and missed detections in
specific environments (e.g., at night or when the driver
wears sunglasses). Future research will further enhance the
model by integrating multiple datasets to improve detection
accuracy in diverse environmental conditions and optimize
the network architecture to broaden its applicability.
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