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Abstract—This paper proposes a hybrid model that

integrates Convolutional Neural Networks (CNN) and
Transformer architectures, leveraging both temporal and
time-frequency features to enhance EEG signal classification
performance in motor imagery tasks. The model innovatively
fuses raw EEG signals with time-frequency features extracted
through Continuous Wavelet Transform (CWT) via a weighted
fusion strategy, thereby effectively capturing dynamic
variations in both the temporal and frequency domains.
Subsequently, the fused features are processed by a
Transformer framework that employs a windowed multi-head
attention mechanism with frequency band – adaptive window
sizes, which significantly improves frequency-domain modeling.
Finally, classification is achieved using a Gated Feed-Forward
Network (GFFN), which adaptively integrates multi-layer
features via gating mechanisms, thereby enhancing feature
selection and representation.

Experimental results indicate that on the BCI 2a
competition dataset, FAMW achieves an average classification
accuracy improvement of 11.41%, 10.32%, 9.19%, and 6.44%
over CNN-ELM, EEGNet, Deep ConvNet, and Conformer,
respectively. FAMW shows improvements of 10.69%, 10.26%,
9.49%, and 5.66% on self-collected datasets compared to
corresponding methods. These findings validate that the
proposed model significantly enhances classification accuracy
while demonstrating good generalization ability and robustness.

Index Terms—EEG Signal Classification，Motor Imagery，
Frequency-Selective Multi-Window Attention， Transformer

I. INTRODUCTION
rain-computer Interface (BCI) technology can directly
decode Brain activity signals [1] to realize the

interaction between people and devices, and has shown wide
application prospects in the fields of medical rehabilitation,
neuroscience research and auxiliary device control. In recent
years, a variety of BCI paradigms based on
electroencephalography (EEG) have been developed.
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Steady-State Visual Evoked Potential (SSVEP) [2],
Event-Related Potential (event-related Potential, ERP) [3],
emotional decoding [4], and Motor Imagery (MI) [5]-[9].
Among them, SSVEP generates periodic EEG signals
through visual stimulation, which has the advantages of a
strong signal and high transmission rate, but depending on
visual stimulation, it may cause visual fatigue and is not
suitable for visually impaired users. Based on event-related
potentials induced by specific stimuli, ERP is easy to use
because of the apparent signal characteristics and the need for
complex training, Still, the transmission rate is low, the
real-time is insufficient, and it is easy to be disturbed by noise.
In contrast, MI-based BCI does not require external
stimulation, can significantly reduce user fatigue, is suitable
for long-term use, and has outstanding advantages in the field
of medical rehabilitation and smart device control. MI
provides a new means for stroke patients to reconstruct motor
function in combination with rehabilitation robots or
electrical stimulation devices by decoding the user's motor
intention [10]. Provide innovative treatment for patients with
movement disorders such as Parkinson's disease, and
improve movement ability through EEG-driven devices [11];
For the control of smart wheelchairs and prosthetics to
enhance the quality of life and independence of people with
paralysis or amputations [12]; In addition, it has
demonstrated the potential to enhance the naturalness of
human-computer interaction in screen cursor control and
virtual reality applications [13]. There are two main
approaches for MI-based BCI decoding: traditional machine
learning and deep learning.

Traditional machine learning methods usually involve
two different steps of: feature extraction and feature
classification. Conventional methods typically rely on
hand-designed features or shallow machine-learning
techniques. Such as common space mode (CSP) [14],
continuous wavelet transform(CWT) [15], wavelet transform
(WT) [16], and short-time Fourier transform (STFT) [17].
These methods use different mathematical techniques to
extract features from EEG signals for classification. These
methods can effectively describe some key aspects of EEG
signals through the extracted features and realize the
decoding of motor imagination tasks to a certain extent.
Traditional classification methods usually include random
forest (RF) [18], support vector machine (SVM) [19], linear
discriminant Analysis (LDA) [20], etc. Some methods rely
on manually selected features for classification, often
requiring domain experts to select the appropriate features
based on experience. This feature selection method is
effective to a certain extent, but in high-dimensional and
complex data, manually designed features often cannot fully
cover the diversity of EEG signals, resulting in some
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potentially valuable signal information can not be effectively
captured, thus affecting the classification performance. In
addition, traditional classification methods are difficult to
adapt to the dynamic changes and nonlinear characteristics of
EEG signals, which limits their application in more complex
tasks.

In recent years, the rise of deep learning technology has
provided a new solution for EEG signal processing.
Convolutional neural networks (CNNS) have become an
essential deep learning structure in brain-computer interfaces
(BCI) based on motor imagination (MI) because of their
powerful representation learning ability. Several studies have
investigated the effect of different configurations of CNN
parameters on MI classification performance, such as
convolution mode, kernel size, number of cores, and network
depth. For example, Schmidmeister et al. proposed two
different CNN-based architectures, Shallow ConvNet and
Deep ConvNet, for end-to-end classification of MI tasks, and
found that the depth of CNN significantly impacts its
performance [21]. Lawhern et al. introduced separable
convolution operations into CNN and developed EEGNet, a
general BCI classification framework successfully applied to
classify multiple tasks [22]. Hermosilla et al. tried shallow
CNN and adjusted the number and size of cores further to
improve the MI classification performance [23]. However,
CNNS have some limitations, especially when it comes to
capturing long-range dependencies and global information.
Due to the limitations of convolutional kernels, CNNS are
often unable to effectively model long time series
relationships in signals, which is a challenge for processing
complex timing and cross-band dynamic changes in EEG
signals. To address these issues, Transformer architecture has
been introduced to process and classify EEG signals. With its
self-attention mechanism, Transformer is able to capture long
distance dependencies rather than being limited to local
receptive fields, so it can better handle long time series and
global information in EEG signals. Overcome the
shortcomings of CNN in long time series data. Combined
with the advantages of CNN and Transformer, time rate
features can be extracted from EEG signals more
comprehensively, thus improving classification performance

and accuracy. However, when processing EEG signals, the
model often difficult to fully capture the complex changes of
time-frequency characteristics and time characteristics at the
same time and may ignore the critical role of frequency band
information, which limits its performance in complex tasks.
To address these issues, we proposed a CNN-Transformer

model that integrates time-frequency features to enhance
EEG classification performance in motor imagery tasks. First,
the model combines time-frequency features extracted from
Continuous Wavelet Transform (CWT) with original EEG
signals. The weighted fusion strategy is used to make full use
of the complementary information of the two feature domains,
to enhance the ability of the model to represent
multi-dimensional features. Second, in order to map the
time-frequency features and original EEG signals to the
feature space more suitable for Transformer model
processing, the representation capability of time series data is
enhanced by Embedding. Then, in order to capture
multi-scale time features more efficiently, the Windowed
Multi-Head Attention mechanism is adopted. It can
dynamically adjust the attention window size on the time
frequency segment to accurately model long-range
dependencies and local features in time series data. Next,
GFFN is used to adaptively weight the features of different
network layers, effectively reduce the interference of
redundant information, and further improve the feature
extraction effect. Finally, the fused features pass through the
fully connected layer, and the Softmax classifier calculates
each category's probability distribution to complete the final
classification of the motor imagery task.

II. METHOD

This paper proposes a Cnn-Transformer model with
time-time-frequency features is proposed to significantly
improve the classification performance of EEG signals in
motor imagination tasks. Firstly, the original EEG signal is
weighted with the time-frequency features extracted by
continuous wavelet transform (CWT) to make full use of the
complementary information of the two feature domains,
thereby enhancing the model's ability to represent
multi-dimensional features. Then, in order to map the fused

Fig. 1. Figure 1 Model network structure diagram

Engineering Letters

Volume 33, Issue 7, July 2025, Pages 2864-2872

 
______________________________________________________________________________________ 



features to the feature space suitable for Transformer
processing, the method of Embedding is adopted, thus
enhancing the representation capability of time series data.
Subsequently, the model captures multi-scale temporal
features efficiently byWindowed Multi-Head Attention. This
mechanism can dynamically adjust the attention window size
over time frequency segments to accurately model
long-range dependencies and local features in time series
data. In order to further improve the feature extraction effect,
a gated feed-forward network (GFFN) is used to adaptively
weight the features of different network layers and reduce the
interference of redundant information. Finally, the fused
features are input to Softmax classifier through the fully
connected layer, and the probability distribution of each
category is calculated to complete the final classification of
the motor imagery task. The complete network structure is
shown in Fig. 1.

A. Data Acquisition
BCI Competition IV 2a [24] : 9 subjects completed four

different motor imagination tasks (left hand (Class 1), right
hand (class 2), foot (class 3) and tongue (class 4)). The
experiment was divided into 6 rounds, each consisting of 48
tests. Participants sat relaxed in a comfortable armchair and
looked at a 21-inch LCD monitor during the experiment.
Each test starts with a fixed "+" symbol appearing in the
center of the display, prompting the sound (t = 0 s). After two
seconds (t = 2 s), the display prompts left, right, down, and up
symbols corresponding to the motor imagination task of the
left hand, right hand, feet, and tongue, respectively (lasting
about 1.25 seconds). During this time, participants completed
the motor imagination process until the "+" symbol on the
screen disappeared (t = 6 s). After the test is over, the monitor
briefly turns black and goes to rest until the next test begins.

Ustl MI Dateset: The Ustl MI dataset consisted of 12
healthy subjects (age: 21.4±3.3 years, numbers 1-12) who
completed four motor imagination (MI) tasks in the left hand
(class 1), right hand (class 2), foot (class 3), and tongue (class
4). All subjects had no history of neurological diseases and
were not taking drugs during the study. The experiment was
in accordance with the Declaration of Helsinki, and
participants read and signed informed consent forms before
participating.

A neuroscan (NuAmps) electrode cap was used in the
experiment. The electrodes were arranged according to the
international 10-20 system, and bilateral mastoids were used
as reference electrodes. EEG signals were collected from
multiple scalp locations (FP1, FP2, F7, F3, FZ, F4, F8, FT7,

FC3, FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7, CP3, CPZ,
CP4, TP8, T5, P3, PZ, P4, T6, O1, OZ, and O2). It is stored
with a 500 Hz sampling rate and 32-bit accuracy. During the
experiment, the subjects were required to remain still and
avoid any significant movements or sounds.

The experimental device is a DELL XPS 8940
microserver with an i7-11700 CPU, RTX 3060Ti graphics
card, and 32 GB RAM. Each participant completed 10 sets of
experiments on the same day, each set 5 minutes apart, and
repeated each of the four tasks three times. The timing of the
experiment is shown in Fig. 2., covering both single and
continuous MI tasks.

B. Author ListData Preprocessing
First, the collected original MI task EEG signals are

filtered by 50 Hz notch to remove power interference.
Secondly, three types of electrode signals [' EOG-left ',
'EOG-central', 'EOG-right'] are selected as bad signal
channels. Then, the ICA method is used to isolate and
eliminate the eye artefact. Finally, for the data extracted in
each training period (epoch), the z-score standard score is
used to eliminate the differences between different
measurement scales, enhance the comparability between data
features, and make the data distribution more uniform, thus
improving the numerical stability and efficiency in the
algorithm training process. The formula for the z-score is as
follows.

(x )z 



 (1)

Where x is the raw data, μ is the mean data, and σ is the
standard deviation of the data.

C. Feature Extraction
The processed EEG signal is taken as input, and the

EEG signal is   1

N
i iX x


 , where ( )C T

ix R  , N represents
the total number of training samples, C represents the number
of EEG channels, and T represents the number of samples
included in each trial.

Time-frequency feature extraction: For each channel
ix , continuous wavelet transform (CWT) is used to convert

the time data into the corresponding spectrum [25]. The order
represents the time domain EEG data of the first channel,
referred to as  s t . The continuous wavelet transform is
carried out by the following equation:

   1, t bCWT a b s t dt
aa

    
  (2)

Fig. 2. Signal acquisition timing for single and continuous MI tasks
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Where, represents the wavelet generating function,
is complex conjugate, a and b represents the extended and
shifted variables. In this study, Morlet wavelet [25] is
selected as the wavelet generating function, which is defined
as:

2 2

( ) ( ( )) ( )
2
tt exp cos t    (3)

Where, β is the parameter that balances the time
resolution and frequency resolution of the Morlet wavelet.

The output of the CWT is a complex-valued matrix,
where each element represents the wavelet coefficient at a
specific time and frequency. The amplitude of the wavelet
coefficient indicates the intensity of EEG activity at that time
and frequency. The EEG signal is bandpass filtered to
remove the interference of irrelevant frequency bands, and
then the frequency range of the spectral graph is aligned with
the filtered EEG signal passband to reduce the influence of
noise on the spectral graph. In order to generate the
time-frequency graph, firstly, the amplitude of the wavelet
coefficients is squared. It is then plotted as a function of time
and frequency. The CWT of each channel's EEG signal
produces an 800×600 time-spectral image. In this model, the
spectrum images corresponding to each channel are spliced
together in the width direction, and the spliced images are
downsampled to 224×224.

Feature Fusion: In the model, the input of the fully
connected layer is the weighted average of the time frequency
S and the time network output feature F . If η, 0 ≤ η ≤ 1,
represents the feature weight, the weighted fusion of
time-frequency and time network output features can be
expressed as:

 1G S F      (4)

By Concatenation, the time-domain feature and
time-frequency feature are fused. This method can retain the
information of different feature sources and learn the
appropriate combination pattern through the neural network.
The fused feature is a high-dimensional eigenvector of EEG

signal that integrates time-frequency domain and
time-frequency domain.

Feature Embedding Module: Feature embedding
module is the starting point of the whole Transformer model.
Its primary function is to map the input multimodal data,
which integrates the time-domain features of the original

EEG signal and the time-frequency features of continuous
wavelet transform (CWT), to the feature space suitable for
Transformer processing. The module mainly includes Patch
Split, Convolutional Embedding and Patch Embedding. The
structure flow is shown in Fig. 3.

Patch Split: Since EEG signals are high-dimensional
time series data, direct input into the Transformer will result
in high computational complexity. Therefore, the Patch
segmentation strategy was adopted to divide the
time-time-frequency features into patches (fragments) of
equal length according to the time axis, and set patch_size as
the size of the sliding window. Each Patch contains multiple
EEG sampling points and corresponding CWT spectrum
information, which can capture local time characteristics and
frequency information.

Convolutional Embedding: After Patch partitioning,
local features are extracted using one-dimensional
convolution (Conv1D) and projected into a fixed dimensional
embedding space (embedding_dim). To fit the Transformer
structure:

 i iE f W P b   (5)

Where, iP is the i th Patch, W and b are the weights
and biases of the convolution kernel, and  f  represents the
nonlinear activation function.

Patch Embedding: All Patch embedding vectors are
combined to form the final embedding representation.
Assuming that each Patch is embedding_dim, the final output
is (batch_size, patch_num, embedding_dim). Where,
patch_num is the number of patches divided, and
embedding_dim is the dimension of the embedding vector.

 1 2, , ,i NE E E E  (6)

Where, iE is the embedding matrix of the output, and N
is the total number of patches.

The feature embedding module uses CNN technology to
convert the high-dimensional long sequence signal into the
input sequence of fixed format through segmentation and
embedding. This module uses local convolution operations to
extract local time features, which lays a foundation for
subsequent windowing multi-head attention mechanisms and
classification tasks.

D. Feature Classification
This study is based on transformer architecture,

which classifies EEG signals of motor imagery tasks by
combining time domain, frequency domain and
time-frequency characteristics. Transformer effectively
captures temporal dependencies in the input sequence
through its Multi-Head Self-Attention mechanism, which is
particularly important for dynamic brain electrical activity in
EEG signals. Each attentional head focuses on a different part
of the input sequence, and by weighting and splicing the
output of multiple heads, the model can synthesize different
timing information to improve classification. In this study, a
dynamic window size strategy is introduced to adjust the
window size dynamically according to the characteristic
changes of the signal. This method enables the model to

Fig. 3. Structure diagram of feature embedding module
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adjust the frequency range adaptively under different tasks so
as to better capture the key information in EEG signals.

Frequency-Selection Different Window based
MultiScale: Traditional Transformer's self-attention
Traditional Transformer's self-attention mechanism faces the
problem of quadratic increase in computational complexity
when processing high-resolution inputs, especially for
time-frequency graph data, where high resolution will
significantly increase the computational burden. In order to
effectively capture multi-scale information and reduce
computing costs, this method innovatively applies Different
Window-based multi-scale self-attention mechanism with
different frequencies to extract local and global features,
which is especially suitable for the task of frequency division
processing. It combines multiple techniques such as
multi-head attention, band selection, and windowing to
capture timing and frequency domain features in EEG data.
Figure 4 shows the multi-head attention structure of band
selection windowing.

The input data is the time-frequency graph data which
combines the time-frequency domain features of the original
EEG signal with the time-frequency domain features
transformed by continuous wavelet. In the process of data
preprocessing, the frequency range of filter retention is [8
Hz,30 Hz]. It includes mu wave [8Hz,12Hz], beta wave
[13Hz,30Hz]. It extracts a specific frequency band from the
input tensor B T FX R   through the frequency index. Where
B is the batch size, T is the time step (sequence length), and F
is the frequency dimension. According to the frequency
dimension F, data muB T F

muX R   and betaB T F
betaX R   of the

corresponding frequency band are extracted.
Window division: Input features muX and betaX of each

frequency band are divided into multiple Windows according
to time dimension T. The window size can be set according to
the characteristics of the frequency band: mu waves are
suitable for capturing small Windows of fine-grained
time-local features, and beta waves are suitable for capturing
large Windows of features over a longer time range.

Assuming the window size is W, the number of
Windows in the time dimension is:

w
TN
W
    

(7)

The feature of window partition is W muB N T F
windowX R   

Apply a self-attention mechanism to each window to
extract local features within the window:

 , , max
T

k

QKAttention Q K V Soft V
d

 
   

 
(8)

Where Q, K, V are queries, keys, and values obtained by
linear transformations. Is the attention scaling factor, equal to
the dimension K. For different frequency bands, different
attention heads and window sizes are defined independently,
and local features are processed separately.

Cross-window feature aggregation: The features of each
window are integrated through global pooling or other
aggregation methods to restore the global feature dimension:

1

1 W

pooled window
i

X X
W 

  (9)

After cross-window aggregation, the resulting feature is
W bandB N F

aggregatedX R  
Band fusion: The features of multiple frequency bands

are spliced together to form the final global multi-scale
feature representation:

 _ _,final mu aggregate beta agregateX Concat X X (10)

Gated Feed-Forward Network (GFFN) ： Gated
Feed-Forward Network (GFFN) is a dynamic feature
optimization module that selects key features through a
gating mechanism and nonlinear mapping. It is an improved
feed-forward network, which integrates the gating
mechanism to control the flow of feature information
dynamically. Unlike traditional feed-forward networks,
GFFN can more flexibly select important features and
suppress redundant information, thus improving the
performance of the model, especially in complex
time-frequency feature extraction and classification tasks. By
weighting and fusing features, the GFFN module helps the
model focus more effectively on key features and suppress
noise and irrelevant information, especially for
high-dimensional complex data such as EEG signals.

Fig. 4. Signal acquisition timing for single and continuous MI tasks
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Nonlinear feature extraction: Input feature X is used to
extract higher-order features through the first layer of a fully
connected network 1W :

den 1 1( )seX RELU W X b   (11)

Gating mechanism: Generates gating weights

 g dense gGate W X b   (12)

Where  is the activation function , gW and gb are the
gated weights and biases.

Feature fusion: Gated weights are used to dynamically
weight feature output:

   2 21denseY Gate X Gate W X b      (13)

Where  represents multiplication-by-element gW and
gb are the weights and biases of the second fully connected
layer.

The processed 3D features are first converted to 2D
feature representations. The aim is to compress the original
time dimension and feature dimension into a flat vector
representation that can be used as input to the fully connected
layer. The flattened vector is mapped through the fully
connected layer to a smaller hidden layer feature space.

In the hidden layer, ReLU activation function is used to
enhance the learning ability of the model for nonlinear
features, and the complex relationship between input features
is mined. The output of the hidden layer is further mapped to
the dimension space corresponding to the number of
categories. With the Softmax activation function, the scores
for each category are converted into a probability distribution.
Where, each element represents the probability that the
sample belongs to the corresponding category. Finally, the
model outputs the prediction based on the maximum
probability.

E. Training
In the training process, the Adam algorithm is used as

the optimizer and cross-entropy loss function is used as the
loss measure. The optimizer formula is as follows:

 log _L y y pred   (14)

Where L is the value of the loss function, y is the
One-Hot encoding of the real label, and y_pred is the
predicted output value.

III. EXPERIMENT AND RESULTS

A. Experimental Settings
The experimental environment, MI task EEG signal

preprocessing and classification model were built using
python, mne library and tensorflow library respectively, and
were run on a Dell laptop with Intel i5-9300H CPU and 16
GB memory. The experimental data of a single subject was
run for 200 epochs, the batch size was set to 32, and the
learning rate was set to 0.005. The data were divided into the
training set and the test set according to the ratio of 8:2, and
the training set was divided by the cross-validation of 50%.
The training set is used for model training and parameter

adjustment. The test set is not involved in model training and
is only used to evaluate model performance.

Select Accuracy as the evaluation parameter. Among
them, TP represents the number of true positives, FP
represents the number of false positives, TN represents the
number of true negatives, and FN represents the number of
false negatives.

TP TNAccuracy
TP TN FP FN




  
(15)

B. Experimental Results
To verify the validity of the model, four advanced deep

learning architectures were selected for comparative analysis,
and each model was re-evaluated on two datasets.

EEGNet[25] designed a compact and efficient
convolutional neural network (CNN) to classify EEG signals
by introducing dependency and depthwise separable
convolutions.

Deep ConvNet [26] combines temporal and spatial
filtering layers, and enhances the model's ability to extract
temporal features by introducing multiple convolution and
maximum pooling blocks in the temporal filtering layer.

Cnn-elm [27] (Convolutional Neural Network - Extreme
Learning Machine) combines convolutional neural network
(CNN) and extreme learning machine (ELM). First, CNNS
extract features from input data, such as images or EEG
signals, and automatically learn spatial or temporal patterns
through convolutional layers. Then, the features extracted by
CNN are input into ELM for classification or regression.

Conformer [28] combines the convolutional neural
network (CNN) and Transformer structure to improve
sequence data's processing efficiency and performance. At its
core, it combines convolution operations and self-attention
mechanisms to full exploit both.

The results of the accuracy comparison between the
FAMW algorithm and other comparison methods on the
dataset of BCI Competition IV 2a are shown in Table Ⅰ. The
highest and average classification accuracy reached 92.3%
and 90.8%, respectively.

The results of accuracy comparison between FAMW
algorithm and other comparison methods on self-collected
data sets are shown in Table Ⅱ . The highest and average
classification accuracy reached 91.62% and 90.94%,
respectively.

It is recommended that footnotes be avoided (except for
the unnumbered footnote with the receipt date on the first
page). Instead, integrate the footnote information into the text
and the reference part.

As can be seen from Table 1 and Table 2, the highest
classification accuracy of the CNN-ELM algorithm is
81.52% and 82.48%, and the average classification accuracy
is 79.40% and 80.25%, respectively, in the data set of BCI
Competition IV 2a and self-collected data set. The highest
classification accuracy of the EEG NET algorithm was
82.62% and 83.62%, and the average classification accuracy
was 80.48% and 80.68%, respectively. The highest
classification accuracy of the Deep ConvNet algorithm was
84.1% and 83.45%, and the average accuracy was 81.61%
and 81.45%, respectively. The highest classification accuracy
of the Conformer algorithm is 89.95% and 90.23%, and the
average accuracy is 84.36% and 85.28%, respectively. The
proposed FAMW algorithm outperforms the other four
methods on the BCI Competition IV 2a dataset, with
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maximum accuracy improvements of 10.78%, 9.68%, 8.2%,
and 2.35%, respectively. The average classification accuracy
was improved by 11.41%, 10.32%, 9.19% and 6.44%,
respectively. The highest accuracy on self-collected data sets
was increased by 9.69%, 8.55%, 8.72% and 1.94%,
respectively, and the average classification accuracy was
increased by 10.69%%, 10.26%, 9.49 and 5.66%,
respectively.

As shown in Figures 5 and 6, a box plot shows the

accuracy of different models in BCI Competition IV 2a and
self-collected data sets. The accuracy distribution of
CNN-ELM is relatively concentrated, and the overall
accuracy is low. EEG NET and Deep ConvNet were slightly
more accurate, showing a narrower distribution of nearly
82% and 84%, respectively. Conformer had a wider range of
accuracy, but the median improved significantly to nearly
88%. The FAMWmodel performed best, with an accuracy of
nearly 92% and a smaller box, indicating a more stable
performance. Because FAMW multi-layer feature extraction
enhances the ability to represent complex signals, windowing
multi-point attention mechanism and gated feed-forward
network (GFFN) effectively reduce the interference of
redundant information, ensure the adaptability of the model
to different time scales, and improve the model's capture of
long-range dependence and local features. Enhanced
robustness and stability in multiple tasks and data sets.

C. Ablation experiment
The aim of this experiment is to remove different

modules in FAMW algorithm gradually. The effects of
Feature Fusion, Frequency Band Selection Windowed
Multi-Head Attention and global feature fusion network
(GFFN) on the performance of the algorithm are analyzed.
Specific ablation experiment modules are as follows:

Fig. 5. Results on the BCI Competition IV 2a

Fig. 6. Results on the Self-collected data

TABLE I
ACCURACY (%) COMPARISON RESULTS ON THE BCI COMPETITION IV

2A DATA SET

Subject CNN-
ELM

EEG
NET

Deep
ConvNet

Conform
er

FAMW
（Ours）

1 81.52 80.55 79.73 86.93 92.3

2 78.20 82.12 78.26 85.41 91.13

3 79.86 80.91 83.33 83.33 90.97

4 79.73 79.69 83.3 80.55 89.68

5 80.76 81.3 80.5 81.59 90.97

6 79.54 78.16 84.1 85.19 91.67

7 80.33 80.35 83.2 85.06 90.27

8 81.37 82.62 80.21 89.95 89.58

9 78.89 77.97 80.13 84.72 91.67

10 78.76 80.12 81.22 86.11 89.58

11 77.25 80.6 82.96 82.63 91.3

12 76.54 81.41 82.41 80.9 90.48

AVG 79.39 80.48 81.61 84.36 90.8

TABLEⅡ
ACCURACY (%) COMPARISON RESULTS ON THE SELF-COLLECTED

DATA SET

Subjec
t

CNN
ELM

EEG
NET

Deep
Conv
Net

Confor
mer

FAMW
（Ours）

1 80.45 80.12 83.12 85.4 91.25

2 78.24 82.36 80.19 90.23 89.94

3 78.46 80.91 79.89 85.71 91.62

4 81.23 80.55 82.67 84.02 91.62

5 80.58 80.23 83.43 82.80 91.62

6 79.63 79.95 80.31 85.41 92.17

7 81.56 80.35 78.96 83.33 90.62

8 79.54 83.62 81.08 84.72 90.50

9 78.85 77.97 81.98 86.45 91.17

10 81.28 80.12 79.07 84.72 89.26

11 82.48 80.6 83.32 84.02 90.50

12 80.78 81.41 83.45 86.59 91.06

AVG 80.25 80.68 81.45 85.28 90.94
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(1) FF (Feature Fusion Ablation): time-frequency and
time-domain feature fusion modules in FAMW algorithm are
removed, and time-domain information is used separately.

(2) FWM (Frequency Band Selection Windowed
Multi-Head Attention Removal) : Remove the multi-head
attention module of frequency band selection and windowed
multi-head attention removal, and use the ordinary
multi-head self-attention.

(3) Global Feature Fusion Network Removal (GFFN) :
Remove the Global Feature Fusion Network (GFFN)
module.The comparison results are shown in Table Ⅲ.

IV. CONCLUSION
This paper proposes a Cnn-Transformer model with

time-time-frequency features is proposed to significantly
improve the classification performance of EEG signals in
motor imagination tasks. By weighting the original EEG
signals and the time-frequency features extracted by
continuous wavelet transform (CWT), The model fully
leverages the complementary information of time-domain
and frequency-domain features to enhance multi-dimensional
feature representation.The feature embedding method can
effectively map the fused features to the feature space
suitable for Transformer processing, and further enhance the
representation capability of time series data.

The Windowed Multi-Head Attention mechanism is
excellent at capturing multi-scale time features, and can
dynamically adjust the attention window size over time
frequency segments to accurately model long-range
dependencies and local features in time series data. By
introducing gated feed-forward network (GFFN), the model
adaptively weights the features of different network layers,
reduces the interference of redundant information, and
further improves the effect of feature extraction. Finally, the
fused features are input to the Softmax classifier through the
fully connected layer to complete the final classification of
the motor imagery task. The experimental results show that
compared with other methods, the proposed model
significantly improves classification accuracy and
demonstrates superior performance in MI EEG signal
classification.

Future studies will further optimize the model to explore
different feature fusion strategies and finer attention
mechanisms to improve classification accuracy. At the same
time, more EEG data and different task scenarios will
be combined to verify the generalization ability and
robustness of the model and promote its wide application in
brain-computer interface (BCI) applications.
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