
 

  

Abstract—Remote sensing technology has been widely 

adopted in resource exploration, environmental monitoring, 

and other domains, making object detection in remote sensing 

imagery an increasingly critical research area. However, 

significant challenges persist due to variable object scales and 

complex backgrounds in these images. This thesis introduces 

GMP-YOLO, an enhanced YOLOv8-based model specifically 

designed to improve detection performance for small and 

multi-scale objects in remote sensing imagery. The proposed 

methodology incorporates several key innovations: (1) 

improving the CIoU loss function of the original YOLOv8 to 

PIoUv2 loss function, which optimizes anchor box regression 

and expedites model convergence; (2) designing a Multi-Scale 

High-Resolution Feature Fusion Network (MSHR-Net) 

containing a Multi-scale Detection Block (MDB) that enhances 

small object recognition and manages complex backgrounds; 

and (3) introducing a Global Attention Mechanism (GAM) to 

strengthen feature extraction capabilities. Quantitative analyses 

demonstrate that GMP-YOLO achieves a 7.0% improvement in 

average detection accuracy on the DOTA dataset compared to 

the baseline model. The proposed architecture also exhibits 

exceptional performance on the VisDrone dataset, particularly 

in complex environmental settings. Furthermore, an intelligent 

agent system developed with this model demonstrates superior 

real-time analysis capabilities for urban remote sensing 

imagery, providing valuable support for urban planning and 

management applications. These findings confirm that 

GMP-YOLO not only delivers enhanced efficiency and 

robustness for remote sensing object detection tasks but also 

presents a promising solution for intelligent urban remote 

sensing systems. 

 
Index Terms—Remote Sensing Image, Object Detection, 

Multi-Scale Detection, Agent, YOLOv8 

 

I. INTRODUCTION 

emote sensing technology has emerged as a valuable tool 

for large-scale, all-weather, and high-precision 
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observations, particularly following advancements in 

high-resolution imagery acquisition. The resulting 

high-resolution remote sensing datasets, with their rich 

spatial, spectral, and temporal information, have become 

essential for resource exploration, urban planning, 

environmental monitoring, and national security applications 

[1]. However, the rapid extraction of accurate target 

information from these increasingly complex remote sensing 

images remains a critical challenge in the field. 

Object detection research in remote sensing has evolved 

alongside mainstream computer vision, transitioning from 

rule-based approaches to deep learning frameworks. Despite 

this progress, two significant issues persist: small object 

detection and multi-scale object detection. Small objects 

occupy minimal pixel areas, leading to information loss 

during feature extraction [2]. Their detection is further 

complicated by complex backgrounds and variable scale 

distributions. Conversely, multi-scale detection must address 

the extensive scale variation in remote sensing imagery, from 

small buildings to large terrain features, requiring 

simultaneous capture of fine details and broader structural 

contexts [3]. 

Deep learning has significantly advanced remote sensing 

object detection through end-to-end feature learning. 

Two-stage methods like Fast R-CNN employ Region 

Proposal Networks (RPNs) to generate candidate regions 

before classification, enhancing accuracy at the cost of 

processing speed [4]. To address this limitation, single-stage 

detectors emerged. The Single Shot MultiBox Detector (SSD) 

performs detection across multi-scale feature maps, 

effectively balancing accuracy and efficiency [5]. The YOLO 

(You Only Look Once) architecture reformulates detection as 

a regression problem, substantially improving computational 

efficiency [6]. Recent variants such as YOLOv4 and 

YOLOv5 have further optimized network architectures and 

training strategies for diverse hardware environments [7]. 

Despite their success with natural images, these models 

face considerable difficulties when applied to remote sensing 

data. The unique characteristics of remote sensing 

imagery—particularly the complex distribution of small and 

multi-scale objects—often exceed conventional detection 

capabilities [8]. Consequently, researchers have focused on 

adapting existing frameworks for remote sensing 

applications. Etten et al. pioneered YOLO implementation in 

this domain [9], while Huang et al. enhanced YOLOv4 with 

dilated convolution modules to improve small object 

detection in complex backgrounds [10]. Du and Liang 

modified YOLOv5 by incorporating specialized detection 

An Intelligent Agent-Based Multi-Scale Target 

Detection System for Remote Sensing Images 

Using YOLOv8  

Jifeng Ding, Jiayuan Lin, Kechao Zhang and Xuan Wang 

R 

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2850-2863

 
______________________________________________________________________________________ 



 

heads and optimizing feature fusion to reduce information 

loss during down-sampling [11]. While these approaches 

have advanced the field, they typically target specific feature 

optimizations rather than comprehensively addressing the 

diverse scales and complex backgrounds inherent in remote 

sensing imagery. Balancing detection performance across 

variable target scales remains a significant hurdle in 

multi-scale detection scenarios. 

Recent studies have attempted to address this challenge 

through innovative architectural modifications. Zhang et al. 

integrated EfficientNetV2 and C3Ghost networks into 

YOLOv5s with a Shuffle attention mechanism, enhancing 

multi-scale detection while reducing computational 

complexity [12]. Wei et al. proposed MTD-YOLOv5, 

featuring a multi-scale perceptual hybrid pooling module that 

combines horizontal and vertical receptive fields to capture 

target information more effectively in complex environments 

[13]. Despite these advances, achieving balanced 

performance between small and large object detection 

continues to present significant obstacles. 

Simultaneously, the application landscape for remote 

sensing imagery is evolving toward greater intelligence, 

particularly in smart city management contexts where 

efficient information extraction from extensive datasets is 

crucial for urban decision-making. 

To address these challenges, this paper proposes an 

improved model, GMP-YOLO, based on YOLOv8. 

GMP-YOLO introduces innovative enhancements in model 

architecture, feature extraction, and target detection modules, 

aiming to achieve a balance between small target detection 

and multi-scale target detection in remote sensing imagery. 

The specific improvements are as follows: 

1)  Adoption of the upgraded Powerful-IoU (PIoU v2) loss 

function [14], which enhances anchor box regression 

accuracy and accelerates model convergence by 

incorporating a non-monotonic focusing strategy.   

2) Design of a Multi-scale Detection Block (MDB), based 

on the Receptive Field Block (RFB) framework [15], 

augmented with the SE attention mechanism. This 

improves the model's feature extraction capabilities 

across different target scales, effectively boosting 

multi-scale target detection performance.   

3) Development of a multi-scale high-resolution feature 

fusion network (MSHR-Net), combined with the 

path-aggregation feature pyramid network (PA-FPN). 

This includes the addition of a new detection scale for 

tiny targets and optimizations to preserve feature 

information during the downsampling process, 

significantly improving small target detection.   

4) Incorporation of the GAM module [16] into the 

backbone network to enhance multi-dimensional feature 

capture, further improving the model's detection 

performance in complex backgrounds. 

II. MATERIALS AND METHOD 

YOLOv8, developed by Ultralytics, represents a 

significant advancement in object detection technology. 

Despite the emergence of newer frameworks in recent years, 

YOLOv8 maintains its position as a crucial solution for 

diverse real-world applications due to its exceptional balance 

between accuracy and computational efficiency. Its 

architecture, illustrated in Fig. 1, comprises three principal 

components: Backbone, Neck, and Head. This modular 

structure provides an excellent foundation for the model's 

adaptability and extensibility while ensuring operational 

stability and performance in complex detection 

environments. 

 

 
Fig. 1.  Network structure of YOLOv8. 
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The backbone network of YOLOv8 employs an enhanced 

version of CSPDarknet-53 as its foundation, integrating the 

C2f module [17] to supersede the conventional CSP module. 

The C2f module augments detection capabilities for small 

targets by effectively merging high-level semantic features 

with low-level spatial information. At the terminal phase of 

the backbone, the SPPF module [18] is utilized to generate 

fixed-length feature vectors through multi-scale pooling 

operations. This component improves upon the traditional 

SPP architecture by optimizing its configuration to decrease 

computational demands while simultaneously enhancing 

processing efficiency. 

The neck structure implements the Path Aggregation 

Feature Pyramid Network (PA-FPN) architecture, which 

combines top-down and bottom-up feature fusion paths to 

effectively integrate cross-level information. To further boost 

computational performance and minimize complexity, 

YOLOv8 refines the traditional PAN architecture by 

eliminating the convolutional layer following the upsampling 

operation. This modification results in a streamlined design, 

substantially improving support for real-time detection 

applications while preserving high performance metrics. 

In the detection head, YOLOv8 adopts a decoupled head 

strategy [19], separating the classification and bounding box 

regression tasks into two independent branches. The 

classification branch utilizes a binary cross-entropy loss 

function to ensure accurate target categorization. 

Concurrently, the bounding box regression branch 

incorporates the distribution focus loss and the CIoU loss 

function to enhance the accuracy and robustness of bounding 

box predictions. This configuration improves the model's 

detection capabilities in challenging scenarios while 

optimizing overall inference efficiency. 

III. IMPROVED STRATEGY 

Despite YOLOv8's robust performance in general object 

detection tasks, its standard framework exhibits limitations 

when applied to multi-scale targets in remote sensing 

imagery, particularly regarding feature extraction precision 

and computational efficiency. To address these constraints, 

this study proposes GMP-YOLO, an enhanced model based 

on YOLOv8 with several key architectural improvements. 

To enhance the effectiveness and precision of bounding 

box regression, GMP-YOLO implements the PIoUv2 loss 

function. By introducing a non-monotonic focusing strategy, 

PIoUv2 guides anchor boxes along optimized regression 

paths, accelerating model convergence while improving 

bounding box localization accuracy. Based on the Receptive 

Field Block framework, the Multi-scale Detection Block 

(MDB) enhances detection performance across targets of 

various dimensions. By integrating MDB with the PA-FPN 

architecture in YOLOv8, we developed the Multi-Scale 

High-Resolution Feature Fusion Network (MSHR-Net). This 

network enhances multi-scale target detection capabilities by 

introducing a dedicated detection scale for tiny targets, 

enabling precise detection across four distinct scales and 

significantly improving the model's capacity to process 

complex multi-scale targets in remote sensing imagery. 

Furthermore, to mitigate potential information degradation in 

deep network layers, GMP-YOLO incorporates the Global 

Attention Mechanism (GAM) into the backbone network. 

GAM substantially enhances the model's ability to capture 

and preserve critical details, improving detection 

performance in complex scenarios. 

The comprehensive architecture of the proposed 

GMP-YOLO model is illustrated in Fig. 2. 

 

 
Fig. 2. Network structure of GMP-YOLO. 

 

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2850-2863

 
______________________________________________________________________________________ 



 

A. Loss Function Improvement 

To develop a remote sensing image target detection model 

that balances detection accuracy and speed, this study 

optimizes the loss function for Bounding Box Regression 

(BBR). BBR plays a critical role in target detection, with the 

design of its loss function directly influencing model 

performance. In YOLOv8, DFL loss and CIoU loss [20] are 

employed for BBR. The formula for CIoU loss is as follows: 
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Here, IoU  represents the intersection-over-union between 

the ground truth bounding box 
gtB  and the predicted 

bounding box 
prdB . ( )2

prd,gt B B  denotes the Euclidean 

distance between the centroids of the two bounding boxes. 

Compared to IoU, GIoU, and DIoU, CIoU incorporates 

center point distance and aspect ratio differences for a more 

comprehensive evaluation. However, the use of inverse 

trigonometric functions increases computational complexity. 

Moreover, CIoU's penalty mechanism does not directly 

reflect shape differences in bounding boxes, potentially 

leading to poor convergence and unreasonable anchor box 

expansion. 

To address these limitations, this study introduces the 

Powerful-IoU (PIoU) loss function, which incorporates a 

target size adaptation penalty factor and a gradient 

adjustment function to optimize the anchor box convergence 

path. The penalty factor P  is defined as: 

 1 2 1 2 / 4
gt gt gt gt

dw dw dh dh
P

w w h h

 
= + + +  

 

 (3) 

Here, 
1dw , 

2dw , 
1dh , and 

2dh  are the absolute distances 

between the predicted bounding box and the edges of the 

ground truth bounding box, while 
gtw  and 

gth  represent the 

width and height of the ground truth bounding box. Unlike 

other methods, p depends solely on the bounding box size and 

is independent of the enclosing rectangle size. 

The gradient adjustment function ( )f x  is defined as: 

 ( )
2

1 xf x e−= −  (4) 

This function reduces gradient updates for both high- and 

low-quality anchor boxes to avoid over-updating, while 

assigning larger gradient values to medium-quality anchor 

boxes to accelerate their improvement. The combined PIoU 

loss is given as: 
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To further address sample imbalance, PIoU v2 introduces a 

non-monotonic focusing function with a single 

hyperparameter q. This function emphasizes medium-quality 

anchor boxes, improving convergence. The focusing function 

is defined as: 

 ( , 0,1Pq e q−=   (6) 

 ( )
2

3 xu x x e−=   (7) 

The PIoU v2 loss equation is: 

( ) ( )
2( )

_ 2 3 q

PIoU v PIoU PIoUu q q e   −=  =   L L L  (8) 

Here, ( )u q  represents the focusing function, where q  is 

the key hyperparameter that adjusts the behavior of the 

focusing function. The value of q  is determined based on the 

penalty factor P , which evaluates the quality of the anchor 

box.  

Compared to CIoU, PIoU v2 simplifies parameter tuning 

while enhancing the focus on medium-quality anchor boxes 

through its non-monotonic focusing strategy. This design 

effectively improves the convergence efficiency and 

detection performance of the model. As a result, PIoU v2 is 

selected as the core loss function for BBR in this study. 

 

B. Improvements in Network Structure 

Effective recognition of small targets and adaptation to 

multi-scale objects remain critical challenges in remote 

sensing image target detection. To address these limitations, 

this study enhances the PA-FPN architecture of YOLOv8 and 

introduces an innovative Multi-scale Detection Block (MDB) 

and a Multi-scale High-Resolution Feature Fusion Network 

(MSHR-Net). These improvements significantly enhance 

multi-scale target detection performance. 

The Receptive Field Block (RFB) module simulates the 

sensory field mechanism of the human visual system through 

multi-branch pooling and dilated convolution, achieving 

robust performance in lightweight neural networks, as 

illustrated in Fig. 3.  

 

 
Fig. 3.  Network structure of RFB. 

 

However, its efficacy diminishes in remote sensing image 

scenarios, which typically feature high resolution, complex 

backgrounds, and densely distributed small targets. 

Consequently, the RFB module struggles to comprehensively 

capture detailed multi-scale target information. To overcome 

these limitations, we propose the Multi-scale Detection 

Block (MDB), specifically optimized for the unique 

characteristics of remote sensing imagery. 
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Fig. 4.  Network structure of MDB. 

 

 
Fig. 5.  Architecture diagram of MSHR-Net. 

 

As depicted in Fig. 4, the MDB module is engineered to 

address the diversity and dimensional variation of targets in 

remote sensing images, with particular emphasis on small 

target detection. To process the rich details in high-resolution 

remote sensing data, MDB incorporates a specialized 

high-resolution processing branch. This branch combines 

1×1 and 3×3 convolutions, where the former reduces 

dimensionality while the latter extracts spatial features. 

Additionally, this branch integrates the 

Squeeze-and-Excitation Block (SE Block) [21], which 

employs an attention mechanism to amplify the significance 

of key features, thereby enhancing feature representation 

quality. 

For small target detection, MDB incorporates two 

specialized pathways. The first pathway combines two 

standard convolutional layers with a dilated convolution 

(expansion rate = 2), enhancing feature capture capability 

while maintaining computational efficiency. The second 

pathway employs a deeper network with a 3×3 convolutional 

kernel to capture complex contextual information, further 

improving the representation of small target features. 

For medium-sized target detection, MDB utilizes 

asymmetric 1×3 and standard 3×3 convolutional kernels. The 

asymmetric kernel enhances adaptability to targets with 

varying aspect ratios, while the standard kernel improves 

detection of targets with regular shapes. For large targets, 

MDB combines a larger 5×5 convolutional kernel with 

appropriately configured dilated convolution, allowing for an 

expanded receptive field and the capture of broader 

contextual information. This integration of multi-sized 

convolutional kernels with flexible dilation rates enables 

MDB to efficiently process small, medium, and large targets, 

excelling in multi-scale detection tasks. 

Building upon the MDB module, this study further designs 

the Multi-scale High-Resolution Feature Fusion Network 

(MSHR-Net) to enhance small target detection and 

comprehensively improve multi-scale detection capabilities. 

As illustrated in Fig. 5, MSHR-Net refines the Neck structure 

of YOLOv8 by enabling feature maps to connect with the P3 

feature map of the backbone through two upsampling 

operations and a Concat operation. To further strengthen 

small target detection in remote sensing images, an additional 

upsampling step is incorporated in MSHR-Net. This step 

adjusts the resolution of the feature map to match that of the 

P2 feature map for subsequent feature concatenation. 

The P2 feature map, derived from a shallower network 

layer, possesses higher spatial resolution and preserves more 

detailed information, making it particularly advantageous for 
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detecting small-sized targets. The fused features are 

processed through the C2f module and subsequently refined 

by the MDB module. The MDB-processed features are 

divided into two pathways. The first pathway directly 

delivers features to the Head, establishing a new detection 

scale dedicated to tiny target detection. The second pathway 

further processes these features through additional 

convolutional operations. This architecture effectively 

combines detailed spatial information from shallow layers 

with rich semantic features from deeper layers, significantly 

enhancing overall detection performance. 

To further strengthen MSHR-Net's capability in handling 

multi-scale targets, the MDB module is integrated into the 

three original detection scales in the Head. These 

modifications enable MSHR-Net to efficiently address the 

challenges of detecting tiny targets while maintaining robust 

feature capture across multiple scales. Through these 

architectural innovations, MSHR-Net achieves superior 

performance in remote sensing image target detection tasks. 

 

C. Effective Attention Mechanism 

While the Multi-scale High-Resolution Feature Fusion 

Network (MSHR-Net) significantly improves the model's 

ability to detect targets in remote sensing images, the increase 

in model depth can lead to the loss of critical information. To 

address this issue, we introduce a Global Attention 

Mechanism (GAM) into the backbone network. GAM 

enhances the overall performance of the network by reducing 

information loss and promoting global feature interaction. 

This attention mechanism builds upon the sequential 

channel-space attention arrangement from CBAM, with 

submodules innovatively designed to efficiently capture and 

enhance global interaction characteristics. This results in 

improved capability to process complex information. The 

specific structure of GAM is shown in Fig. 6. 

 

 
Fig. 6.  Structure of GAM. 

 

As illustrated in Fig. 6, GAM consists of two components: 

Channel Attention and Spatial Attention. The feature map 
1F  

extracted by the C2f module is passed into GAM for 

processing, producing an intermediate state 
2F  and an output 

3F , which can be expressed as: 

 ( )2 1 1cF M F F=   (9) 

 ( )3 2 2sF M F F=   (10) 

Here, 
cM  and 

sM  represent the channel attention map 

and the spatial attention map, respectively, while   denotes 

element-wise multiplication. The channel attention map 
cM  

is generated by the Channel Attention submodule, whose 

structure is depicted in Fig. 7. 

 

 
Fig. 7.  Channel Attention Submodule. 

 

The Channel Attention submodule consists of four main 

components: permutation, MLP (Multi-Layer Perceptron), 

reverse permutation, and sigmoid activation (Fig. 7). First, a 

3D permutation is applied to maintain the integrity of 

information across the three dimensions of the feature map. 

Next, an MLP is employed to enhance the cross-dimensional 

channel-space dependency. To optimize performance, the 

reduction ratio r is used in the MLP. Once the MLP 

processing is complete, the channel attention map 
cM  is 

generated through reverse permutation and a sigmoid 

activation function.  

This design helps preserve information integrity while 

strengthening the network's ability to handle 

cross-dimensional features. This enhancement improves the 

network’s efficiency in complex scenarios, allowing it to 

better capture critical feature dependencies. 

The Spatial Attention submodule is designed to improve 

the network’s focus on spatial information and is illustrated 

in Fig. 8. It consists of two convolutional layers for spatial 

information fusion, along with a sigmoid activation function. 

The reduction ratio r, consistent with that in the Channel 

Attention submodule, is also applied here. Unlike traditional 

approaches, this submodule removes pooling steps to retain 

more detailed feature information.  

 

 
Fig. 8.  Spatial Attention Submodule. 

 

While removing pooling may slightly increase the number 

of parameters, it effectively preserves the completeness of 

spatial information and reduces the risk of losing key feature 

mappings. This makes the spatial attention submodule 

particularly effective in scenarios requiring detailed spatial 

feature extraction. 

By integrating GAM into GMP-YOLO, the loss of critical 

information caused by increasing network depth is 

effectively mitigated. GAM enhances the model's ability to 

process complex information by promoting better global 

feature interaction and preserving critical details in the 

feature maps. As a result, the detection performance of 

GMP-YOLO for remote sensing images is significantly 

improved. 

IV. ANALYSIS OF EXPERIMENTS AND RESULTS 

This study employs YOLOv8.1.7, developed by 
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Ultralytics, as the benchmark model. All experimental 

procedures and model training were conducted within a 

PyTorch framework (Python 3.9.18 and PyTorch 

1.10.0+cu113). The experimental hardware configuration 

consisted of an Intel(R) Core(TM) i5-12490F CPU and an 

NVIDIA GeForce RTX 4060 Ti GPU. 

Considering the practical deployment constraints of 

remote sensing applications on edge computing devices, 

which impose stringent limitations on model parameters, 

memory utilization, and inference latency, we selected the 

lightweight YOLOv8-s architecture as our baseline for 

enhancement. YOLOv8-s maintains the fundamental design 

principles of the v8 series while being specifically optimized 

for resource-constrained environments through strategic 

adjustments to network width and depth. 

The critical hyperparameter configurations implemented 

during model training are detailed in Table I. 
 

TABLE I 

TABLE OF TRAINING PARAMETER SETTINGS 

Parameters Setup 

Epochs 300 

Batch Size 8 

Optimizer SGD 

Momentum 0.9 

NMS IoU 0.7 

Mosaic 1.0 

 

A. Dataset Selection 

To rigorously evaluate the performance of the proposed 

GMP-YOLO model, two representative remote sensing 

image datasets, DOTA and VisDrone [22], were selected. 

The DOTA dataset, a benchmark in remote sensing image 

object detection, served as the primary validation platform 

for ablation experiments due to its scene diversity and 

comprehensive annotations. 

The DOTA (Dataset for Object Detection in Aerial Images) 

dataset represents one of the most influential resources in 

remote sensing object detection research. It comprises 2,806 

aerial images annotated with 188,282 instances across 15 

common categories, as illustrated in Fig. 9. The dataset's 

complex environmental settings and heterogeneous target 

distributions create a challenging evaluation scenario, ideal 

for assessing detection performance. To optimize the dataset 

for experimental purposes, the original high-resolution 

images (4000×4000 pixels) were segmented into smaller 

1024×1024 pixel subimages. This preprocessing step 

enhances training efficiency and reduces computational 

resource requirements. The dataset was systematically 

partitioned into 15,749 training images, 5,297 validation 

images, and 12,779 test images to ensure robust performance 

evaluation. Additionally, the annotation format was 

converted from the original DOTA specification to the 

YOLO format to standardize coordinate representations and 

ensure compatibility with the GMP-YOLO architecture.  

The VisDrone2019 dataset constitutes a comprehensive 

collection of 288 video sequences, encompassing 261,908 

video frames and 10,209 static images. Acquired using 

various drone platforms across diverse geographic locations 

and environmental conditions, the dataset incorporates 

varying illumination scenarios and complex scene 

compositions. Unlike conventional object detection datasets, 

individual images in VisDrone frequently contain hundreds 

of targets, with the complete dataset featuring approximately 

2.6 million manually annotated bounding boxes. Beyond 

basic annotations, the dataset provides supplementary 

metadata regarding scene visibility conditions, target 

categorization, and occlusion states, rendering it particularly 

valuable for multi-task applications. Representative 

examples from this dataset are presented in Fig. 10. 

 

 
Fig. 9.  Example of a partial image of the DOTA dataset. 
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Fig. 10.  Example of a partial image of the VisDrone dataset. 

 

B. Experimental Evaluation Criteria 

In this study, we employ several complementary 

evaluation metrics including precision, recall, mean Average 

Precision (mAP), and frames per second (FPS) to 

comprehensively assess the performance of the proposed 

methodology. 

Precision quantifies the model's prediction reliability, 

representing the proportion of correctly identified targets 

among all detections. It is defined as the ratio of true positives 

(TP) to the sum of true positives and false positives (FP): 

 
TP

Precision=
TP FP+

 (11) 

where TP represents correctly detected targets and FP 

denotes incorrectly detected targets. 

Recall measures the model's detection coverage, indicating 

the proportion of ground truth targets successfully identified. 

It is defined as the ratio of true positives (TP) to the sum of 

true positives and false negatives (FN): 

 
TP

Recall=
TP FN+

 (12) 

where FN represents labeled targets that the model failed 

to detect. These metrics reveal an inherent inverse 

relationship—improving precision typically results in 

decreased recall and vice versa. To address this fundamental 

trade-off and provide a more comprehensive performance 

assessment, we utilize Average Precision (AP), which 

integrates precision and recall across varying confidence 

thresholds. AP is computed by plotting the precision-recall 

curve and calculating the area under this curve. 

For multi-category detection tasks, AP values are 

calculated independently for each category and subsequently 

averaged to derive the mean Average Precision (mAP), 

which serves as a critical metric for holistic model evaluation. 

The formulations for AP and mAP are expressed as: 

 ( )
( )

N
1

i
0

i 1

1
AP P R dr,mAP AP

N =

= =   (13) 

where N represents the total number of object categories in 

the detection task, and AP is derived from the precision-recall 

relationship P(R) across different confidence thresholds. 

Additionally, considering the real-time processing 

requirements inherent in remote sensing applications, we 

incorporate frames per second (FPS) as a performance 

indicator to evaluate computational efficiency. The FPS 

metric quantifies the number of images the model can process 

per second, providing a crucial benchmark for operational 

deployability in time-sensitive applications. 

C. Ablation Experiment 

To systematically evaluate the effectiveness of each 

proposed component, we conducted comprehensive ablation 

experiments on the DOTA dataset. Initially, we assessed the 

impact of the PIoUv2 loss function on model performance. 

As presented in Table II, the incorporation of PIoUv2 

elevated the overall mAP from 66.2% to 68.5%, while 

simultaneously enhancing computational efficiency, with 

FPS increasing from 357.1 to 416.7. Although a marginal 

decrease in small target detection performance was observed, 

the substantial improvement in overall detection metrics 

validates the effectiveness of the proposed loss function. 

The integration of the Multi-Scale High-Resolution 

Feature Fusion Network (MSHR-Net) significantly enhanced 

the model's capacity to detect objects across diverse scale 

ranges. As detailed in Table III, the AP for small vehicle 

detection increased from 68.2% to 68.3%, while medium and 

large targets, exemplified by planes and tennis courts, 

achieved AP values of 91.7% and 93.8%, respectively. The 

comprehensive mAP improved from 66.2% to 68.9%, 

confirming MSHR-Net's efficacy in addressing multi-scale 

detection challenges. Fig. 11 illustrates the qualitative 

improvement in detection performance after incorporating 

MSHR-Net, highlighting enhanced confidence and precision, 

particularly in complex environmental contexts and 

multi-target scenarios. 

The introduction of the Global Attention Mechanism 

(GAM) further enhanced detection performance across 

multiple target categories. As evidenced in Table IV, GAM 

improved the AP for small vehicle detection to 70.8%, while 

plane detection AP reached 92.7%. The aggregate mAP 

across all categories increased substantially from 66.2% to 

72.0%, demonstrating GAM's capacity to significantly 

improve the detection of small and complex targets. Fig. 12 

presents a qualitative comparison of detection results, 

illustrating how the GAM-enhanced model effectively 

extracts salient features in complex scenes, thereby reducing 

missed detections, particularly for closely positioned or 

partially overlapping targets. 
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TABLE II 

ABLATION EXPERIMENTS WITH PIOU V2 (BEST PERFORMANCE HIGHLIGHTED IN BOLD) 

Model 

Structure  
Small- 

vehicle 
Plane 

Tennis- 

court 
All Classes 

PIoU v2  AP(%) 
Precision 

(%) 

Recall 

(%) 

mAP 

(%) 
FPS 

YOLOv8 - 68.2 90.7 93.6 96.7 81.0 66.2 357.1 

Ours ✓ 66.4 91.4 93.7 96.9 82.0 68.5 416.7 

 

TABLE III 
ABLATION EXPERIMENTS WITH MSHR-NET (BEST PERFORMANCE HIGHLIGHTED IN BOLD) 

Model 

Structure  
Small- 

vehicle 
Plane 

Tennis- 

court 
All Classes 

MSHR-Net AP(%) 
Precision 

(%) 

Recall 

(%) 

mAP 

(%) 

YOLOv8 - 68.2 90.7 93.6 96.7 81.0 66.2 

Ours ✓ 68.3 91.7 93.8 94.8 81.0 68.9 

 

 
Fig. 11.  Comparison of detection results. (a) Original image. (b) YOLOv8. (c) Model after MSHR-Net addition. 

 

 

TABLE IV 
ABLATION EXPERIMENTS WITH GAM (BEST PERFORMANCE HIGHLIGHTED IN BOLD) 

Model 

Structure  
Small- 

vehicle 
Plane 

Tennis- 

court 
All Classes 

GAM  AP(%) 
Precision 

(%) 

Recall 

(%) 

mAP 

(%) 

YOLOv8 - 68.2 90.7 93.6 96.7 81.0 66.2 

Ours ✓ 70.8 92.7 95.0 95.1 82.0 72.0 

 

 
Fig. 12.  Comparison of detection results. (a) Original image. (b) YOLOv8. (c) GAM-added model. 
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TABLE V 

ABLATION EXPERIMENTS OF THE PROPOSED MODULES ON THE DOTA DATASET (BEST PERFORMANCE HIGHLIGHTED IN BOLD) 

Model 

Structure 
Small- 

vehicle 
Plane 

Tennis- 

court 
All Classes 

PIoU v2  MSHR GAM AP(%) mAP(%) FPS 

YOLOv8 - - - 68.2 90.7 93.6 66.2 357.1 

Ours 

✓ - - 66.4 91.4 93.7 68.5 416.7 

- ✓ - 68.3 91.7 93.8 68.9 285.7 

- ✓ ✓ 70.9 92.4 95.1 72.1 277.8 

✓ ✓ - 68.5 91.8 94.6 69.1 333.4 

✓ ✓ ✓ 70.5 92.7 95.2 73.2 303.0 

Finally, we conducted integrated ablation experiments to 

evaluate the combined effect of all proposed modules in the 

GMP-YOLO architecture. As detailed in Table V, optimal 

performance was achieved when PIoUv2, MSHR-Net, and 

GAM were simultaneously implemented. The aggregate 

mAP improved to 73.2%, representing a substantial 7.0 

percentage point increase over the baseline, while 

maintaining a competitive FPS of 303.0. These results 

demonstrate the complementary nature of the proposed 

modules, which collectively enhance the model's overall 

detection capabilities. 

Through these systematic ablation studies, we have 

validated the contribution of each architectural enhancement 

to the model's overall performance. The PIoUv2 loss function 

provides more precise bounding box regression, MSHR-Net 

enhances multi-scale target detection capabilities, while 

GAM improves feature extraction through its attention 

mechanism. The synergistic integration of these three 

components enables GMP-YOLO to achieve significant 

improvements in detection accuracy while maintaining 

efficient computational performance. 

 

D. Generalized Performance Verification 

To rigorously assess the generalization capabilities of the 

proposed GMP-YOLO architecture, we conducted extensive 

experiments on the VisDrone dataset, which presents 

exceptional diversity and complexity. This dataset 

encompasses multiple object categories — including 

pedestrians and various vehicle types—providing an 

authentic representation of practical detection scenarios in 

urban, low-altitude environments. The comparative 

experimental results are summarized in Table VI, with 

optimal performance metrics highlighted in bold. 

For pedestrian detection, GMP-YOLO achieved an AP of 

42.0%, representing a substantial improvement over the 

baseline YOLOv8 model's 35.8%. Across vehicle categories 

(cars, vans, and buses), GMP-YOLO consistently 

outperformed the baseline, attaining AP values of 79.0%, 

44.2%, and 60.1%, respectively. Particularly noteworthy is 

the 15 percentage point improvement in bus detection, 

demonstrating significantly enhanced performance in 

complex traffic environments. Additionally, GMP-YOLO 

exhibited superior detection capabilities for motorized 

vehicles with an AP of 44.8%, compared to YOLOv8's 

37.0%. The aggregate mAP across all categories reached 

39.7% for GMP-YOLO—a substantial 6.5 percentage point 

improvement over YOLOv8's 33.2%—comprehensively 

validating its enhanced performance in multi-category object 

detection tasks. 

Fig. 13 presents representative detection examples from 

the VisDrone dataset under diverse conditions. In both 

daylight (Fig. 13(a)) and nocturnal (Fig. 13(b)) environments, 

GMP-YOLO demonstrated exceptional performance. In 

daylight scenarios, the model successfully identified and 

precisely localized various objects, maintaining consistent 

performance despite complex background elements. In 

nocturnal scenarios, despite the inherent challenges of 

limited illumination and increased background noise, 

GMP-YOLO effectively completed detection tasks with 

minimal false negatives or false positives. These examples 

provide compelling evidence of GMP-YOLO's robustness 

across varying illumination conditions and environmental 

contexts, highlighting its broad applicability in complex 

urban scenarios. 

Based on its superior performance on the VisDrone dataset, 

we selected this domain-adapted model as the foundation for 

subsequent intelligent agent development. The VisDrone 

dataset not only encompasses diverse urban 

targets—including pedestrians, various vehicle types, and 

infrastructure elements—but also presents significant 

challenges under varying illumination conditions and 

complex environmental contexts. This comprehensive 

validation underscores GMP-YOLO's reliability and 

generalization capacity in dynamic and intricate 

environments. Leveraging this optimized model, we 

developed an urban planning analysis intelligent agent 

capable of real-time object identification and spatial analysis 

in low-altitude urban environments. Through precise 

localization and classification, the agent provides critical data 

support for urban planning and management applications, 

thereby facilitating dynamic, evidence-based 

decision-making processes. 
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TABLE VI 
EXPERIMENTAL RESULTS ON VISDRONE DATASET (BEST PERFORMANCE HIGHLIGHTED IN BOLD) 

Model 

Pedestrian Car Van Bus Motor All Classes 

AP(%) mAP(%) 

YOLOv8 35.8 76.0 39.2 45.1 37.0 33.2 

Ours 42.0 79.0 44.2 60.1 44.8 39.7 

 

 
Fig. 13.  Example of detection results in VisDrone dataset. (a) Daytime. (b) Night. 

 

 
Fig. 14.  ReAct Agent Decision Process. 

 

V. DESIGN AND IMPLEMENTATION OF THE INTELLIGENT 

AGENT 

In response to the rapid expansion of the low-altitude 

economy and the increasing demand for intelligent urban 

management, we have developed a comprehensive smart city 

remote sensing image analysis system based on our 

GMP-YOLO architecture. This system specifically addresses 

the analytical challenges presented by urban low-altitude 

environments, where detailed object detection and contextual 

interpretation are critical for effective decision-making. 

 

A. System Architecture and Analytical Capabilities 

The system architecture utilizes the GMP-YOLO model as 

its core analytical engine, enhancing detection capabilities 

for low-altitude remote sensing imagery. Based on this 

foundation, we have developed four specialized analytical 

tool modules for agent utilization: Traffic Flow Analysis 

Tool processes vehicle and pedestrian data to calculate 

real-time traffic conditions; Natural Environment 

Assessment Tool evaluates urban environmental quality; 

Infrastructure Evaluation Tool identifies and assesses urban 

infrastructure elements; and Emergency Event Detection 

Tool identifies abnormal patterns for rapid response. 

These specialized analytical tools are coordinated by a 

ReAct (Reasoning and Acting) agent built on the LangChain 

and LangGraph frameworks. This agent architecture, 

illustrated in Fig. 14, enables dynamic tool selection and 

sequential task execution based on specific analytical 

requirements and contextual understanding. 
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The ReAct agent implementation provides several key 

advantages for urban image analysis: 

1) Context-Aware Processing: The agent maintains session 

context through unique conversation identifiers, 

enabling coherent multi-round interactions and 

progressive analytical refinement. 

2) Dynamic Tool Selection: Based on user queries and 

image content, the agent intelligently determines which 

analytical tools to deploy and in what sequence, 

optimizing computational efficiency. 

3) Integrated Reasoning: The agent combines detection 

results with contextual knowledge to generate 

comprehensive analytical reports that extend beyond 

simple object detection to meaningful urban insights. 

 

B. System Workflow and User Interaction 

The operational workflow begins with user authentication 

through the login interface shown in Fig. 15. Users can either 

upload custom imagery or select from pre-established 

datasets for analysis. 

Upon image submission (Fig. 16), the front-end transmits 

the data to the back-end processing pipeline, where the ReAct 

agent parses the analytical requirements and activates the 

GMP-YOLO model for initial object detection. 

The detection results, including object categories, spatial 

coordinates, and confidence metrics, are then processed by 

the specialized analytical tools selected by the agent. These 

tools generate detailed analytical outputs, which are 

compiled into a comprehensive report featuring annotated 

imagery, quantitative metrics, and actionable insights 

generated through large language model interpretation. 

The final results are presented through an interactive web 

interface (Fig. 17), allowing users to explore different aspects 

of the analysis and download complete reports. Additionally, 

users can engage in follow-up inquiries to obtain more 

specific information or predictive insights based on the 

detected patterns. 

This intelligent agent system demonstrates how advanced 

object detection models like GMP-YOLO can be effectively 

integrated into comprehensive urban management solutions. 

By combining precise detection capabilities with specialized 

analytical tools and an intelligent coordination mechanism, 

the system provides valuable decision support for urban 

planning, traffic management, environmental monitoring, 

and emergency response applications in the rapidly evolving 

low-altitude urban environment. 

 

 
Fig. 15.  Login Interface. 

 

 
Fig. 16.  Uploaded Image. 
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Fig. 17.  Results Return Interface. 

VI. CONCLUSION 

This study presents GMP-YOLO, a novel approach to 

multi-scale object detection in remote sensing imagery that 

addresses significant challenges in this domain. Conventional 

object detection methodologies continue to exhibit 

limitations in accurately detecting targets across diverse 

scales and adapting to complex environmental contexts. To 

overcome these constraints, we have developed GMP-YOLO, 

a comprehensive detection framework that demonstrates 

exceptional performance in remote sensing imagery through 

advanced feature extraction and fusion strategies. 

From an architectural perspective, GMP-YOLO integrates 

a Multi-Scale High-Resolution Feature Fusion Network 

(MSHR-Net) with a specialized Multi-scale Detection Block 

(MDB). The model incorporates dedicated detection scales 

for tiny targets, substantially improving detection accuracy 

across objects of varying dimensions. For bounding box 

localization, we replaced the conventional CIoU loss 

function with an enhanced PIoUv2 loss function, which 

significantly improves anchor box regression precision while 

accelerating model convergence. Additionally, we 

implemented a Global Attention Mechanism (GAM) to 

enhance the extraction and integration of salient features. 

Comprehensive evaluations on the DOTA and VisDrone 

datasets demonstrate that GMP-YOLO consistently 

outperforms established baseline models in both detection 

accuracy and generalization capabilities. The model exhibits 

particularly strong performance in challenging scenarios 

involving complex backgrounds and small targets. 

Furthermore, GMP-YOLO maintains robust stability under 

adverse conditions, including intricate traffic environments 

and variable illumination, substantially reducing both false 

positive and false negative detections. 

Building upon these algorithmic advancements, we 

designed and implemented a complete remote sensing image 

analysis system with GMP-YOLO as its foundational 

detection engine. This system represents a significant 

engineering contribution, featuring an intelligent agent 

architecture capable of real-time object identification and 

contextual analysis in urban environments. We developed 

this system by integrating the LangChain framework and 

implementing the ReAct Agent mechanism, enabling 

dynamic coordination of multiple specialized analytical tools 

based on specific task requirements. Our comprehensive 

development effort included creating four specialized 

analytical modules: object detection, traffic flow analysis, 

environmental quality assessment, and infrastructure 

evaluation. These components work in concert to deliver 

unprecedented accuracy and efficiency in urban remote 

sensing analysis applications. 

This research not only validates GMP-YOLO's 

effectiveness for remote sensing object detection but also 

demonstrates how advanced detection models can be 

transformed into functional intelligent systems through 

careful system design and integration. Future research 

directions include optimizing computational efficiency and 

inference speed, particularly for deployment on 

resource-constrained edge computing devices. These 

optimizations will further enhance support for real-time 

remote sensing applications and extend the practical utility of 

our model and system across intelligent urban management 

and remote sensing domains. 
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